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1. Introduction

This paper is devoted to a basic open problem about surfaces: the classification of
surfaces of general type and their automorphisms. We will work over the complex
numbers. Complex surfaces have been classified by Enriques and Kodaira in terms
of their Kodaira dimension κ .

While surfaces with κ ≤ 1 are quite well-known, we have much less informa-
tion about surfaces of general type, i.e. those for which κ = 2. Their complete
classification is still an open problem even though there are important contributions
from many mathematicians (for a general reference see [2]).

We know that minimal surfaces of general type are subdivided into classes
according to the value of three main invariants: the self-intersection of the canonical
divisor K 2

S , the holomorphic Euler characteristic χ(S,OS) and the geometric genus
pg(S) := h0(S,OS(KS)) = h2(S,OS). Here we are mainly interested in those
surfaces with the lowest invariants:

Definition 1.1. A numerical Godeaux surface is a minimal complex surface of
general type S with pg(S) = 0, K 2

S = 1, χ(OS) = 1.

The first example of such a surface can be found in [9] and it is the quotient
of a smooth quintic in P3 with a free Z/5Z action. This example turns out to have
non-trivial torsion, and in fact it has Z/5Z as a torsion group.

Much information about the torsion group of numerical Godeaux surfaces can
be obtained by the study of the base points of the tricanonical system |3KS|. This is
an important result by Miyaoka (see [12]). It is known (see [12,15]) that the moduli
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spaces of numerical Godeaux surfaces with torsion group Z/3Z, Z/4Z and Z/5Z
are irreducible of dimension 8.

As for every surface of general type Aut (S) is a finite group (see also [18–20]).
It is still a quite difficult problem to determine the group Aut (S).

The simplest case is that of a surfaces S admitting an involution, i.e. an auto-
morphism of order 2. For Godeaux surfaces in [10] Keum and Lee study the fixed
locus of the involution under the hypothesis that the bicanonical system |2KS| of
the surface has no fixed component.

In their work [5] Calabri, Ciliberto and Mendes Lopes complete the above
study by removing this hypothesis. Their result is the following:

Theorem 1.2. A numerical Godeaux surface S with an involution is birationally
equivalent to one of the following:

1. a double plane of Campedelli type;
2. a double plane branched along a reduced curve which is the union of two distinct

lines r1, r1 and a curve of degree 12 with the following singularities:

• the point q0 = r1 ∩ r2 of multiplicity 4;
• a point qi ∈ ri , i = 1, 2 of type [4, 4], where the tangent line is ri ;
• further three points q3, q4, q5 of multiplicity 4 and a point q6 of type [3, 3],

such that there is no conic through q1, . . . , q6;

3. a double cover of an Enriques surface branched along a curve of arithmetic
genus 2.

In case 3 the torsion group of S is Tors(S) = Z/4Z, whilst in case 2 is either Z/2Z
or Z/4Z.

We recall that a double plane of Campedelli type is a double plane branched
along a curve of degree 10 with a 4-tuple point and 5 points of type [3, 3], not lying
on a conic. An example of such a double plane can be found in [16].

We want to extend the method used in [5] in order to classify such numerical
Godeaux surfaces S having an automorphism σ of order three. Our main result is

Theorem 1.3. A numerical Godeaux surface S cannot have an automorphism of
order 3.

It is possible to construct (see also [3, 17]) a minimal smooth resolution of the
cover p : S −→ � = S/σ , i.e. a commutative diagram

X
ε−−−−→ S

π

� �p

Y
η−−−−→ �

(1.1)

where X and Y are smooth surfaces and π : X −→ Y is the triple cover induced
by σ . The main idea is then to apply the theory of Abelian covers following [13].
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We start our analysis, using Hurwitz formula and the topological Euler char-
acteristic e to estimate the number of isolated fixed points of the action of σ on
S. Such points can be mapped either to ordinary triple points or to double points
of type A2. We determine some basic properties of the invariant part � of the tri-
canonical system |3KS|, which can be either a pencil or a net and it is mapped to
a system |N | over the quotient surface Y . Moreover we study the adjoint systems
to |N | with the help of [4, Lemma 2.2]. All the relevant numerical properties are
collected in Proposition 4.12. We also have a subdivision in three major cases (see
the list of page 490) according to the intersection number R0KS and h2, where R0
is the divisorial part of the ramification locus of σ while h2 is the number of isolated
fixed points of σ mapped to A2-singularities.

A numerical analysis of these three cases is worked out in Sections 5, 6, 7
where using some properties of nef divisors and fibrations it is shown (see Theorems
5.17 and 6.2) that the first two cases cannot occur. In the third case the system |N |
on Y (and also � on S) is a pencil and its movable part induces a fibration over Y .
An analysis of the singular fibres determines the possibilities listed in Theorem 7.7.
It is quite easy to see, although it is a very important information, that Y is a smooth
rational surface (Proposition 7.1).

Sections 8 and 9 are devoted to a deeper study of the adjoint systems to the
pencil |N | and to exclude some of the cases coming from Theorem 7.7. We also
divide the remaining group of cases between Del Pezzo cases and ruled cases (see
Definitions 8.3 and 8.4), since either Y is a blow-up of P2 at a certain number of
points, or Y has a rational pencil with self-intersection 0. Moreover we show that
the divisorial part R0 of the ramification locus of the order three automorphism
σ on the numerical Godeaux surface S is either 0 or it has only one irreducible
component.

Last sections deal with a more geometric study. We first analyze the ruled
cases. We show that Y after contraction of suitable curves can be mapped onto
F0,F1 or F2 and that, by blowing up a point and contracting again, we can always
reduce to F1. Then we can actually see, birationally speaking, our surface S as
triple plane.

A computation of the movable part |A′| of the pencil |N | on Y allows us to
show that ruled cases cannot actually occur.

Finally we study the Del Pezzo cases where the rational surface Y is mapped
to the projective plane blown-up at seven, eight or thirteen points. The computation
of the exceptional curves coming from the blow-up of the isolated fixed points on S
tells us that also Del Pezzo cases do not occur.

One might now ask whether there are numerical Godeaux surfaces with auto-
morphisms of order p > 3 and, if so, might want to classify them. As we have
seen, this is not an easy problem in general. However we notice that Stagnaro’s
construction (see [16]) gives us an example of a numerical Godeaux surface S with
an order 5 automorphism. In fact in this case the surface S is birationally equivalent
to a double plane

z2 = f10(x, y) (1.2)
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where f10(x, y) is an irreducible polynomial of degree 10 which is invariant under
the plane transformation (x, y) −→ (λx, λ2 y) where λ = e2π i/5. One can easily
show that

(x, y, z) −→ (λx, λ2 y, z)

is an automorphism of order 5 on (1.2) hence on the numerical Godeaux surface S.
Thus the non-existence of order 3 automorphisms on numerical Godeaux surfaces
appears as a quite surprising result.

The results contained in this paper are part of the author’s Ph.D. thesis [14]
which can be also found at the following web address

http://ricerca.mat.uniroma3.it/dottorato/Tesi/tesipalmieri.pdf.

Notation

Throughout the paper linear equivalence of divisors is denoted by ≡, whereas nu-
merical equivalence is denoted by ∼. The intersection product of two divisors A and
B on a surface is denoted by AB. The remaining notation is standard in algebraic
geometry.

ACKNOWLEDGEMENTS. I would like to heartily thank Prof. Ciro Ciliberto, who
introduced me to this problem, for his guidance and his constant encouragement
during the preparation of [14]. I also wish to thank Prof. Margarida Mendes Lopes
and Prof. Fabrizio Catanese for their careful reading and for many useful sugges-
tions and remarks.

2. Preliminary results

Let us consider a numerical Godeaux surface S (see Definition 1.1) with an order
3 automorphism σ and let p : S −→ � be the projection of S to its quotient
� = S/ < σ >. Let also π : X −→ Y be the resolution of the cover S −→ �

with X and Y smooth as in [3, 17]. So we have the commutative diagram (1.1).
Let us fix the notation: R0 is the ramification divisor of p, h1 is the number

of isolated fixed points pi of σ which descend to triple point singularities of �,
whereas h2 is the number of isolated fixed points q j of σ which descend to double

point singularities of �. We also set E = ∑h1
i=1 Ei where Ei is the exceptional

curve corresponding to the point pi . We will denote the reducible (−1)-curve which
contracts to a point q j by Fj + Gi + Hj where Fj , Hj are (−1)-curves and G j is
a (−3)-curve with Fj G j = Hj G j = 1, Fj Hj = 0. The sum of the curves Fi , Gi
and Hi will be similarly denoted by F , G, H . Let finally B0 = π(ε∗(R0)) and E ′

i ,
F ′

i etc. be the images of Ei , Fi ,... via π .
So we have R = Ram(π) = ε∗(R0) + E + F + H and, by Hurwitz formula,

K X = π∗(KY ) + 2R = π∗(KY ) + 2ε∗(R0) + 2E + 2F + 2H (2.1)
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while since X is a blow-up of S

K X = ε∗(KS) + E + 2F + G + 2H . (2.2)

Lemma 2.1. We have

ε∗(R0)K X = R0KS, ε∗(R0)π
∗(KY ) = B0KY (2.3)

B0KY = R0KS − 2R2
0 . (2.4)

Proof. Let us compute ε∗(R0)K X using formulas 2.1 and 2.2. We notice that, since
π∗(B0) = 3ε∗(R0), ε∗(R0)π

∗(KY ) = B0KY . By (2.1) we obtain

ε∗(R0)K X = ε∗(R0)(π
∗(KY ) + 2ε∗(R0) + 2E + 2F + 2H) = B0KY + 2R2

0 .

Instead, by (2.2) we find

ε∗(R0)K X = ε∗(R0)(ε
∗(KS) + E + 2F + G + 2H) = R0KS .

The desired result follows.

Proposition 2.2. Let S, σ , X, Y be as above. Then the number of isolated fixed
points of σ satisfies

h1 + 2h2 = 6 + 3R0KS − R2
0

2
. (2.5)

Moreover we have

K 2
Y = 1

3
[K 2

S − (h1 + 3h2) + 4R2
0 − 4R0KS]. (2.6)

Proof. Computing the Euler numbers of X and Y we obtain

e(X) = 3e(Y ) − 2e(R). (2.7)

Now,

−e(R) = −e(ε∗(R0)) − 2(h1 + 2h2) = R2
0 + R0KS − 2(h1 + 2h2)

e(X) = 12 − K 2
X , e(Y ) = 12 − K 2

Y

so from (2.7)

12 − K 2
X = 3(12 − K 2

Y ) + 2(R2
0 + R0KS) − 4(h1 + 2h2) . (2.8)

Again from (2.1), (2.3) and (2.4)

K 2
X = (π∗(KY ) + 2ε∗(R0) + 2E + 2F + 2H)2 = 3K 2

Y − 4R2
0 + 4R0KS (2.9)
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hence

K 2
Y = 1

3
[K 2

X + 4R2
0 − 4R0KS] = 1

3
[K 2

S − (h1 + 3h2) + 4R2
0 − 4R0KS] .

Putting all these together and substituting (2.9) in (2.8) we obtain

12 − 3K 2
Y + 4R2

0 − 4R0KS = 36 − 3K 2
Y + 2(R2

0 + R0KS) − 4(h1 + 2h2)

from which we infer

h1 + 2h2 = 6 + 3R0KS − R2
0

2
as wanted.

Remark 2.3. Using the above proposition we immediately have

K 2
Y = 1

3

[
K 2

S − 6 − h2 + 9

2
R2

0 − 11

2
R0KS

]
. (2.10)

We have

2K X − R = 2(π∗(KY ) + 2R) − R = π∗(2KY ) + 3R = π∗(2KY + B)

3K X = 3(π∗(KY ) + 2R) = π∗(3KY + 2B)

and from the theory of Abelian triple covers (see [11, 13])

π∗OX = OY ⊕ OY (−L1) ⊕ OY (−L2). (2.11)

Then

π∗(OX (2K X − R)) = OY (2KY + B) ⊗ (OY ⊕ OY (−L1) ⊕ OY (−L2)) (2.12)

= OY (2KY + B) ⊕ OY (2KY + L2) ⊕ OY (2KY + L1)

π∗(OX (3K X )) = OY (3KY + 2B) ⊗ (OY ⊕ OY (−L1) ⊕ OY (−L2)) (2.13)

= OY (3KY + 2B) ⊕ OY (3KY + B + L2) ⊕ OY (3KY + B + L1) .

In particular

2 = h0(X,OX (2K X )) ≥ h0(X,OX (2K X − R)) ≥ h0(Y,OY (2KY + B)) ≥ 0

4 = h0(X,OX (3K X )) ≥ h0(Y,OY (3KY + 2B)) ≥ 0

Remark 2.4. We note that h0(Y,OY (3KY + 2B)) = 4 cannot occur, because if
so, then each curve of the tricanonical system |3K X | would be invariant under the
action of σ , hence the tricanonical map φ|3K X | would be composed with σ : this is
not possible since φ|3K X | is a birational map (see [12]).
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Lemma 2.5. The divisor N = 3KY + 2B0 + E ′ − 3G ′ on Y is nef and big with
N 2 = 3, N KY = 1 − 2R0KS.

Proof. We just observe that π∗(N ) = ε∗(3KS). which is nef and big since S is of
general type.

We now want to apply Kawamata-Viehweg theorem (see for example [1]) to
compute the dimensions of H0(Y,OY (3KY + 2B)) and H0(Y,OY (2KY + B)) as
vector spaces. We obtain the following

Proposition 2.6. In the above setting we have

(a) h0(Y,OY (3KY + 2B)) = h0(Y,OY (N )) = 2 + R0KS;
(b) h0(Y,OY (2KY + B)) = 1

3 (2h2 − 2 − R0KS).

Moreover, we have 0 ≤ R0KS ≤ 1 and it can be R0KS = 1 if and only if
h0(Y,OY (2KY + B)) = 1 and h2 = 3.

Proof. (a) We determine some curves in the fixed part of |3KY +2B|. We can write
|3KY + 2B| = |N |+ E ′ + 2F ′ + 2H ′ + 3G ′. So we have h0(Y,OY (3KY + 2B)) =
h0(Y,OY (N )). Moreover, since π∗(N ) = ε∗(3KS), using the formula

π∗(OX (ε∗(3KS))) = OY (N ) ⊕ OY (N − L1) ⊕ OY (N − L2)

and the fact that hi (S,OS(3KS)) = 0 for all i > 0, we find hi (Y,OY (N )) = 0 for
all i > 0. Then, using Lemma 2.5 one has

0 ≤ h0(Y,OY (N )) = χ(Y,OY (N )) = 1 + N (N − KY )

2
= 2 + R0KS .

(b) Again we determine some curves in the fixed part of |2KY + B|. We have

h0(Y,OY (2KY + B)) = h0(Y,OY (2KY + B0 + E ′ − G ′))

But we can also write

2KY + B0 + E ′ − G ′ = KY + (KY + B0 + E ′ − G ′) = KY + 1

3
N + 1

3
B0 + 2

3
E ′

and by Kawamata-Viehweg theorem

hi (Y,OY (2KY + B0 + E ′ − G ′)) = 0 for all i > 0.

Then, as in (a), using (2.4), (2.5), (2.6) we have

0 ≤ h0(Y,OY (2KY + B0 + E ′ − G ′)) = χ(Y,OY (2KY + B0 + E ′ − G ′))

= 1 + (2KY + B0 + E ′ − G ′)(KY + B0 + E ′ − G ′)
2

= 1

3
[3 + K 2

S − 6 + 2h2 − R0KS] = 1

3
(2h2 − 2 − R0KS) .

The last assertion follows by Remark 2.4 and 0 ≤ h0(Y,OY (2KY + B)) ≤ 2.
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So we are left with only three possible cases, according to the values of R0KS
and of h2:

(i) h0(Y,OY (N )) = 3, h0(Y,OY (2KY + B)) = 1, R0KS = 1, h2 = 3
(ii) h0(Y,OY (N )) = 2, h0(Y,OY (2KY + B)) = 2, R0KS = 0, h2 = 4

(iii) h0(Y,OY (N )) = 2, h0(Y,OY (2KY + B)) = 0, R0KS = 0, h2 = 1

Lemma 2.7. For any 1 ≤ i ≤ 2, 0 ≤ j ≤ 2 we have h j (Y,OY (−Li )) = 0. In
particular L2

i + Li KY = −2 for i = 1, 2.

Proof. It is immediate from (2.11) since X is birational to a numerical Godeaux
surface and Y is smooth.

Proposition 2.8. Assume case (iii) above holds and � = 1. Then R0 is an irre-

ducible (−2)-curve and h1 = 4 + � = 5. Let ω = e
2π i

3 be a primitive third root
of unity and let h11 and h12 be the number of curves Ei such that the eigenvalue
of the action of Z/3Z on Ei is ω and ω2 respectively. Then if ω is the eigenvalue
corresponding to R0 then h11 = 2, h12 = 3.

Proof. Since case (iii) holds from (2.5) we infer h1 = 4 + � = 5.
We now write as Ē ′+ and Ē ′− the sum of the curves E ′

i associated to the same
eigenvalue ω and ω2 respectively. Since h1 = 5 = h11 + h12 from the theory of
Abelian triple covers we have

3L1 ≡ B0 + Ē ′+ + 2Ē ′− + F ′ + 2H ′

and we find

L1KY = 1

3
(B0 + Ē ′+ + 2Ē ′− + F ′ + 2H ′)KY = 14 − h11

3
+ 1

hence h11 ≡ 2 mod 3 that forces h11 = 2, h12 = 3 or h11 = 5, h12 = 0. Further-
more

L2
1 = 1

9
(B0 + Ē ′+ + 2Ē ′− + F ′ + 2H ′)2 = −9 + h11

From Lemma 2.7 we know that L2
1 + L1KY = −2 hence

−2 = L2
1 + L1KY = −9 + h11 + 14 − h11

3
+ 1 = 2h11 − 10

3

and h11 = 2.
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3. The invariant part of the tricanonical system

Before going on, we want to better understand the properties of the curves in |N |
(which is always non-empty). In particular, in Lemma 2.5 we have seen that N 2 = 3
and N KY = 1 − 2R0KS so that

pa(N ) = 1 + N 2 + N KY

2
= 1 + 3 + 1 − 2R0KS

2
= 3 − R0KS.

Lemma 3.1. Let S be a numerical Godeaux surface and let � be a linear subsystem
of |3KS| with dim � ≥ 1 and � = A +  where A is the movable part and  is
the fixed part of �. Then the general member A ∈ A is reduced and irreducible
and one of the following conditions is satisfied:

a) AKS = 2, KS = 1, A2 = 0, 2, 4 , pa() ≤ 2;
b) AKS = 3, KS = 0 and either A2 = 1, 3, 5, 7, pa() ≤ 0 or  = 0.

Moreover, if A2 = 4 then A ∼ 2KS.

Proof. We have 3 = 3K 2
S = �KS = AKS + KS . Moreover, by Miyaoka [12],

we know that AKS ≥ 2. This implies either AKS = 2, KS = 1 or AKS = 3,
KS = 0. In the former case by the Index theorem (see [1])

0 ≥ (A − 2KS)
2 = A2 + 4 − 8 = A2 − 4

and
0 ≥ ( − KS)

2 = 2 + 1 − 2 = 2 − 1

which proves a). A similar argument shows b). To see the irreducibility of A simply
observe that if A = A1 + A2 was reducible then A1KS, A2KS ≥ 2 and AKS ≥ 4.
Contradiction.

Proposition 3.2. If the linear system |N | has fixed part, then |N | = |A′| + ′ with
A′2 = 0, 1, 2 and the general curve of |A′| is smooth. Moreover A′N = AKS,
A′B0 = AR0.

Proof. Since π∗(N ) = ε∗(3KS) there is a linear subsystem � of |3KS| such that
ε∗(�) = π∗(|N |) and dim � = h0(Y,OY (N )) − 1 = 1 + R0KS . Thus we can
apply Lemma 3.1 to �. Moreover the strict transform Ã of A is the movable part of
π∗(|N |), so Ã = π∗(A′) where |A′| is the movable part of |N |. Then

9 ≥ ε∗(A)2 ≥ Ã2 = π∗(A′)2 = 3A′2.

This forces Ã2 to be 0, 3, 6 or 9. If Ã2 = 9 then Ã = ε∗(A) and the linear system
�, hence |N |, has no fixed part. The last assertion is an easy computation.

We now focus our attention on the case dim � = 1 + R0KS = 1 or equivalently
R0KS = 0. Then A is a pencil and A2 is the number of base points of A.
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Remark 3.3. We note that, if R0KS = 0, since � = A +  ≡ 3KS , for each
irreducible component R0i of R0, we have either AR0i = 0 or R0i ≤ . Then
AR0 = ∑�

i=1 AR0i ≤ A. On the other hand

9 = �2 = A2 + 2A + 2

and
3KS = � = A + 2.

Therefore
0 ≤ AR0 ≤ A = 9 − A2 − 3KS.

Moreover the A intersection points between A and  form an invariant set for the
action of Z/3Z on S.

Let us write ε∗(A) = Ã + D with D a sum of exceptional divisors with certain
multiplicities.

Remark 3.4. Let us write ε∗() = ̃ + D′. Then there exists a divisor ′′ on Y
such that π∗(′′) = ̃ and π∗(′) = ̃ + D + D′. This implies (D + D′)2 ≡ 0
mod 3. Moreover, the multiplicity of each curve Ek , F or H in D+ D′ is a multiple
of 3, since they appear in the branch locus of the cover π : X −→ Y and D + D′ =
π∗(′ − ̃) is a pull-back of a divisor on Y .

We also remark that if  = 0 we have ̃ ≡ D′ ≡ 0 hence π∗(′) ≡ D.

Lemma 3.5. For each simple base point of A which is an isolated fixed point q j the
self-intersection Ã2 of Ã drops exactly by 2. Moreover either ε∗(A) = Ã + 2Fj +
G j + Hj or ε∗(A) = Ã + Fj + G j + 2Hj .

Proof. We simply blow up q j as shown in [3] or [17] and compute ε∗(A).

Similarly one can show:

Lemma 3.6. For each double base point of A which is an isolated fixed point q j

the self-intersection Ã2 of Ã drops at least by 5. In any case this can only happen
when A2 ≥ 6. Moreover, if q j is a node then ε∗(A) = Ã + 3Fj + 2G j + 3Hj , if q j

is a cusp then ε∗(A) = Ã + 3Fj + 2G j + 2Hj . Finally if q j is neither a node nor
a cusp then A2 = 9 and ε∗(A) = Ã + 4Fj + 2G j + 2Hj .

Lemma 3.7. If the general A ∈ A has a triple point singularity at one of the
isolated fixed point q j we have A2 = 9 and q j is an ordinary triple point. Moreover
ε∗(A) = Ã + 3Fj + 3G j + 3Hj .

Remark 3.8. From Remark 3.4 when A2 = 9 (or equivalently  = 0) we have
D′ = 0 and each component of D different from G has multiplicity m ≡ 0 mod 3.
In particular if we look at the multiplicities α j of A at the points q j we find, using
Lemmas 3.5, 3.6 and 3.7, the following possibilities:
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1. α j = 0
2. α j = 2 and q j is a node
3. α j = 3 and q j is an ordinary triple point.

Moreover the multiplicity mi of the general curve A at any of the points pi can be
different from 0 (hence mi = 3 since mi ≡ 0 mod 3) only when α j = 0 for all the
points q j .

Remark 3.9. Assume pa(A′) = g. Then A′KY = 2g −2− A′2. On the other hand

3A′KY = π∗(A′)π∗(KY )
(2.1)= Ã(K X − 2ε∗(R0) − 2E − 2F − 2H)

= (ε∗(A) − D)(ε∗(KS − 2R0) + G − E)

= AKS − 2AR0 − DG + DE .

Therefore
AKS − 2AR0 − DG + DE = 6g − 6 − 3A′2. (3.1)

Lemma 3.10. In the above setting we have DG = 0 unless A2 = 9 and the general
A ∈ A has an ordinary triple point at q. In the latter case DG = −3. In particular
the general A ∈ A cannot have a cusp at q.

Proof. If multq A = 0 then obviously DG = 0. Therefore we can assume α :=
multq A ≥ 1. We notice that

3A′G ′ = π∗(A′)π∗(G ′) = ÃG = (ε∗(A) − D)G = −DG (3.2)

and then DG ≡ 0 mod 3. Then simply compute DG when α = 1, 2, 3 using
Lemmas 3.5, 3.6 and 3.7.

As an immediate consequence of Lemma 3.10 and of equation (3.2) we have:

Corollary 3.11. In the above setting we have A′G ′ = 0 unless A2 = 9 and the
general A has an ordinary triple point at q. In this latter case A′G ′ = 1.

We now concentrate our analysis on the case dim � = 1 and h2 = 1, which is
case (iii) of the list at page 490.

Proposition 3.12. Assume dim � = 1 and h2 = 1. Then when A′2 = 0 one of the
following possibilities holds:

(0a) A2 = 2, AR0 = 0, g = 1, A′KY = 0, D = E1 + E2;

(0b) A2 = 2, AR0 = 1, g = 1, A′KY = 0, D = 2F + G + H;

(0c) A2 = 3, AR0 = 0, g = 1, A′KY = 0, D = E1 + E2 + E3;

(0d) A2 = 3, AR0 = 1, g = 1, A′KY = 0, D = E1 + 2F + G + H;

(0e) A2 = 4, AR0 = 0, g = 1, A′KY = 0, D = 2E1;
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(0f) A2 = 5, AR0 = 0, g = 1, A′KY = 0, D = 2E1 + E2;

(0g) A2 = 9, AR0 = 0, g = 2, A′KY = 2, D = 3F + 3G + 3H;

(0h) A2 = 9, AR0 = 0, g = 1, A′KY = 0, D = 3E1.

Moreover when cases (0g) or (0h) hold we have  = 0, i.e, the invariant pencil
� ≤ |3KS| on S has no fixed part.

Proof. Let us assume A′2 = 0. We start by considering A2 ≤ 7. From Lemma 3.10
we have DG = 0. Then, if D = uF + vG + wH + ∑h1

i=1 ai Ei , (3.1) becomes

AKS − 2AR0 −
h1∑

i=1

ai = 6g − 6 . (3.3)

Let us begin with A2 = 0. Then D = 0 and Ã = ε∗(A). Moreover from Lemma
3.1 AKS = 2 and from Remark 3.3 we have 0 ≤ AR0 ≤ A = 6. Hence by (3.3)

2 − 2AR0 = 6g − 6

and then AR0 = 1, 4 since AR0 ≡ 1 mod 3. The intersection cycle A ·  is
composed of six points with multiplicities. From Remark 3.3 (we recall that we are
assuming R0KS = 0) these points are organized in orbits for the action of Z/3Z.
Each orbit contains either three distinct points or only one fixed point, which can a
priori be an isolated fixed point. The latter case cannot actually occur since A and
 have no isolated fixed point in common. Then we should have AR0 ≡ 0 mod 3.
Contradiction.

When A2 = 1 we have AKS = 3, AR0 ≤ A = 8 and from Lemma 3.5
D = E1. Then from Remark 3.4 we have D′ ≥ 2E1. Since A ·  is composed by
8 points with multiplicities and the only isolated fixed point in A ∩  is p1, which
is double for the 0-cycle A · , from Remark 3.3 we have AR0 ≡ 0 mod 3. From
(3.3) we have

2 − 2AR0 = 3 − 2AR0 − 1 = 6g − 6 .

Then AR0 ≡ 1 mod 3 and this is impossible. The rest of the proof when A2 ≤ 7
is similar.

Finally we consider A2 = 9. We know from Lemma 3.1 that  = 0. Using
Remark 3.3 we find AR0 = 0. Moreover from Remarks 3.4 and 3.8, D′ = 0 and the
general A has either multiplicity 0 or 3 at each of the isolated fixed points p j , and it
can be 3 only if the multiplicity at q is 0. Then we have the following possibilities
for D:
a) D = 3F +3G+3H : in this case from Lemma 3.10 DG = −3 and (3.1) becomes

6 = 3 − 0 + 3 − 0 = AKS − 2AR0 − DG + DE = 6g − 6 − 3A′2 = 6g − 6

which has the only solution g = 2, A′KY = 2.
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b) D = 3E1: equation (3.1) becomes

0 = 3 − 0 + 0 − 3 = AKS − 2AR0 − DG + DE = 6g − 6

which forces g = 1, A′KY = 0.

With a similar argument one can show (see [14, Proposition 2.2.14, 2.2.15]):

Proposition 3.13. Assume dim � = 1 and h2 = 1. Then when A′2 = 1 one of the
following possibilities holds:

(1a) A2 = 3, AR0 = 0, g = 2, A′KY = 1, D = 0;
(1b) A2 = 3, AR0 = 3, g = 1, A′KY = −1, D = 0;
(1c) A2 = 3, AR0 = 6, g = 0, A′KY = −3, D = 0;
(1d) A2 = 5, AR0 = 0, g = 2, A′KY = 1, D = 2F + G + H;
(1e) A2 = 5, AR0 = 3, g = 1, A′KY = −1, D = 2F + G + H;
(1f) A2 = 9, AR0 = 0, g = 2, A′KY = 1, D = 3F + 2G + 3H.

Moreover when case (1 f ) holds we have  = 0, i.e, the invariant pencil � ≤ |3KS|
on S has no fixed part.

Proposition 3.14. Assume dim � = 1 and h2 = 1. The case A′2 = 2 cannot occur.

Remark 3.15. There is only one possibility left out by Propositions 3.12, 3.13 and
3.14. This is the case A2 = 9, D = 0 or, equivalently, A′ = N . Then from Lemma
2.5 we know g = 3, A′KY = N KY = 1.

Corollary 3.16. In the above setting, when D = 2F + G + H + ∑
i ai Ei we find

A′H ′ = 0.

4. Adjoint systems to the pencil |N |
We also state here some properties of the adjoint system |KY + N | which will be
useful later. We know that h2(Y,OY ) = 0, Y is a regular surface, and that we have
a linear system |N | of nef and big curves on Y . Let us consider the short exact
sequence

0 → OY (−N ) → OY → ON → 0

Since N is nef and big we have h0(Y,OY (−N )) = h1(Y,OY (−N )) = 0 and

h0(Y,OY (KY + N )) = h2(Y,OY (−N )) = h1(N ,ON ) = pa(N ) = 3 − R0KS

Then |N + KY | is a linear system of curves with arithmetic genus given by the
formulas (see also Lemma 2.5)

(N + KY )2 = N 2 + K 2
Y + 2N KY = 5 + K 2

Y − 4R0KS

(N + KY )KY = K 2
Y + N KY = K 2

Y + 1 − 2R0KS

pa(N + KY ) = 1 + (N + KY )(N + 2KY )

2
= 4 + K 2

Y − 3R0KS .

(4.1)
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Remark 4.1. We observe that N+KY is not nef. In fact (N +KY )G ′
i = KY G ′

i =−1.

From [4, Lemma 2.2] if N + KY is not nef then every irreducible curve Z such
that Z(N + KY ) < 0 is a (−1)-curve with Z N = 0. By contracting the curves
and repeating the above argument we can see that after contracting each (−1)-cycle
on Y such that Z N = 0 we get a surface on which N and its adjoint are both nef
divisors.

Lemma 4.2. The number n of (−1)-cycles Z on Y different from the ones of G ′ for
which Z N = 0 is greater or equal than

35

6
R0KS − 3

2
R2

0 − 10 + 2h2

3
.

Proof. Let Z be such a cycle. Then for any other (−1)-cycle Z ′ that does not
intersect N we have Z Z ′ = 0 by the Index theorem. In particular Z does not
intersect any curve G ′

i . Then

0 = Z N = Z(3KY + 2B0 + E ′ − 3G ′) = −3 + 2B0 Z + E ′Z (4.2)

and there is a (−3)-curve E ′
i intersecting Z positively. Moreover since E ′

i N = 0
we have (Z ± E ′

i )
2 < 0 hence −1 ≤ Z E ′

i ≤ 1 for all i = 1, . . . , h1.
We know that N + KY −∑n

i=1 Zi − G ′ is nef and, by Lemma 2.5 and equation
(2.10),

0 ≤ (N + KY −
n∑

i=1

Zi − G ′)2 = 10 + 2h2

3
+ 3

2
R2

0 − 35

6
R0KS + n.

Let us set N1 := N + KY − G ′ − ∑n
i=1 Zi .

4.1. The (−1)-cycles Zi

We now analyse the irreducible components of the above (−1)-cycles Zi . From the
nefness of N and N1 we find

Proposition 4.3. In the above setting each irreducible component of the (−1)-
cycles Z is a curve C such that C N = C N1 = 0.

Corollary 4.4. The curves F ′
j and H ′

j satisfy F ′
j N1 = H ′

j N1 = 0 for any j =
1, . . . , h2. In particular F ′

j

∑n
i=1 Zi = H ′

j

∑n
i=1 Zi = 0.

Proof. Simply compute F ′
j N1 (respectively H ′

j N1) using the above proposition and
recalling that F ′

j and H ′
j are (−3)-curves such that F ′

j N = H ′
j N = 0.
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Corollary 4.5. For any irreducible curve E ′
k or B0k we find

E ′
k

n∑
i=1

Zi ≥ 0, B0k

n∑
i=1

Zi ≥ 0.

Proof. The statement is obvious if E ′
k or B0k are not contained in any of the (−1)-

cycles Zi . On the other hand if E ′
k is contained in some (−1)-cycles, from Proposi-

tion 4.3 we find 0 = E ′
k N1 = 1−E ′

k

∑n
i=1 Zi hence E ′

k

∑n
i=1 Zi = 1. Analogously

if B0k is contained is some cycle Zi0 , then B0k N = 0 and B0k is a (−6)-curve on
Y . Hence we find 0 = B0k N1 = 4 − B0k

∑n
i=1 Zi as wanted.

Let us now consider an irreducible (−1)-curve C in a cycle. Recall, from the
proof of Lemma 4.2 and from (4.2), that there is a curve E ′

i such that C E ′
i = 1.

On the other hand, (π∗(C))2 = 3C2 = −3 and, for each E ′
i with C E ′

i = 1 and
C as above, 3 = π∗(C E ′

i ) = 3π∗(C)Ei which implies π∗(C)Ei = 1. Moreover

both C and E ′
i are irreducible and C2 = −1 while E ′

i
2 = −3. Thus it cannot

be Ei ≤ π∗(C). In particular π∗(C) cannot be singular at the point π∗(C) ∩ Ei
(otherwise we should have π∗(C)Ei ≥ 2).

Lemma 4.6. If C is an irreducible (−1)-curve such that C N = 0 and C F ′
j =

C H ′
j = 0 ( j = 1, . . . , h2) then π∗(C) is a rational curve and π∗(C)2 = −3.

Proof. Suppose that π∗(C) = C1+C2+C3 is the union of three distinct curves and
consider the curve Ei above. Then Ci C j ≥ 1 for i �= j since the point π∗(C) ∩ Ei
is fixed for σ . Each component of π∗(C) is a rational curve, so −2 = 2pa(Ci ) −
2 = Ci (Ci + K X ). Since the intersection of the components Ci is fixed under the
action of σ , we should have, for each i such that E ′

i intersects C , 1 = π∗(C)Ei =
(C1 + C2 + C3)Ei = 3C1 Ei . Contradiction. It follows that π∗(C) is an irreducible
curve. We now want to show that pg(π

∗(C)) = 0. From Hurwitz formula we have

2pg(π
∗(C)) − 2 = −2 · 3 + 2r

where r is the number of ramification points of the triple cover π∗(C)ν −→ C . We
have 2r = 2pg(π

∗(C)) + 4 ≥ 4, so r ≥ 2. On the other hand r is not greater
than the number of intersection points of C with B0 + E ′ + F ′ + H ′. We have
C F ′ = C H ′ = 0 and from (4.2) either C B0 = C E ′ = 1 or C B0 = 0, C E ′ = 3.
Furthermore

π∗(C)K X = π∗(C)(π∗(KY ) + 2R) = −3 + 2C B0 + 2C E ′.

In the former case, r = 2 and π∗(C)ν is a smooth rational curve. In the latter case
r = 2, 3. If r = 2 then π∗(C) has geometric genus 0 and it has a singular point in
π∗(C) ∩ E . This is a contradiction since π∗(C)Ei ≤ 1, i = 1, . . . , h1.

When r = 3, instead, since pa(π∗(C)) = pg(π
∗(C)) = 1, π∗(C) should be

a smooth elliptic curve. When we look at the image ε(π∗(C)) of this curve on S,
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since C E ′ = 3 (recall from the proof of Lemma 4.2 that 0 ≤ C E ′
i ≤ 1 for any

i = 1, . . . , h1) we would have ε(π∗(C))2 = π∗(C)2 − 3 = 0, and since it is an
elliptic curve, KS ε(π∗(C)) = 0. This is impossible since S is a minimal surface of
general type.

Corollary 4.7. For any curve C as above C B0 = C E ′ = 1.

We now want to determine the composition of the reducible (−1)-cycles.

Lemma 4.8. The curves G ′
j cannot be contained in one of the cycles Zi , i =

1, . . . , n.

Proof. If one of the cycles Zi , say Zi0 contains a curve G ′
j then from Corollary 4.4

we have, since F ′
j G

′
j = 1,

0 = F ′
j

n∑
i=1

Zi = 1 + F ′
j (Zi0 − G ′

j ) + F ′
j

∑
i �=i0

Zi

hence F ′
j is contained either in Zi0 or in another cycle Zi with i �= i0. In this latter

case we have

0 = G ′
j Zi = G ′

j (Zi − F ′
j ) + G ′

j F ′
j = G ′

j (Zi − F ′
j ) + 1

hence G ′
j is also contained in Zi . Then there exists a cycle containing both G ′

j and
F ′

j . The same argument holds for H ′
j . In particular F ′

j and H ′
j are both contracted

to make the adjoint divisor to N a nef divisor.
When we contract the curve G ′

j the images of F ′
j and H ′

j are two (−2)-curves
meeting at one point. Since they are both contracted there is a (−1)-cycle C inter-
secting at least one of them at one point. If C passes through the intersection point
of the (−2)-curves, then by contracting C we obtain a cycle which is composed of
two (−1)-curves meeting at one point. In particular this cycle is effective with self-
intersection 0 and it does not intersect the image N̄ of N contradicting the Index
theorem. This implies that C is a (−1)-cycle intersecting at one point only one of
the curves F ′

j or H ′
j . We will assume without loss of generality C F ′

j = 1.
We show the lemma by reducing ourselves to the case when C is an irreducible

(−1)-curve hence C = Z1. This is always possible after the contraction of a suit-
able number of (−1)-curves. In this case we have the configuration of Figure 4.1
hence n ≥ 3. Moreover we have

Z1 N = Z1(3KY + 2B0 + E ′ − 3G ′) = −3 + 2B0 Z1 + E ′Z1.

Since Z1 is irreducible then either B0 Z1 = 0, E ′Z1 = 3 or B0 Z1 = 1, E ′Z1 = 1.
By the Index theorem, since E ′

k N = Zi N = 0 for all k = 1, . . . , h1, i = 1, . . . , n,
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Z1 Z1 G ′
j

F ′
j

Z1 G ′
j

H ′
j

F ′
j

Figure 4.1.

we have −1 ≤ E ′
k Zi ≤ 1. For any curve E ′

k such that E ′
k Z1 = 1 we find (see also

Corollary 4.5)

0 ≤ E ′
k

n∑
i=1

Zi = 1 − E ′
k N1 ≤ 1

and

E ′
k

n∑
i=1

Zi = 3E ′
k Z1 + E ′

k

(∑
i≥4

Zi

)
= 3 + E ′

k

(∑
i≥4

Zi

)
≤ 1.

Thus E ′
k is contained in some (−1)-cycle Zi i ≥ 4. Then E ′

k is contracted too and
one of the cycles has the configuration of Figure 4.2.

Z1 G ′
j

E ′
k

H ′
j

F ′
j

Figure 4.2.

When we contract the curves Z1 and G ′
j the images of E ′

k and H ′
j are (−2)-curves

while the image of F ′
j is a (−1)-curve intersecting them at one point. Hence when

we contract that (−1)-curve we obtain two (−1)-curve meeting at one point. This
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new configuration has self-intersection 0 and cannot be contracted to a point. Thus
we get a contradiction and the curve G ′

j cannot be contained in a cycle.

Corollary 4.9. The curves F ′
j and H ′

j are not contained in any of the (−1)-cycles Zi .

Proof. If a curve F ′
j (or H ′

j ) is contained in a cycle Zi then, since G ′
j Zi = 0, G ′

j is
also contained in Zi . This contradicts Lemma 4.8.

Lemma 4.10. There is no cycle Zi , 1 ≤ i ≤ n containing at least two curves E ′
k .

Proof. Let us assume that two of the curves E ′
k , say E ′

1 and E ′
2, are contained in

a reducible cycle Zi0 . Then E ′
k N1 = 0 implies E ′

k

∑
i Zi = 1 and there are two

(−1)-cycles Z1 and Z2 such that E ′
1 Z1 = 1, E ′

2 Z2 = 1.
Then we have the configuration of Figure 4.3 where C is a suitable cycle. One

can easily see that, in order to contract E ′
1 (and analogously E ′

2), the configurations
of Figure 4.4 are (−1)-cycles. Then we have

−1 = (C + E ′
2 + Z2)

2 = C2 − 3 − 1 + 2C E ′
2 + 2 = C2 + 2C E ′

2 − 2

hence
C2 + 2C E ′

2 = 1 (4.3)

and, analogously, C2 + 2C E ′
1 = 1.

Z1 Z2 E ′
1 E ′

2

Z1 Z2

C ���������������

Figure 4.3.

C

�
�
�
�
�
�
�
�
�

Z2

E ′
2

Z1 C

�
�
�
�
�
�
�
�
�

E ′
1

Figure 4.4.
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Moreover from (4.3)

−1 = Z2
3 = (Z1 + E ′

1 + C + E ′
2 + Z2)

2 = −3 + 2C E ′
2.

Thus C E ′
2 = 1 = C E ′

1, C2 = −1. Then C is a (−1)-cycle not intersecting N
hence by the Index theorem we should have C Z3 = 0. But C Z3 = C(Z1 + E ′

1 +
C + E ′

2 + Z2) = 1 and we get a contradiction.

Corollary 4.11. If there is a reducible cycle Zi0 , then n ≥ 3 and for n = 3 we have
one of the following possibilities:

1. two irreducible (−1)-curves Z1 and Z2 and Z3 = Z1 + Z2 + E ′
k where E ′

k Z1 =
E ′

k Z2 = 1;
2. only one irreducible (−1)-curve Z1, Z2 = Z1 + C, Z3 = C + 2Z1 + E ′

k where
C is a (−2)-curve intersecting Z1 at one point and E ′

k is such that E ′
k Z1 = 1.

Proof. From Lemmas 4.8 and 4.10 if n ≤ 2 a reducible (−1)-cycle can contain at
most one curve E ′

k and it does not contain any curve G ′
j . Hence there is at least an

irreducible curve Z1. Then for n = 1 the result is proved. For n = 2 if Z2 was
reducible then Z2 ≥ Z1. Then there exists a curve E ′

k intersecting Z1 at one point
and

E ′
k(Z1 + Z2) = E ′

k(2Z1 + (Z2 − Z1)) = 2 + E ′
k(Z2 − Z1) ≤ 1.

This is only possible when E ′
k is contained in Z2. But then there is at least another

(−1)-cycle Z3 intersecting E ′
k at one point and such that Z3 N = 0 contradicting

the assumption n = 2.
When n = 3 we can apply the above argument and we can see that if Z3 is a

reducible cycle then there is at least an irreducible (−1)-cycle Z1. Hence, we have
one of the following configurations

Z1 Z2 Z1 Z2

E ′
k

Z1 Z1

C

C E ′
k

Z1

where C is an irreducible (−2)-curve.
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4.2. The linear systems |Ni |
We now compute the arithmetic genus of N1: from equation (4.1) we know that
N 2

1 = 5 − 4R0KS + K 2
Y + n + h2 while from Lemma 2.5

N1KY =
(

N + KY −
n∑

i=1

Zi − G ′
)

KY = 1 − 2R0KS + K 2
Y + n + h2

so

pa(N1) = 1 + N 2
1 + N1KY

2
= 4 − 3R0KS + K 2

Y + n + h2 ≤ N 2
1 (4.4)

since 0 ≤ R0KS ≤ 1. |N1| is again a linear system of nef curves, so when pa(N1) ≥
1 we can apply the same argument as in page 496 to study the adjoint system |N1 +
KY |. Under this hypotheses N1 is nef and big and we find h0(Y,OY (N1 + KY )) =
pa(N1) ≥ 1. N1 + KY is not nef since the curves Zi and G ′

i do not intersect N1,
but there could be some other (−1)-cycles Z ′

i such that Z ′
i N1 = 0 (see [4, Lemma

2.2]). Then N2 := N1 + KY −∑n
i=1 Zi −G ′ −∑n′

j=1 Z ′
j is nef and we can compute

N 2
2 , N2KY , pa(N2).

By repeating the same argument again (if pa(N2) ≥ 1) we obtain the following
proposition (see [14, Section 2.3.2]):

Proposition 4.12. In the above setting let us set N0 := N. Then the numerical data
of the curves N1, N2, N3 are:

i = 1 i = 2

N 2
i 5 − 4R0KS + K 2

Y + n + h2 7 − 8R0KS + 4K 2
Y + 4n + 4h2 + n′

Ni KY 1 − 2R0KS + K 2
Y + n + h2 1 − 2R0KS + 2K 2

Y + 2n + 2h2 + n′
pa(Ni ) 4 − 3R0KS + K 2

Y + n + h2 5 − 5R0KS + 3K 2
Y + 3n + 3h2 + n′

Ni−1 Ni 4 − 2R0KS 6 − 6R0KS + 2K 2
Y + 2n + 2h2

i = 3

N 2
i 9 − 12R0KS + 9K 2

Y + 9h2 + 9n + 4n′ + n′′
Ni KY 1 − 2R0KS + 3K 2

Y + 3h2 + 3n + 2n′ + n′′
pa(Ni ) 6 − 7R0KS + 6K 2

Y + 6h2 + 6n + 3n′ + n′′
Ni−1 Ni 8 − 10R0KS + 6K 2

Y + 6h2 + 6n + 2n′

5. Case (i): R0KS = 1, h2 = 3

We now prove the non-existence of case (i) (cf. the list of page 490) by studying the
pencil |N1| and by showing that the induced map φ|N1| : Y ��� P1 has too many
singular fibres.
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Lemma 5.1. In case (i) we find

(a) h1 ≥ 1;
(b) no positive multiple of KS − 2R0 is an effective divisor.

Proof. (a) Since R0KS = 1, there exists a unique irreducible component � of R0 for
which �KS = 1. Using the Index theorem we find �2 ≤ 1. The other irreducible
components of R0 are (−2)-curves. Then R2

0 ≤ �2 ≤ 1. Since h2 = 3 from (2.5)

we find h1 = 3R0 KS−R2
0

2 ≥ 1.
To prove (b) note that KS(KS − 2R0) = −1 while KS is nef.

Lemma 5.2. Suppose case (i) holds and R0 is the disjoint union of an irreducible
component � with �KS = 1 and of � (−2)-curves. Then

(a) K 2
Y = −4 − 3� + 3�2−1

2 ≤ −3;
(b) 0 ≤ � ≤ (5 + �2)/2;
(c) K 2

Y ≥ −12;
(d) h1 ≤ 4.

Proof. (a) It is an easy computation which uses formula (2.10) of page 488:

K 2
Y = 1

3
(K 2

S − 6 − h2 − 11

2
R0KS + 9

2
R2

0) = −4 − 3� + 3�2 − 1

2
.

(b) Since π : X −→ Y is a surjective map we have an injection
H2(Y,C) −→ H2(X,C). In particular we find e(X) = 12 − K 2

X ≥ e(Y ) =
12 − K 2

Y hence K 2
Y ≥ K 2

X . Thus from Lemma 5.2 and Lemma 5.1

−4 − 3� + 3�2 − 1

2
= K 2

Y ≥ K 2
X = K 2

S − (h1 + 3h2) = 1 − 3 − �2

2
− � − 9

hence

2� ≤ −4 + 9 − 1 + 3�2 − 1

2
+ 3 − �2

2
= 5 + �2

as wanted.

(c) and (d) follow from (a), (b) and Lemma 5.1.

Proposition 5.3. Assume case (i) holds. Then Y is a rational surface.

Proof. By Castelnuovo’s criterion, since q(Y ) ≤ q(X) = q(S) = 0, we need to
show that P2(Y ) = h0(Y,OY (2KY )) = 0. Since R = ε∗(R0) + E + F + H , from
(2.2) we have π∗(2KY − 2G ′) = 2K X − 4R − 2G = ε∗(2KS − 4R0) − 2E .

Moreover since KY G ′
i = −1 < 0, we find

0 ≤ P2(Y ) = h0(Y,OY (2KY − 2G ′)) ≤ h0(X,OX (ε∗(2KS − 4R0) − 2E)) .
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But using Lemma 5.1 we find

h0(X,OX (ε∗(2KS − 4R0) − 2E)) ≤ h0(S,OS(2KS − 4R0)) = 0

and then h0(Y,OY (2KY )) = h0(Y,OY (2KY − 2G ′)) = 0.

From now on we use the same notation as in Lemma 4.2. From Proposition
4.12 we have

pa(N1) = 4 − 3R0KS + K 2
Y + n + h2 = 4 + K 2

Y + n = N 2
1 (5.1)

N N1 = 4 − 2R0KS = 2 . (5.2)

Lemma 5.4. In the above setting we have N 2
1 = 0, 1.

Proof. Since N 2 = 3 we have by the Index theorem and (5.2) 0 ≥ (3N1 − 2N )2 =
9N 2

1 − 12 which implies N 2
1 = 0, 1.

Let us write |N1| = |�| + T , where |�| is the movable part and T is the fixed
part of |N1|. Since N1, �, N are nef divisors, we have 0 ≤ �N ≤ N1 N = 2. In
particular it cannot be �N = 0 otherwise, by the Index theorem and the rationality
of Y , � = 0 whereas h0(Y,OY (�)) = h0(Y,OY (N1)) = 2. Thus actually 1 ≤
�N ≤ N1 N = 2.

Lemma 5.5. Suppose N 2
1 = 0. Then |N1| has no fixed part.

Proof. We have 0 = N 2
1 = N1� + N1T or, equivalently,

0 = N1� = �2 + �T

0 = N1T = �T + T 2

which implies �2 = �T = T 2 = 0.
It cannot be N� = 1 = N T : we obtain by the Index theorem 0 ≥ (�−T )2 =

�2 + T 2 − 2�T = 0 which implies � ∼ T . Hence, since Y is a rational surface,
� ≡ T which is impossible.

So N� = N N1 = 2 and then 0 ≥ (N1 − �)2 = T 2 = 0. Again, by the
rationality of Y we have T ≡ 0 and |N1| has no fixed part.

Lemma 5.6. Suppose N 2
1 =1. Then |N1| has no fixed part unless �2 =0, pa(�) =

pa(N1)=1 and either �N = 1, N = N1 + � or �N = 2, N1 = � + Zi for some
reducible (−1)-cycle Zi .

Proof. We know that 1 = N 2
1 = N1� + N1T . It cannot be N1� = 0, otherwise by

the Index theorem and the rationality of Y it should be � = 0, which is impossible.
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Then we have N1� = 1, N1T = 0, and this implies T 2 ≤ 0. When T 2 = 0
we see that |N1| has no fixed part, as wanted, whereas when T 2 is strictly negative,
by

1 = N1� = �2 + �T (5.3)

0 = N1T = �T + T 2 (5.4)

we find �T = 1, T 2 = −1, �2 = 0. Then by (5.1) N 2
1 = �2 + T 2 + 2�T = 1 =

pa(N1) and N1KY = −N 2
1 = −1. We now look at N�.

If N� = 2 we have

1 = N1� =
(

KY + N −
n∑

i=1

Zi − G ′
)

� = �KY + 2 −
(

n∑
i=1

Zi + G ′
)

�

which amounts to say 0 ≤ (
∑n

i=1 Zi + G ′)� = 1 + �KY . So the followings are
true:

a) �KY ≥ 0
b) there exists a (−1)-curve C (which can be either one of the Zi ’s or one of the

G ′
i ’s) intersecting � positively.

Using b) and the fact that C N = T N = 0, the Index theorem implies 0 ≥ (T −
C)2 = −2 − 2T C . Then T C ≥ −1, whereas C N1 = 0 implies CT ≤ −1. This
forces T C = −1, T ≡ C . But for any irreducible such curve C there is a curve D
such that DN1 = 0 intersecting C at one point, i.e. D = E ′

j for the Zi and D = F ′
i

for G ′
i (see Corollary 4.7), so that 0 = DN1 = D� + DC = D� + 1 which

contradicts the nefness of �. Then N1 ≡ � + Zi with Zi a reducible (−1)-cycle.
We are now left with the case N� = 1. Since N N1 = 2 we have N T = 1.

Moreover N1� = 1 and �2 = 0 by (5.3) and (5.4). From (N1 + �)N = 3 = N 2

we have

0 ≥ (N1 + � − N )2 = N 2
1 + �2 + N 2 + 2N1� − 2N1 N − 2N� = 0

hence N ≡ N1 +� ≡ 2�+T . Then �KY = (N − N1)KY = 0 implies pa(�) = 1
as wanted.

Corollary 5.7. We have n = N 2
1 + 3� + (1 − 3�2)/2 ≤ N 2

1 + 8 ≤ 9.

Proof. From Lemma 5.2 we know that K 2
Y ≥ −12. From (5.1) and Lemma 5.4 we

find n = N 2
1 − 4 − K 2

Y ≤ N 2
1 − 4 + 12 = N 2

1 + 8 ≤ 9. Moreover, again from
Lemma 5.2, n = N 2

1 − 4 − K 2
Y = N 2

1 + 3� + (1 − 3�2)/2.

Remark 5.8. From the above corollary n = N 2
1 + 3� + (1 − 3�2)/2 ≡ N 2

1 − 1
mod 3. In particular when N 2

1 = 0 we find n ≡ 2 mod 3 hence n = 2, 5 or 8,
while when N 2

1 = 1 we have n ≡ 0 mod 3 hence n = 3, 6 or 9.
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Lemma 5.9. In the above setting the pencil |�| determines a fibration φ|�| : Y ���
P1. Let us set δ := ∑

s(e(�s) − e(�)) where the sum is taken over all the singular
curves �s ∈ |�|. Then δ satisfies

18 ≤ δ = 12 + 3N 2
1 + n + �2 ≤ 16 + n.

In particular if N 2
1 = 0 then n = 8.

Before proving the above lemma we need the following

Lemma 5.10. Let |C | be a pencil on a complex surface with C2 = 0 and let φ|C |
be the induced fibration. An irreducible curve C1 with C2

1 = −n in a singular fibre
contributes at least n to the Euler number δ := ∑

s(e(Cs) − e(C)) of the fibration
(see [1, Proposition III.1.4]).

Proof. Let us consider a reducible curve of the fibration C = ∑l
i=1 hi Ci . As shown

in [8] (see also [7, Section V.1]) C is equivalent to δ0 curves with a node where

δ0 ≥
l∑

i=1

(hi − 1)(2pa(Ci ) − 2) +
∑
i �= j

(hi + h j − 1)Ci C j . (5.5)

Let us consider one of the curves C j , say C1, with C2
1 = −n. Then 0 = C1C =

−nh1 + C1
∑l

i=2 hi Ci hence C1
∑l

i=2 hi Ci = nh1. Since C is connected we also
have C1

∑l
i=2 Ci ≥ 1. Then

δ0 ≥ (h1 − 1)(2pa(C1) − 2) +
∑
j≥2

(h1 + h j − 1)C1C j

≥ (h1 − 1)(−2 +
∑
j≥2

C1C j ) + C1

∑
j≥2

h j C j

≥ (h1 − 1)(−1) + nh1 = (n − 1)h1 + 1 ≥ n

as wanted. Since each node of a curve increases the Euler number by 1 the result is
proved.

Proof of Lemma 5.9. Off its �2 base points, the pencil |�| determines on Y a fibra-
tion over P1 of curves of genus 0 ≤ pa(�) = N 2

1 ≤ 1. Computing Euler numbers
from [1, Proposition III.11.4] we find

12 − K 2
Y + �2 = e(Y ) + �2 = 2(2 − 2N 2

1 ) +
∑

s

(e(�s) − e(�))

where �s are the singular curves of |�|. Let us set δ := ∑
s(e(�s) − e(�)). Then

since from (5.1) K 2
Y = N 2

1 − 4 − n

δ = 12 − K 2
Y + �2 − 4 + 4N 2

1 = 12 + 3N 2
1 + n + �2 ≤ 16 + n.
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Let us first consider the curves F ′
i and H ′

i . From Lemma 4.2 we find F ′
i N1 = 0

and the same holds for H ′
i .

Moreover if N ≡ N1 + � (see Lemma 5.6) we also find 0 = F ′
i N = F ′

i (N1 +
�) = F ′

i � and, again, the same holds for H ′
i .

If N1 ≡ �+ Zi instead we find from Corollary 4.9 0 = F ′
i N1 = F ′

i (�+ Zi ) ≥
F ′

i � hence F ′
i � = H ′

i � = 0 in any case. Thus from Lemma 5.10 each of the curves
F ′

i and H ′
i contributes 3 to δ, hence δ ≥ 6h2 = 18.

If N 2
1 = 0 then � ≡ N1 and

18 ≤ δ = 12 + 3N 2
1 + n + �2 = 12 + n

hence n ≥ 6. In particular from Remark 5.8 we can deduce n = 8.

Proposition 5.11. Case (i) cannot occur with N 2
1 = 0.

Proof. Let us assume N 2
1 =0. Then from Lemma 5.9 18≤δ=12+n =12+8=20.

If all the eight cycles Zi were irreducible then we should have Zi N1 = 0 hence
from Lemma 5.10 each of them would contribute 1 to δ. Thus 18 + n = 26 ≤ δ =
20. Contradiction.

If one of the cycles is reducible, then from Lemma 4.8, Corollary 4.9 and
Lemma 4.10 there is a curve E ′

k contained in that cycle and from Lemma 5.10 E ′
k

increases δ by 3. Then 18+3 = 21 ≤ δ = 20 and, again, we get a contradiction.

Proposition 5.12. The case |N1| = |�| + Zi with Zi reducible (−1)-cycle cannot
occur.

Proof. From the proof of Lemma 5.6 we know that �N = N N1 = 2, �G ′ = 0
and �2 = �KY = 0. Hence, from the definition of N ,

2 = N� = �(3KY + 2B0 + E ′ − 3G ′) = 2B0� + E ′�.

Since � is nef we find either B0� = 1, E ′� = 0 or B0� = 0, E ′� = 2. We recall
that B0 = �′ + ∑�

i=1 B0i with B2
0i = −6, B0i ∼= P1.

We have to analyse separately the two cases

Case I B0� = 1, E ′� = 0;

Case II B0� = 0, E ′� = 2.

We only write the proof for case I. The other one is similar (see also [14, Proposition
3.1.16]).

Case I. Since none of the (−3)-curves E ′
k intersects �, each of them contributes 3

to δ (see Lemma 5.10). Moreover there is only one irreducible component of B0
intersecting �.
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If �′� = 1 then we also have the contribution of � irreducible (−6)-curves of
B0. Then, using Lemma 5.10 and Corollary 5.7,

18 + 3h1 + 6� = 18 + 3

(
3 − �2

2
+ �

)
+ 6� ≤ δ = 12 + 3N 2

1 + n + �2

= 15 + n = 15 + N 2
1 + 3� + 1 − 3�2

2
= 16 + 3� + 1 − 3�2

2

hence

2 + 6� ≤ 1 − 3�2

2
+ 3�2 − 9

2
= −4

and we get a contradiction.
If �′� = 0 we have necessarily �′2 ≤ 0 (hence �2 ≤ −1 on the numerical

Godeaux surface S) and there is a (−6)-curve B0k in B0 such that B0k� = 1. In
particular � ≥ 1. Then �′ contributes −�′2 = −3�2 to δ and we can also consider
� − 1 (−6)-curves B0i , i �= k, plus the h1 curves E ′

k . Thus

18 − 3�2 + 6(� − 1) + 3h1 = 12 + 6� − 3�2 + 9 − 3�2

2
+ 3� ≤ δ

= 15 + n = 16 + 3� + 1 − 3�2

2

hence

6� ≤ 4 + 1 − 3�2

2
+ 3�2 − 9

2
+ 3�2 = 3�2 < 0.

Contradiction.

Proposition 5.13. The case N ≡ N1 + � cannot occur.

Proof. From the proof of Lemma 5.6 we know that �N = 1, N N1 = 2, �G ′ = 0
and �2 = �KY = 0. Hence

1 = N� = �(3KY + 2B0 + E ′ − 3G ′) = 2B0� + E ′�.

From the nefness of � we find B0� = 0, E ′� = 1. Since �′� = 0 we find
�′2 ≤ 0 hence �2 ≤ −1 on S. In particular h1 = 3−�2

2 + � ≥ 2. All the irreducible
components of B0 and h1 − 1 curves E ′

k contribute to δ. Thus from Lemma 5.10
and Corollary 5.7

18 − 3�2 + 6� + 3(h1 − 1) = 15 + 6� − 3�2 + 9 − 3�2

2
+ 3� ≤ δ

= 12 + 3N 2
1 + n + �2 = 15 + n

= 15 + N 2
1 + 3� + 1 − 3�2

2
= 16 + 3� + 1 − 3�2

2
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hence

6� ≤ 1 + 1 − 3�2

2
+ 3�2 − 9

2
− 3�2 = −3 + 3�2 < 0

and we get a contradiction.

Thus from Lemma 5.6, Propositions 5.12 and 5.13 we immediately find:

Corollary 5.14. In the above setting the pencil |N1| has no fixed part.

We recall that from Remark 5.8 when N 2
1 = 1 we have n = 3, 6, 9.

Proposition 5.15. Case (i) with N 2
1 = 1 can only occur when n = 6 and either

�2 = −3 and � = 0 or �2 = −1 and � = 1. In particular �2 = 1 cannot occur.
Moreover all the curves E ′

k intersect N1 at one point.

Proof. From the above corollary we have � ≡ N1. Since from (5.1) pa(N1) =
N 2

1 = 1 we know that N N1 = 2, N1G ′ = 0 and N 2
1 = 1, N1KY = 0. Hence

2 = N N1 = N1(3KY + 2B0 + E ′ − 3G ′) = −3 + 2B0 N1 + E ′N1.

Moreover, from Proposition 4.3,

0 ≤ E ′
k N1 = E ′

k(N + KY + G ′ −
∑

i

Zi ) = 1 − E ′
k

∑
i

Zi ≤ 1

hence from Lemma 5.2 0 ≤ E ′N1 ≤ h1 ≤ 4. Then either B0 N1 = 2, E ′N1 = 1 or
B0 N1 = 1, E ′N1 = 3. As in the proof of Proposition 5.12 we only prove the first
case (see also [14, Proposition 3.1.19]).

Case I

All the (−3)-curves E ′
k , except for one, have no intersection with N1 hence from

Lemma 5.10 each of them contributes 3 to δ. Moreover there are at most two
irreducible components of B0 intersecting N1.

If �′N1 = 2 then we have the contribution of � irreducible (−6)-curves of B0.
Then, using Lemmas 5.9, 5.10 and Corollary 5.7,

18 + 3(h1 − 1) + 6� = 18 + 3(
3 − �2

2
+ � − 1) + 6� ≤ δ

= 12 + 3N 2
1 + n + �2 = 16 + n

= 16 + N 2
1 + 3� + 1 − 3�2

2
= 17 + 3� + 1 − 3�2

2

hence

6� ≤ 2 + 1 − 3�2

2
+ 3�2 − 9

2
= −2
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and we get a contradiction.
If �′N1 = 1 then there is a (−6)-curve B0k intersecting N1 at one point. Hence

we have the contribution of � − 1 irreducible (−6)-curves of B0. Thus, using Lem-
mas 5.9, 5.10 and Corollary 5.7,

18 + 3(h1 − 1) + 6(� − 1) = 18 + 3(
3 − �2

2
+ � − 1) + 6� − 6 ≤ δ

= 16 + n = 17 + 3� + 1 − 3�2

2

hence

6� ≤ 8 + 1 − 3�2

2
+ 3�2 − 9

2
= 4

which forces � = 0 while we know � ≥ 1. Contradiction.
If �′N1 = 0 we have necessarily �′2 ≤ 0 (hence �2 ≤ −1 on the numer-

ical Godeaux surface S) and there is at least one (−6)-curve B0k in B0 such that
B0k N1 ≥ 1. In particular � ≥ 1. Then �′ contributes −�′2 = −3�2 to δ. If � ≥ 2
we can also consider �−2 (−6)-curves B0i , i �= k, plus the h1 −1 curves E ′

k . Thus

18 − 3�2 + 6(� − 2) + 3(h1 − 1) = 3 + 6� − 3�2 + 9 − 3�2

2
+ 3� ≤ δ

= 16 + n = 17 + 3� + 1 − 3�2

2

hence

6� ≤ 14 + 1 − 3�2

2
+ 3�2 − 9

2
+ 3�2 = 10 + 3�2 ≤ 7

which forces � ≤ 1 contradicting the assumption � ≥ 2.
If � = 1 then we only have the contribution of �′ and of h1 − 1 curves E ′

k .
Then

18 − 3�2 + 3h1 − 3 = 18 − 3�2 + 9 − 3�2

2
+ 3� − 3

= 18 − 3�2 + 9 − 3�2

2
≤ δ = 17 + 3� + 1 − 3�2

2
= 20 + 1 − 3�2

2

which forces

0 ≤ 2 + 1 − 3�2

2
+ 3�2 − 9

2
+ 3�2 = −2 + 3�2 < −2.

Contradiction.

We now show the following:
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Proposition 5.16. Case (i) with N 2
1 = 1 and n = 6 cannot occur.

Proof. Let us assume N 2
1 = 1 and n = 6. Then from Lemma 5.9

18 ≤ δ = 12 + 3N 2
1 + n + �2 ≤ 16 + n = 16 + 6 = 22.

If all the six cycles Zi were irreducible then each of them would not intersect N1
and �. Then from Lemma 5.10 they would contribute 1 ·6 = 6 to δ hence 18+6 =
24 ≤ δ ≤ 22 and we would get a contradiction.

Let us assume there is at least one reducible cycle. Then one of the irreducible
(−1)-curves, say Z1, appears with multiplicity m1 ≥ 2 in

∑
i Zi . For any curve E ′

k
such that E ′

k Z1 = 1 we find

E ′
k

∑
i

Zi = E ′
k

(
m1 Z1 +

(∑
i

Zi − m1 Z1

))
= m1 + E ′

k

(∑
i

Zi − m1 Z1

)
.

It follows that E ′
k is contained in some cycle Zi , i ≥ 2 and then from Proposition

4.3 E ′
k N1 = 0 contradicting Proposition 5.15.

Propositions 5.11, 5.12, 5.13, 5.15 and 5.16 can be summarized in the follow-
ing theorem.

Theorem 5.17. Case (i) cannot occur.

6. Case (ii): R0KS = 0, h2 = 4

In this section we show that also case (ii) cannot occur by studying the map φ|M ′| :
Y −→ P1 where |M ′| is the image on Y of the movable part of |2KS|.

Assume case (ii) holds. From Proposition 2.6 and formula (2.12) we have

2 = h0(Y,OY (2KY + B)) ≤ h0(X,OY (2K X − R)) ≤ h0(X,OX (2K X )) = 2

which implies that R0 is in the fixed part of |2KS|. Then the number � of disjoint
(−2)-curves that form R0 is greater or equal than 2. In fact

h1 + 8 = h1 + 2h2 = 6 + 3R0KS − R2
0

2
= 6 + �

forces h1 = � − 2 and � ≥ 2.
Let M be an effective divisor in the movable part of the pencil |2KS − R0|.

Then M is in the movable part of the bicanonical system |2KS| = |M | + T and,
by [12], either M2 = 0 or M2 = 2. In any case the general curve of |M | is smooth.
From [6, Theorem 5.1] we can exclude the case M2 = 0.
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The strict transform M̃ of M satisfies M̃ = π∗(M ′) for some pencil |M ′| on
Y . This implies M̃2 ≡ 0 mod 3. Therefore M̃2 = 0. We have ε∗(M) = M̃ + D
where D is a sum of exceptional divisors.

Since M2 = 2 then D �= 0 and the general curve M , see Lemma 3.5, passes
either through one of the h2 = 4 points qi (without loss of generality we may
assume it is q1) with multiplicities m1 = 1, m2 = m3 = m4 = 0 or through two of
the points p j (if � ≥ 4). In the former case D = 2F + G + H whereas in the latter
case D = E1 + E2. In any case pa(M̃) = pa(M) = 3 and we have M̃ K X = 4.

Lemma 6.1. |M ′| is a pencil of elliptic curves with M ′2 = 0.

Proof. We have

3M ′KY = π∗(M ′)π∗(KY ) = M̃(K X − 2ε∗(R0) − 2E − 2F − 2H)

=
{

4 − 2M R0 − 2 = 2 − 2M R0 if D = 2F + G + H
4 − 2M R0 − 4 = −2M R0 if D = E1 + E2

and then M R0 ≡ 0, 1 mod 3. Since 0 ≤ M R0 ≤ MT = 2 we get M R0 = 0, 1
hence M ′KY = 0. Since M ′2 = 0 this proves the lemma.

Theorem 6.2. Case (ii) cannot occur.

Proof. Let us consider on Y the fibration over P1 given by the elliptic pencil |M ′|.
From [1, Proposition III.11.4] we have

e(Y ) = e(M ′)e(P1) +
∑

s

(e(M ′
s) − e(M ′)) = e(M ′)e(P1) + δ (6.1)

where the sum runs over all the singular curves M ′
s in |M ′| and we set δ :=∑

s(e(M ′
s) − e(M)). Since e(M ′) = 0 and from (2.6) e(Y ) = 12 − K 2

Y = 15 + 3�

we find δ = 15 + 3�.
The general M on S passes only through at most one of the points q j . Then we

have F ′
2 M ′ = F ′

3 M ′ = F ′
4 M ′ = H ′

2 M ′ = H ′
3 M ′ = H ′

4 M ′ = 0 and each of these
disjoint curves contributes 3 to δ by Lemma 5.10. Moreover since 0 ≤ M R0 ≤ 1
(see the above proof) we have at least � − 1 irreducible components B0i of B0 not
intersecting M ′. Each curve B0i contributes 6 more nodes to δ. Therefore

6 · 3 + 6(� − 1) = 12 + 6� ≤ δ = 15 + 3�

which forces � ≤ 1 and we get a contradiction since we know � ≥ 2.

7. Case (iii): R0KS = 0, h2 = 1

In this case, from formula (2.5), h1 = 4 + � where � is the number of irreducible
components of R0. Since h0(Y,OY (2KY + B)) = 0, from Castelnuovo’s theorem
(see for example [1]) it is immediate to see
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Proposition 7.1. If case (iii) holds then Y is a rational surface.

We still have the pencil |N | = |A′| + ′ which is composed of curves of
arithmetic genus 3. Off the A′2 base points φ|A′| is a fibration over P1 of curves of
genus 0 ≤ pa(A′) ≤ 2. Computing Euler numbers we obtain

e(Y ) + A′2 = e(A′)e(P1) +
∑

s

(e(A′
s) − e(A′)) = e(A′)e(P1) + δ (7.1)

where the sum is taken over all the singular curves A′
s in |A′| and we set, as before,

δ := ∑
s(e(A′

s) − e(A′)). From Lemma 5.10 we have

Lemma 7.2. In the above setting each of the exceptional curves E ′
k , F ′ and H ′

which does not intersect A′ increases δ by 3. Moreover each component B0i of B0
for which B0i A′ = 0 increases δ by 6.

Lemma 7.3. In the above setting we have δ = 14 + 3� + 3A′2 + 2A′KY .

Proof. Let us compute, using (2.10), e(Y )+ A′2 = 12− K 2
Y + A′2 = 14+ A′2 +3�

while e(A′)e(P1) = (2 − 2 · pa(A′))2 = 2(−A′2 − A′KY ). Therefore we have

δ =
∑

s

(e(A′
s) − e(A′)) = 14 + 3� + 3A′2 + 2A′KY

as wanted.

Proposition 7.4. Assume A′2 = 0. Then 0 ≤ � ≤ 1 and we have � = 0 only when
(0a), (0c), (0f) or (0g) holds and � = 1 only when (0d) holds. Moreover cases
(0b), (0e) and (0h) of the list of Proposition 3.12 cannot occur.

Proof. We refer to the list of Proposition 3.12. From Lemma 7.3 we find

δ = 14 + 3� + 2A′KY .

We have A′KY = 0 in all cases of the list except for (0g).
In case (0a) we have to consider F ′, H ′ and h1 − 2 = 2 + � curves E ′

k , plus all
the components of B0. Then

6 + 3(2 + �) + 6� = 12 + 9� ≤ δ = 14 + 3�

which forces � = 0.
In case (0b) we find � ≥ 1 and we have the contribution of the curves E ′

k , H ′
(see Corollary 3.16) and of � − 1 components of B0. Then

3(4 + �) + 3 + 6(� − 1) = 9 + 9� ≤ δ = 14 + 3�

which implies 6� ≤ 5. Impossible.
In case (0c) we have the contribution of F ′, H ′ and h1 − 3 = 1 + � of the

curves E ′
k , plus all the components of B0. Then

6 + 3(1 + �) + 6� = 9 + 9� ≤ δ = 14 + 3�

which forces � = 0. The rest of the proof goes similarly.
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A similar argument to Proposition 7.4 shows (see also [14, Proposition 3.3.6,
3.3.7]):

Proposition 7.5. Assume A′2 = 1. Then 0 ≤ � ≤ 3. If (1f) holds then � = 0, 1. If
(1e) holds then � = 1, 2, 3. If (1a) or (1d) holds then � = 0. Cases (1b) and (1c)
of the list of Proposition 3.13 cannot occur. Moreover when case (1e) holds for any
irreducible component B0k of B0 we find B0k A′ ≥ 1.

From Proposition 3.14 it cannot be A′2 = 2. Then (see Remark 3.15) we are
left with the case A′ = N .

Proposition 7.6. Assume A′ = N. Then 0 ≤ � ≤ 1.

As a consequence of Propositions 3.12, 3.13, 3.14, 7.4, 7.5, 7.6 and of Remark
3.15 we obtain

Theorem 7.7. Case (iii) of page 491 can only occur when one of the following
conditions is satisfied:

1. � = 0 : Cases (0a), (0c), (0f), (0g), (1a), (1d), (1f), A′ = N;

2. � = 1 : Cases (0d), (1e), (1f), A′ = N;

3. � = 2, 3 : Case (1e).

Moreover in cases (0g), (1f) and A′ = N we have  = 0, i.e. the invariant pencil
� ≤ |3KS| has no fixed part.

8. More on the case R0KS = 0, h2 = 1

In the above setting from (2.5) h1 = 4 + � and from (2.10) we have

K 2
Y = 1

3

[
K 2

S − 6 − h2 + 9

2
R2

0 − 11

2
R0KS

]
= 1

3
[1 − 6 − 1 − 9�] = −2 − 3� .

(8.1)
From now on we refer to the formulas of Proposition 4.12 when computing the
arithmetic data of the curves in the linear systems |N |, |N1|, |N2|, |N3|.

We start by computing N 2
1 and pa(N1):

N 2
1 = 5−4R0KS +K 2

Y +n+h2 =5−2−3�+n+1=4−3�+n ≥0 (8.2)

pa(N1) = 4 − 3R0KS + K 2
Y +n + h2 =4 − 2 − 3� + n + 1= N 2

1 − 1 (8.3)

We have the following:

Lemma 8.1. In the above setting we have 3� − 4 ≤ n ≤ 3�.
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Proof. Let us consider the short exact sequence of sheaves

0 −→ OY (N − N1) −→ OY (N ) −→ ON1(N ) −→ 0 . (8.4)

Then, since Y is a rational surface, from the definition of N1,

h2(Y,OY (N − N1)) = h0(Y,OY (KY − N + N1))

= h0

(
Y,OY

(
2KY − G ′ −

n∑
i=1

Zi

))
≤ h0(Y,OY (2KY )) = 0 .

The divisor N−N1 cannot be effective, otherwise 3=h0(Y,OY(N1))≤h0(Y,OY(N ))=
2. The long exact sequence of (8.4) yields therefore

0 → H0(Y,OY (N )) −→ H0(N1,ON1(N )) −→ H1(Y,OY (N − N1)) → 0 .

0 −→ H1(N1,ON1(N )) −→ 0 .

This forces H1(N1,ON1(N )) = 0. Since N1 is big and nef, hence 1-connected,

h0(N1,ON1(N )) = χ(ON1(N )) = 1 + N N1 − pa(N1) = 2 + 3� − n .

Then 2 = h0(Y,OY (N )) ≤ h0(N1,ON1(N )) = 2 + 3� − n and 3� − 4 ≤ n ≤ 3�

as wanted (see formula (8.2)).

Remark 8.2. When � = 0 one can easily see that n = 3� = 0 is the only possibility
for n.

We will see in the following sections that a deeper study of the adjoint linear
systems |Ni | to the pencil |N | on Y allows us to collect the cases listed in Theorem
7.7 into two main groups.

Definition 8.3. We call ruled cases those for which one of the linear systems |Ni |
induce a morphism Y −→ Fa for some a ≥ 0.

Definition 8.4. We call Del Pezzo cases those which are not ruled cases.

In Section 9 we will show that not all the cases listed in Theorem 7.7 can
actually occur.

8.1. n = 3� − 4

Proposition 8.5. In the case n = 3�− 4 the net |N1| has no fixed part and we have
|N1| = |2�| where |�| is a pencil of rational curves with �2 = 0.
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Proof. Assume n = 3� − 4. Then |N1| is a net of curves with N 2
1 = 0. Let us

write |N1| = |�| + T where T and |�| are the fixed and the movable part of |N1|
respectively. Then 0 ≤ �2 ≤ �N1 ≤ N 2

1 hence �N1 = 0 and

0 = N1� = �2 + T �

0 = N1T = �T + T 2.

It follows �2 = �T = T 2 = 0. Therefore there exists a pencil |�| such that
|�| = |2�|. Then 4 = N N1 = 2N� + N T and N� ≥ 1 otherwise by the Index
theorem and the rationality of Y we have � ≡ 0.

If N� = 1, N T = N� = 2 then (� − T )2 = �2 + T 2 − 2�T = 0 hence
� ≡ T which is impossible. Thus N� = 2 and N T = 0 which forces T = 0 by
the Index theorem. Therefore we have N1 = � and

−1 = pa(N1) = pa(�) = pa(2�) = 1 + 2�(2� + KY )

2
= 1 + �KY

forces �KY = −2. Then |�| is a pencil of rational curves.

Theorem 8.6. The case n = 3� − 4 cannot occur.

Proof. If n = 3� − 4 ≥ 0 we have � ≥ 2 and case (1e) of Proposition 3.13 holds
(see also Theorem 7.7). Therefore we have a pencil of elliptic curves |A′| for which
A′2 = 1. Then, from Propositions 3.2 and 8.5, Lemma 3.1 and Corollary 3.11,
2A′� = A′N1 = 2− A′ ∑n

i=1 Zi ≤ 2 and A′N1 ≥ 1 by the Index theorem, whence
A′N1 = 2 and A′� = 1.

We have h0(A′,OA′(�)) = 2 since otherwise the point A′∩� should be a base
point for the pencil |�|, whereas �2 = 0. Then we get a contradiction since for any
divisor D of degree 1 on the smooth elliptic curve A′ h0(A′,OA′(D)) = 1.

8.2. n = 3� − 3

In this case we have 1 ≤ � ≤ 3 and from equations (8.2) and (8.3) we find N 2
1 = 1

and pa(N1) = 0.

Lemma 8.7. If n = 3� − 3 then |N1| has no fixed part. Then the general element
of |N1| is a smooth rational curve.

Proof. We can use the same argument as in Lemma 5.6 and we find that |N1| has
no fixed part unless |N1| = |�| + T with �2 = 0, �N1 = �T = 1, T 2 = −1.
Since �2 = 0 and |�| is a net, there exists a pencil |�| such that � ≡ 2�. But then
1 = �T = 2�T and we get a contradiction.

In this setting |N1| is base point free and φ|N1| : Y −→ P2 is a birational
morphism.
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When n ≥ 3� − 2 it makes sense to consider |N2| = |N1 + KY − ∑n
i=1 Zi −

G ′ − ∑n′
j=1 Z ′

j | which is a linear system of dimension 3 − 3� + n = pa(N1) ≤ 3
and 3 − 3� + n ≥ 1 and from Proposition 4.12

N 2
2 = 7 − 8R0KS + 4K 2

Y + 4n + 4h2 + n′ = 3 − 12� + 4n + n′

pa(N2) = 5 − 5R0KS + 3K 2
Y + 3n + 3h2 + n′ = 2 − 9� + 3n + n′ (8.5)

N1 N2 = 2pa(N1) − 2 = 2(3 − 3� + n) − 2 = 4 − 6� + 2n .

8.3. n = 3� − 2

In this case 1 ≤ � ≤ 3 and we have N1 N2 = 0 and by the Index theorem we infer
N2 ≡ 0. Then from (8.5) n′ = N 2

2 − 3 + 12� − 4n = 5 and

N1 ≡
n∑

i=1

Zi + G ′ +
5∑

j=1

Z ′
j − KY

N ≡ 2
n∑

i=1

Zi + 2G ′ +
5∑

j=1

Z ′
j − 2KY

2B0 + E ′ ≡ 2
n∑

i=1

Zi + 5G ′ +
5∑

j=1

Z ′
j − 5KY .

(8.6)

8.4. n = 3� − 1

This case can occur for 1 ≤ � ≤ 3. We have N1 N2 = 2, N 2
1 = 3 (cf. equations

(8.2), (8.3) and (8.5)) and since N1(3N2 − 2N1) = 0 then

(3N2 − 2N1)
2 = 9N 2

2 + 4N 2
1 − 12N1 N2 = 9N 2

2 + 12 − 24 = 9N 2
2 − 12 ≤ 0 .

Hence from (8.5) 0 ≤ N 2
2 = n′ − 1 ≤ 1 and n′ = 1, 2.

Lemma 8.8. If N 2
2 = 0 (i.e. n′ = 1) then |N2| has no fixed part. In particular the

general member of |N2| is a smooth rational curve with self-intersection 0.

Proof. Let us write |N2| = |�| + T with |�| and T the movable and the fixed part
of N2 respectively. We have 0 = N 2

2 = N2� + N2T or, equivalently,

0 = N2� = �2 + �T

0 = N2T = �T + T 2

which implies �2 = �T = T 2 = 0.
We know that N1 N2 = 2. Then 0 ≤ N1� ≤ N1 N2 = 2. It cannot be N1� = 0

otherwise, by the Index theorem and the rationality of Y , � = 0.
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It cannot be N1� = 1 = N1T : we obtain by the Index theorem

0 ≥ (� − T )2 = �2 + T 2 − 2�T = 0 ⇒ � ∼ T .

Since Y is a rational surface, this implies � ≡ T which is impossible.
So N1� = N1 N2 = 2 and then 0 ≥ (N2 − �)2 = T 2 = 0. Again, by the

rationality of Y we have T ≡ 0 and |N2| has no fixed part.

Then if n′ = 1 there exists a morphism Y −→ Fa for some a ≥ 0.
If n′ = 2 then |N2| is a pencil of curves with arithmetic genus 1 and therefore

N3 ≡ 0. But now from Proposition 4.12

N 2
3 = 9 − 12R0KS + 9K 2

Y + 9h2 + 9n + 4n′ + n′′ = n′′ − 1 = 0 .

Then, recalling the definition of N := 3KY + 2B0 + E ′ − 3G ′,

N2 ≡ G ′ +
n∑

i=1

Zi +
2∑

i=1

Z ′
i + Z ′′ − KY

N1 ≡ 2G ′ + 2
n∑

i=1

Zi + 2
2∑

i=1

Z ′
i + Z ′′ − 2KY

N ≡ 3G ′ + 3
n∑

i=1

Zi + 2
2∑

i=1

Z ′
i + Z ′′ − 3KY

2B0 + E ′ ≡ 6G ′ + 3
n∑

i=1

Zi + 2
2∑

i=1

Z ′
i + Z ′′ − 6KY .

8.5. n = 3�

In this case we have 0 ≤ � ≤ 3. Now N 2
1 = 4 = N1 N2 and N 2

2 = n′ + 3 ≥ 3. By
the Index theorem (N1 − N2)

2 = n′ − 1 ≤ 0. Moreover if n′ = 1 we have N1 ≡ N2
and then KY ≡ G ′ + ∑n

i=1 Zi + Z ′ which is impossible since KY is not effective.
This implies n′ = 0, N 2

2 = 3 and pa(N2) = 2.
If we look at N3 we have (see also Proposition 4.12)

N 2
3 = 9 − 12R0KS + 9K 2

Y + 9h2 + 9n + 4n′ + n′′ = n′′

pa(N3) = 6 − 7R0KS + 6K 2
Y + 6h2 + 6n + 3n′ + n′′ = n′′ .

Since N2 N3 = 2pa(N2) − 2 = 2 we have (3N3 − 2N2)
2 = 9n′′ − 12 ≤ 0 hence

n′′ = 0, 1. In the former case |N3| is a pencil of rational curves of self-intersection
0 (see also Proposition 4.12), whereas in the latter case we have a pencil of curves
with arithmetic genus one. Again we infer

N4 = N3 + KY − G ′ −
n∑

i=1

Zi − Z ′′ −
n′′′∑
i=1

Z ′′′
i ≡ 0.



AUTOMORPHISMS OF ORDER 3 ON GODEAUX SURFACES 519

Then N 2
4 = N 2

3 + K 2
Y + 2N3KY + 1 + n + n′ + n′′ + n′′′ = n′′′ − 1 = 0. Therefore

N3 ≡ G ′ +
n∑

i=1

Zi + Z ′′ + Z ′′′ − KY

N2 ≡ 2G ′ + 2
n∑

i=1

Zi + 2Z ′′ + Z ′′′ − 2KY

N1 ≡ 3G ′ + 3
n∑

i=1

Zi + 2Z ′′ + Z ′′′ − 3KY

N ≡ 4G ′ + 4
n∑

i=1

Zi + 2Z ′′ + Z ′′′ − 4KY

2B0 + E ′ ≡ 7G ′ + 4
n∑

i=1

Zi + 2Z ′′ + Z ′′′ − 7KY .

In case |N3| is a pencil of rational curves we can show arguing as in Lemma 8.8
that |N3| has no fixed part. Therefore we have a map Y −→ Fa for some a ≥ 0.

9. Further results

Proposition 9.1. Case (1e) of Proposition 3.13 cannot occur.

Proof. Assume case (1e) holds. Then Y has an elliptic pencil |A′| with A′2 = 1.
From [4, Lemma 2.2] if A′ + KY is not nef then there exist (−1)-cycles D j such
that D j A′ = 0. By the Index theorem we have

A1 = A′ + KY −
∑

j

D j ≡ 0 . (9.1)

We now look at the intersection number s := A′N1: we have (cf. Corollary 3.11)
A′N1 = A′(N + KY − G ′ − ∑n

i=1 Zi ) = 2 − A′ ∑n
i=1 Zi ≥ 1 otherwise N1 ≡ 0.

Moreover from Theorem 8.6 we have 1 ≤ N 2
1 ≤ 4 (cf. Sections 8.2, 8.3, 8.4 and

8.5). Then by the Index theorem we have A′(N1 − s A′) = 0 and (N1 − s A′)2 =
N 2

1 − s2 ≤ 0.
If it was s = 1 we should have N 2

1 = 1 and, from the rationality of Y , N1 ≡ A′
which is impossible since |A′| is a pencil whereas |N1| is a net. Hence A′N1 = 2
and A′ ∑n

i=1 Zi = 0. Moreover, when N 2
1 = 4 (or, equivalently, n = 3�) we

get, because of the rationality of Y , N1 ≡ 2A′ which is impossible since then (see
Lemma 2.5 and Proposition 3.13) 4 = N N1 = 2N A′ = 6.

Hence in case (1e) we can only have n = 3� − 1, n = 3� − 2 or n = 3� − 3.
Since A′N1 = 2, none of the curves Zi intersects A′. Therefore from (9.1)

A1 = A′ + KY − G ′ −
n∑

i=1

Zi −
m∑

j=1

C j ≡ 0
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and

0 = A2
1 = A′2 + K 2

Y + 2A′KY + 1 + n + m = n − 2 − 3� + m (9.2)

hence m = 3� − n + 2.
We also know that in case (1e) for any irreducible component B0k of B0 we

have B0k A′ ≥ 1 (see Proposition 7.5). Moreover A′N = 3, ′N = 0. Then

0 = B0k N = B0k(A′ + ′) ≥ 1 + B0k
′

for any k = 1, . . . , � forces B0 ≤ ′. We recall that N1KY = (N + KY − G ′ −∑n
i=1 Zi )KY = n − 3�. Then we find

0 = A1 N1 = N1

(
A′ + KY − G ′ −

n∑
i=1

Zi −
m∑

j=1

C j

)

= 2 + n − 3� − N1

m∑
j=1

C j ≤ n − (3� − 2) .

This excludes n = 3� − 3.
When n = 3� − 2 none of the m = 3� − n + 2 = 4 curves C j intersects N1.

Hence they are 4 of the n′ = 5 curves Z ′
i . Since N2 ≡ A1 ≡ 0 we find

N1 ≡
n∑

i=1

Zi + G ′ +
5∑

j=1

Z ′
j − KY ≡ A′ + Z ′

5.

Thus we get a contradiction since 0 = F ′N1 = F ′ A′ + F ′Z ′
5 = 1.

When n = 3� − 1 we have m = 3� − n + 2 = 3 and, using Proposition 4.12,

0 = A1 N1 = N1

(
A′ + KY − G ′ −

n∑
i=1

Zi −
m∑

j=1

C j

)
= 1 − N1

m∑
j=1

C j .

Thus there is exactly one curve C1 with C1 N1 = 1 whereas the remaining two have
to be chosen among the n′ ≤ 2 curves Z ′

i . This also excludes the case n′ = 1.

When n′ = 2 we have A′N2 = A′(N1 + KY − G ′ −∑n
i=1 Zi −∑n′

j=1 Z ′
j ) = 1

and (A′ − N2)
2 = 0. Thus A′ ≡ N2 but we get a contradiction since

′N2 = ′ A′ = (N − A′)A′ = 3 − 1 = 2

and 2 ≥ B0 N2 = B0 A′ = 3.

Proposition 9.2. The case (0d) of Proposition 3.12 cannot occur.
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Proof. Assume case (0d) holds. Then we have � = 1 (see Theorem 7.7) and K 2
Y =

−2 − 3� = −5. Moreover |A′| is a pencil of elliptic curves such that A′2 =
0 = A′KY . If we look at the adjoint system A′ + KY we find A′(A′ + KY ) = 0.
From [4, Lemma 2.2] there are (−1)-cycles D j such that A1 = A′+KY −∑m

j=1 D j

is nef and D j A′ = 0. Since A′ A1 = A′(A′ + KY ) = 0 we necessarily have A2
1 = 0.

Hence (recall that G ′ A′ = 0 from Corollary 3.11)

0 = A2
1 =

(
A′ + KY − G ′ −

∑
j

C j

)2

= 0 + K 2
Y + 0 + 1 + m = −4 + m

and

A1KY = KY

(
A′ + KY − G ′ −

m∑
j=1

C j

)
= 0 − 5 + 1 + m = A2

1 = 0.

Since from Proposition 3.2 A′N = 3 we can write

0 ≤ A1 N = N

(
A′ + KY − G ′ −

m∑
j=1

C j

)
= 3 + 1 − N

m∑
j=1

C j ≤ 4.

Assume now 1 ≤ A1 N = s ≤ 4. Then we have N (3A1 − s A′) = 0 and by the
Index theorem and the rationality of Y (3A1 − s A′)2 = 0 and s A′ ≡ 3A1. Thus
1 ≤ s = s A′B0 = 3A1 B0 forces s = 3 and A′ ≡ A1 which is impossible since
otherwise KY would be effective. Thus A1 N = 0 hence A1 ≡ 0 and

0 = A1 B0 = B0

(
A′ + KY − G ′ −

4∑
j=1

C j

)
= 5 − B0

4∑
j=1

C j . (9.3)

We note that B0 cannot be contained in any singular fibre of |A′| since B0 A′ = 1 >

0. In particular it is not contained in any of the (−1)-cycles C j . Then B0C j ≥ 0 for
any j = 1, . . . , 4 and from (9.3) there exists a cycle C j , say C1 such that C1 B0 ≥ 2.
But C1 A′ = 0 forces C1 ≤ A′ and 2 ≤ C1 B0 ≤ A′B0 = 1. Contradiction.

Proposition 9.3. Case (0a), (0c) and (0f) of Proposition 3.12 cannot occur.

Proof. Let us begin with case (0a) of Proposition 3.12. Then n = 3� = n′ = 0,
A′N =2 and A′N1 = A′(N + KY − G ′)= A′N =2 hence ′N1 =(N − A′)N1 =2.

Moreover A′N2 = A′(N1 + KY −G ′) = A′N1 = 2 and N N2 = N (N1 + KY −
G ′) = 4 + 1 = 5 which implies ′N2 = 3. But we know, from Proposition 3.12,
E ′

i
′ = E ′

i (N − A′) = −1 for i = 1, 2 which forces E ′
1 + E ′

2 ≤ ′. Moreover
E ′

k N2 = E ′
k(N + 2KY − 2G ′) = 2 for all k = 1, . . . , h1.

Then we get a contradiction since 4 = (E ′
1 + E ′

2)N2 ≤ ′N2 = 3.
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Assume now that either case (0c) or case (0f) of Proposition 3.12 holds. Then
n = 3� = 0, A′N = 3, ′N = 0 and A′N1 = A′N = 3. Then ′N1 = (N −
A′)N1 = 1. Since N1 is nef there exists exactly one irreducible component D of
′ such that DN1 = 1. We also know, from Proposition 3.12, E ′

i
′ = E ′

i (N −
A′) ≤ −1 for i = 1, 2 and then since E ′

k N1 = 1 for all k = 1, . . . , h1 we get a
contradiction.

From Theorem 7.7 and Propositions 9.1, 9.2 and 9.3 we obtain the following:

Theorem 9.4. Case (iii) of page 491 can only occur when one of the following
conditions is satisfied:

1. � = 0 : Cases (0g), (1a), (1d), (1f), A′ = N;
2. � = 1 : Cases (1f), A′ = N.

Moreover in cases (0g), (1f) and A′ = N we have  = 0, i.e. the invariant pencil
� ≤ |3KS| has no fixed part.

10. Ruled cases

10.1. n = 3�

By Definition 8.3 and the results of Section 8.5 we know that |N̄3| induces a mor-
phism g : W −→ Fa for some a ≥ 0 with K 2

W = K 2
Y + 1 + 3� = −1. Then we

have
KFa = −2c − (a + 2) f, g∗( f ) = N̄3

where c is the (−a)-section of Fa and f is a fibre of the ruling Fa −→ P1. Then
KW = −2g∗(c) − (a + 2)N̄3 + � where � is the exceptional divisor of g.

Therefore

N̄2 = N̄3 − KW = 2g∗(c) + (a + 3)N̄3 − �

N̄1 = N̄2 − KW = 4g∗(c) + (2a + 5)N̄3 − 2�

N̄ = N̄1 − KW = 6g∗(c) + (3a + 7)N̄3 − 3� .

Lemma 10.1. In the above setting 0 ≤ a ≤ 2.

Proof. Since N̄ is nef we find g∗(c)N̄ = 7 − 3a ≥ 0 and then 0 ≤ a ≤ 2.

We look at 2B̄0 + Ē ′: from the definition of N on the surface Y one has

2B̄0 + Ē ′ = N̄ − 3KW = 12g∗(c) + (6a + 13)N̄3 − 6� (10.1)

whence g(2B̄0 + Ē ′) = 12c + (6a + 13) f . Furthermore

g∗(c)(2B̄0+ Ē ′)=g∗(c)(12g∗(c)+(6a+13)N̄3−6�)= −12a+13+6a =13−6a.

From Theorem 9.4 we have � = 0, 1.
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10.1.1. � = 0

Let us assume � = 0. Then 2B̄0 + Ē ′ = Ē ′ and we can write Ē ′
i = αi g∗(c) +

βi N̄3 + ∑
j γ j i� j . We also recall that h1 = 4 + � = 4 from (2.5). Then

3 = N̄3 Ē ′
i = N̄3

[
αi g

∗(c) + βi N̄3 +
∑

j

γ j i� j

]
= αi .

This implies

g∗(c)Ē ′
i = g∗(c)

[
αi g

∗(c) + βi N̄3 +
∑

j

γ j i� j

]
= −aαi + βi = βi − 3a .

Lemma 10.2. In the above setting we have g∗(c)Ē ′
i ≥ 0. In particular we have

βi ≥ 3a for all i = 1, . . . , 4.

Proof. It is obvious since g∗(c)Ē ′
i < 0 and the irreducibility of Ē ′

i would imply
Ē ′

i ≤ g∗(c) and therefore Ē ′
i = c̄ the strict transform of c. Then we get a contradic-

tion since 3 = Ē ′
i N̄3 = c̄ N̄3 = g∗(c)N̄3 = 1.

Moreover from equation (10.1) we have
∑4

i=1 βi = 13 + 6a.

Lemma 10.3. Each irreducible component C in the singular fibres of φ|N̄3| :W −→
P1 is a rational curve with C2 = −1, −2.

Proof. Use that N̄3 and N̄2 = N̄3 − KW are nef divisors and apply Zariski’s lemma
and the Index theorem.

Remark 10.4. For any (−2)-curve C ′ which is contained in a singular fibre we
have C ′ Ē ′ = C ′(N̄3 − 6KW ) = 0 so C ′ does not intersect any of the curves Ē ′

k .
Therefore the intersection of Ē ′

k with the singular fibres is only given by the points
of intersection with the (−1)-curves.

Lemma 10.5. Any singular fibre contains two irreducible (−1)-curves with multi-
plicity 1.

Proof. Assume that there are m irreducible (−1)-curves appearing with multiplicity
bi ≥ 1 i = 1, . . . , m. Then from Lemma 10.3 and the rationality of |N̄3| we find
−2 = N̄3 K̄W = − ∑m

i=1 bi hence either m = 1, b1 = 2 or m = 2, b1 = b2 = 1.
Since Ē ′

k N̄3 = 3 for any k = 1, . . . , 4 and since the curves Ē ′
k cannot intersect

the (−2)-curves in each singular fibre (see Remark 10.4) there cannot be a fibre
with only one (−1)-curve of multiplicity 2.

Lemma 10.6. For any singular fibre the curve Ē ′ intersects the exceptional curves
of that fibre.
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Proof. Assume there is a singular fibre ψ of g : W −→ Fa such that Ē ′ does not
intersect any of the exceptional curves of that fibre. Then there exists a curve � in
ψ such that � Ē ′ = Ē ′ N̄3 = 12 and � is not contracted by g : W −→ Fa . Hence

12 = � Ē ′ = �(12g∗(c) + (13 + 6a)N̄3 − 6�) = 12�g∗(c) − 6��.

Since �� ≥ 1 and �� ≡ 0 mod 2 we find 12 ≤ 12�g∗(c)−12 hence �g∗(c) ≥ 2.
Let g(�) = f1 be the fibre of the ruling of Fa obtained by �. Then 1 = f1c =
g∗( f1)g∗(c) = �g∗(c) ≥ 2 and we get a contradiction.

Lemma 10.7. In the above setting we can reduce to the case a = 1 unless a = 2
and φ|N̄3| : W −→ P1 has at most two singular fibres.

Proof. We know that F̄ ′ N̄3 = H̄ ′ N̄3 = 0 and the two (−2)-curves are contained in
a singular fibre of φ|N̄3|. We can choose the map g so that it contracts these curves

to a point which is now on a nonsingular fibre f0 of the map Fa −→ P1.
If a = 0 and we blow up the above point and we consider the section c inter-

secting f0 at that point, the strict transform of c is a (−1)-curve. By contracting the
strict transform of f0 the exceptional divisor becomes a curve with self-intersection
0. Therefore the surface now obtained is F1.

We can do the same for a = 2 if the point is not the intersection point between
f0 and the (−2)-section c on F2.

Assume now that a = 2 and c passes through the above point P0. We can
reduce to a = 1 if we find a singular fibre f1 such that c does not pass through the
point obtained by contracting all the exceptional curves of g : W −→ F2 in that
fibre.

Let us suppose such a fibre f1 does not exist. Then for any singular fibre f ′
the (−2)-section c passes through the point P ′ which is the contraction of all the
exceptional curves in that fibre. From Lemma 10.6 we can deduce that P must be
a point in Ē ′. Since g∗(c)Ē ′ = 13 − 6a = 1 there can be at most one such fibre.
Thus, if the number of singular fibres is at least 3 we are done.

Lemma 10.8. For any i = 1, . . . , 4 and j = 1, . . . , 9 we have

�k

∑
j

γ j i� j = 0 if �2
k = −2

0 ≤ �k

∑
j

γ j i� j ≤ 3 if �2
k = −1.

Proof. Since Ē ′
i = 3g∗(c) + βi N̄3 + ∑

j γ j i� j we have

0 ≤ Ē ′
i �̄k = �k

∑
j

γ j i� j ≤ Ē ′
i N̄3 = 3.

From Lemma 10.3 the curves �k have self-intersection −2 ≤ �2
k ≤ −1.

Furthermore, from Remark 10.4, if �2
k = −2 then Ē ′

i�k = 0. Hence 0 =
Ē ′

i�k = �k
∑

j γ j i� j which proves the lemma.
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Corollary 10.9. For any i = 1, . . . , 4 we have �
∑

j γ j i� j ≤ 6r where r is the
number of singular fibres of g : W −→ Fa.

Proof. Let us set V := {v | �2
v = −1}. From the above proposition we have

�
∑

j

γ j i� j =
∑
v∈V

�vγ j i� j ≤ 3|V |

where |V | is the cardinality of the set V . From Lemma 10.5 there are two simple
(−1)-curves in each of the r singular fibres then |V | ≤ 2r as wanted.

We are now ready to show that the reduction to a = 1 it is always possible.

Proposition 10.10. The case a = 2 cannot occur with r ≤ 2 singular fibres.

Proof. We know from the formulas of page 522 that N̄2 = 2g∗(c)+ (a +3)N̄3 −�.
Then

2 = E ′
i N2 = Ē ′

i N̄2 =
(

3g∗(c) + βi N̄3 +
∑

j

γ j i� j

)
(2g∗(c) + (a + 3)N̄3 − �)

= −6a + 3a + 9 + 2βi − �
∑

j

γ j i� j

hence �
∑

j γ j i� j = 2βi + 7 − 3a. Thus, from Lemma 10.2 and Corollary 10.9,

7 + 3a ≤ 2βi + 7 − 3a ≤ 6r

where r is the number of singular fibres of g : W −→ Fa . When a = 2 we get
6r ≥ 13 and then r ≥ 3 as wanted.

From now on we assume a = 1. The pencil |N̄3| is mapped to the pencil of
lines of P2 through a point P . Then |N̄2| maps to the net of quartics with 1 double
point and 9 simple base points, |N̄1| to the net of curves of degree 7 with 1 triple
point and 9 double points (with no other simple base points), and |N̄ | to the pencil
of curves of degree 10 with one quadruple point, 9 triple points and no other base
points.

Theorem 10.11. The case n = 3� = 0, n′ = n′′ = 0 cannot occur.

Proof. We compute the plane image of | Ā′|. From Theorem 9.4 we know that
� = 0 can only occur in case (0g) of Proposition 3.12, in cases (1a), (1d) or (1f) of
Proposition 3.13 and when A′ = N . Then, using also Proposition 3.2 and Corollary
3.11, A′2 = 0, A′KY = 2, A′N = 3, A′G ′ = 1 in the former case while we have
A′KY = 1, A′N = 3, A′G ′ = 0 in the latter cases with A′2 = 1 unless A′ = N .
Hence we find

A′N3 = A′(N + 3KY − 3G ′) = 3 + 3A′KY − 3A′G ′ = 6
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in all the above cases. Then A′ is mapped onto a plane curve of degree d with a point
of multiplicity d − 6 at P and, denoting by s j the number of points of multiplicity
j among P1, . . . , P9,

3 = A′N = Ā′ N̄ = 10d − 3
∑

j

j s j − 4(d − 6)

hence ∑
j

j s j = 2d + 7 . (10.2)

We also have Ā′2 = 1, pa( Ā′) = 2 in all the above cases except for A′ = N . Then,
if A′ �= N ,

1 = Ā′2 = d2 −
∑

j

j2s j

hence ∑
j

j2s j = d2 − 1 (10.3)

and

2 = pa( Ā′) = (d − 1)(d − 2)

2
−

∑
j

s j
j ( j − 1)

2
− (d − 6)(d − 7)

2

= d2 − 3d + 2 − d2 + 13d − 42

2
−

∑
j

s j
j ( j − 1)

2

hence ∑
j

s j j ( j − 1) = 10d − 44. (10.4)

Then comparing (10.2), (10.3) and (10.4) we get

10d − 44 = d2 − 1 − (2d + 7) = d2 − 2d − 8

hence
d2 − 12d + 36 = (d − 6)2 = 0

which forces d = 6. In this case (10.2) and (10.3) become∑
j j s j = 19∑

j j2s j = 35.

We now easily infer j ≤ 5. Subtracting the first equation from the second one we
find

16 = 35 − 19 = (25s5 + 16s4 + 9s3 + 4s2 + s1)+
− (5s5 + 4s4 + 3s3 + 2s2 + s1) = 20s5 + 12s4 + 6s3 + 2s2.
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Hence s5 = 0, s4 ≤ 1. Then we find 6s3 + 2s2 = 16 − 12s4 or equivalently,
3s3 + s2 = 8 − 6s4 and substituting in (10.2)

s1 + s2 = 19 − 4s4 − (3s3 + s2) = 19 − 4s4 − (8 − 6s4) = 11 + 2s4

which gives a contradiction since
∑

j s j ≤ 9.

We now discuss the case A′ = N . Then Ā′2 = N̄ 2 = 3 and pa( Ā′) = 3. Then

3 = Ā′2 = d2 −
∑

j

j2s j

forces ∑
j

j2s j = d2 − 3 (10.5)

and

3 = pa( Ā′) = (d − 1)(d − 2)

2
−

∑
j

s j
j ( j − 1)

2
− (d − 6)(d − 7)

2

= d2 − 3d + 2 − d2 + 13d − 42

2
−

∑
j

s j
j ( j − 1)

2

hence ∑
j

s j j ( j − 1) = 10d − 46 . (10.6)

Thus comparing (10.2), (10.5) and (10.6) we find

10d − 46 = d2 − 3 − (2d + 7) = d2 − 2d − 10

hence d2 − 12d + 36 = (d − 6)2 = 0 forces d = 6 while we know d = 10 since
Ā′ = N̄ .

10.1.2. � = 1

Let us now assume B0 �= 0. For any curve E ′
i on the rational surface Y there is at

most one of the curves Z j intersecting E ′
i (see Corollary 4.7).

Assume n = 3� = 3. If all the cycles Z j are irreducible then there are exactly
3 of the 5 curves E ′

i (we can suppose they are E ′
3, E ′

4 and E ′
5) intersected by one

(and only one) of the curves Z j : we have E ′
i N3 = 0 for each of them. Hence they

are contained in singular fibres of the map φ|N3| : Y −→ P1.
If one of the cycles Z j is reducible then, from Corollary 4.11, either Z1, Z2 are

irreducible and Z3 = Z1 + Z2 + E ′
k for some 1 ≤ k ≤ h1 = 5 or Z1 is irreducible,

Z2 = Z1+C (with C a (−2)-curve) and Z3 = Z1+ Z2+ E ′
k for some k ≤ 5. In any

case we have E ′
k N1 = 0 (see Proposition 4.3) hence E ′

k N3 = 0. Moreover since
� = 1 from Lemma 4.6 and Corollary 4.7 B0

∑n
i=1 Zi = 2B0 Z1 + 2B0 Z2 = 4

hence B0 N1 = 0 forces B0 N3 = 0.
We now can show the following
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Theorem 10.12. The case n = 3�, n′ = n′′ = 0 with � = 1 cannot occur.

Proof. Let us now consider the fibration given by the rational pencil |N3|. If we set
δ := ∑

s(e(N3s − e(N3)) from [1, Proposition III.11.4] we have

δ = e(Y ) − e(N3)e(P1) = 12 − K 2
Y − 4

(8.1)= 12 + 2 + 3� − 4 = 13.

From Lemma 5.10 every curve C in a singular fibre contributes −C2 to δ. If all the
cycles Zi are irreducible then the (−3)-curves F ′, H ′, E ′

3, E ′
4, E ′

5 are disjoint and
they are contained in singular fibres.

If Z3 is reducible then the (−3)-curves F ′, H ′, E ′
k and the (−6)-curve B0 are

contained in singular fibres. In any case we find a contradiction since 13 = δ ≥
15.

10.2. n = 3� − 1

From Section 8.4 we know that |N̄2| gives a morphism g : W −→ Fa for some
a ≥ 0 with K 2

W = K 2
Y + 1 + 3� − 1 + 1 = −1. Then we have

KFa = −2c − (a + 2) f, g∗( f ) = N̄2

and KW = −2g∗(c) − (a + 2)N̄2 + � where � is the exceptional divisor of g.
Therefore

N̄1 = N̄2 − KW = 2g∗(c) + (a + 3)N̄2 − �

N̄ = N̄1 − KW = 4g∗(c) + (2a + 5)N̄2 − 2� .

Then similarly to the case n = 3� = 0 one can show (see also [14, Section 5.1.2])

Theorem 10.13. The case n = 3� − 1 = 2, n′ = 1 cannot occur.

11. Del Pezzo cases

We now treat separately those cases with � = 0 from those with � = 1. We refer
then to the list of Theorem 9.4. Since the ideas of most proofs are quite similar we
only write here two of them, i.e. we fix � = 1 and we study the cases n = 3� and
n = 3� − 1.

When � = 1 from Theorem 9.4 we always have  = 0 and either case (1 f ) of
Proposition 3.13 or A′ = N holds. Moreover we have 0 = 3� − 3 ≤ n ≤ 3� = 3.

11.1. n = 3�

From the results of Section 8.5 when we contract the (−1)-cycles G ′, Z1, Z2, Z3,
Z ′′, Z ′′′ we get a rational surface W which is isomorphic to the projective plane P2

blown up at eight points P1, . . . , P8.



AUTOMORPHISMS OF ORDER 3 ON GODEAUX SURFACES 529

Case I. The cycles Z1, Z2, Z3 are irreducible

In this case B0 N1 = B0(N + KY − G ′ − Z1 − Z2 − Z3) = 1 and B0 N2 =
B0(N + 2KY − 2G ′ − 2

∑3
i=1 Zi ) = 2.

In particular, since Z ′′N2 = 0 and Z ′′′N2 = 1, from the nefness of N2 one can
see that B0 cannot be an irreducible component of any of these cycles, i.e. B0 is not
contracted on W . Let us compute (recall that N4 ≡ 0)

0 = B0 N4 = B0

(
N + 4KY − 4G ′ − 4

3∑
i=1

Zi − 2Z ′′ − Z ′′′
)

= 4 − B0

(
2

2∑
i=1

Z ′
i + Z ′′

)

hence 0 ≤ B0 Z ′′ ≤ 2 and we have

B̄0 N̄3 = B0 N3 = B0

(
N + 3KY − 3G ′ − 3

2∑
i=1

Zi − Z ′′
)

= 3 − B0 Z ′′ ≥ 1.

Thus we can write the following table

B0 Z1 B0 Z2 B0 Z3 B0 Z ′′ B0 Z ′′′ B̄0 N̄3

a) 1 1 1 2 0 1
b) 1 1 1 1 2 2
c) 1 1 1 0 4 3

We now apply the Index theorem. Since N̄ 2
3 = 1 and B̄0 N̄3 = s ≥ 1 we find

B̄2
0 ≤ s2 which excludes case c) and forces B̄0 ≡ N̄3 in case a). We also note that

in case b) we have B̄2
0 = 2.

Lemma 11.1. Case a) cannot occur.

Proof. Assume case a) holds. Since B̄0 ≡ N̄3, B0 Z1 = B0 Z2 = B0 Z3 = 1 and
E ′

5 Z1 = E ′
4 Z2 = 1 = E ′

3 Z3, if E ′
3, E ′

4, E ′
5 were not contracted on W we should

have

1 ≤ Ē ′
k B̄0 = Ē ′

k N̄3 = E ′
k N3 = E ′

k

(
N + 3KY − 3G ′ − 3

2∑
i=1

Zi − Z ′′
)

=−E ′
k Z ′′

for k = 3, 4, 5. Then we should have E ′
k ≤ Z ′′ and 0 ≤ E ′

k N3 ≤ Z ′′N3 = 0.
Contradiction. Thus E ′

k is contracted on W and, from the nefness of N3, E ′
k Z ′′ =

E ′
k Z ′′′ = 0 (k = 3, 4, 5). From the definition of N and from Z ′′′N = 3 we find

6 = 2B0 Z ′′′ + E ′Z ′′′ = E ′Z ′′′ = (E ′
1 + E ′

2)Z ′′′. (11.1)
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Moreover, for k = 1, 2

0= E ′
k N4 = E ′

k

(
N + 4KY − 4G ′ − 4

2∑
i=1

Zi − 2Z ′′ − Z ′′′
)

=4 − E ′
k(2Z ′′ + Z ′′′)

and

E ′
k N3 = E ′

k

(
N + 3KY − 3G ′ − 3

2∑
i=1

Zi − Z ′′
)

= 3 − E ′
k Z ′′ ≥ 0 .

Since E ′
k N2 = 2 while Z ′′N2 = 0, Z ′′′N2 = 1, it cannot be E ′

k ≤ Z ′′, Z ′′′ for
k = 1, 2. In particular E ′

k Z ′′, E ′
k Z ′′′ ≥ 0. Thus

2E ′
k Z ′′ + E ′

k Z ′′′ = 4 (11.2)

forces 0 ≤ E ′
k Z ′′′ ≤ 4 and from (11.1) there should be at least one of the curves E ′

k
(say E ′

2) such that E ′
k Z ′′′ = 4, Ē ′

k N̄3 = 3. We get a contradiction since from the

Index theorem we should have (Ē ′
2 − 3N̄2)

2 ≤ 0 or equivalently Ē ′2
2 ≤ 9.

We now study case b). Let us denote by d0 the degree of the plane image of B̄0.
Since 2B̄0 + Ē ′ = N̄ − 3KW the curve 2B̄0 + Ē ′ is sent to an element of | − 7KP2 |.

We note that a quadratic transformation leaves the plane image of |2B̄0 + Ē ′|
unchanged. In particular even after any quadratic transformation the equation

2d0 +
5∑

i=1

di = 21 (11.3)

holds, where d0 is the degree of the image of B̄0 while di , i = 1, . . . , 5 are the
degrees of the plane images of the curves Ē ′

i . In particular we have d0 ≤ 10.
The curve B̄0 satisfies the linear system

∑
j

j2s j = d2
0 − B̄2

0 = d2
0 − 2∑

j

j s j = 3d0 − B̄0 N̄2 = 3d0 − 2∑
j

s j ≤ 8

(11.4)

where s j is the number of points among P1, . . . , P8 of multiplicity j for B̄0. By
an easy computation one can see that d0 ≥ 3 and we have the following list of
solutions:

1) d0 = 3, s1 = 7 5) d0 = 7, s3 = 3, s2 = 5

2) d0 = 4, s2 = 2, s1 = 6 6) d0 = 8, s3 = 6, s2 = 2

3) d0 = 5, s2 = 5, s1 = 3 7) d0 = 9, s4 = 1, s3 = 7 .

4) d0 = 6, s3 = 1, s2 = 6, s1 = 1
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Proposition 11.2. All the above solutions are equivalent up to a finite number of
Cremona quadratic transformations of P2 based at P1, . . . , P8.

Proof. Let us consider a curve of degree 9 as in 7) and let us take the quadruple
point Q1 and two of the seven triple points Q2, Q3. Then they are not collinear
otherwise there should be a line meeting the above curve at 10 points. Moreover
Q1 is on P2, i.e. it is not infinitely near to any other point, since is the unique
point of maximal multiplicity for the curve. Since Ē ′

i is an irreducible curve if both
Q2, Q3 were proximate to P1 from the proximity inequalities (see [3]) we should
have 4 = m P1 ≥ m P2 + m P3 = 3 + 3 = 6.

If Q2 or Q3 are not infinitely near to Q1 we can choose them to be on P2. Then
a quadratic transformation (see [3]) based at Q1, Q2, Q3 is well-defined and takes
the curve of degree 9 onto an octic as in 6).

Let us consider the octic in 6) and let us take three of the six triple points Q1,
Q2, Q3. Then they are not collinear otherwise there should be a line meeting the
octic at 9 points. Moreover we can choose the points in such a way that one of
them, say Q1, is on P2, i.e. it is not infinitely near to any other point. Since Ē ′

i
is an irreducible curve if both Q2, Q3 were proximate to P1 from the proximity
inequalities we should have 3 ≥ 3 + 3 = 6.

If Q2 or Q3 are not infinitely near to Q1 we can choose them to be on P2. Then
a quadratic transformation based at Q1, Q2, Q3 is well-defined and takes the octic
onto a septic as in 5).

With a similar argument one can see that we can choose two triple points and
one double point for the septic such that there exists a quadratic transformation
based at those points sending the septic to a sextic as in 4). To get 3) we consider the
triple point Q1 and two double points Q2, Q3 of the sextic. Then we can consider
three double points for the quintic such that a quadratic transformation based at
those points sends the quintic onto a quartic as in 2). Eventually, if we base a
quadratic transformation at the two double points of the quartic and at one of the
six simple points, we can take the quartic onto the cubic in 1). The result is then
proved.

From the above proposition, up to Cremona transformations, we can set d0 =
9. In particular we can assume that the quadruple point of the curve B0 is P8. Then
we find

5∑
i=1

di = 21 − 2d0 = 3

and di ≤ 3 for any i = 1, . . . , 5.

Proposition 11.3. In the above setting case I cannot occur.

Proof. Let us consider the curves E ′
i , i = 1, 2. Then E ′

i N2 = E ′
i (N +2KY −2G ′ −

2
∑3

i=1 Zi ) = 2 while Z ′′N2 = 0, Z ′′′N2 = 1. In particular, from the nefness of
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N2, E ′
1 and E ′

2 cannot be contained in Z ′′ or Z ′′′ and they are not contracted on W .
Thus

E ′
i Z j = 0, 2E ′

i Z ′′ + E ′
i Z ′′′ = 4 (i = 1, 2, j = 1, 2, 3). (11.5)

Since (11.5) holds we have a priori three possibilities. In the former case E ′
i Z ′′ =

2, E ′
i Z ′′′ = 0 and then Ē ′2

i = 1 hence Ē ′
i B̄0 = 2 and di = 3, s1 = 8. In the second

case E ′
i Z ′′ = 1, E ′

i Z ′′′ = 2 and then Ē ′2
i = 2 hence Ē ′

i B̄0 = 5 and di = 3, s1 = 7.

In the latter case E ′
i Z ′′ = 0, E ′

i Z ′′ = 4 hence Ē ′
i N̄3 = 3 and Ē ′2

i = 13 contradicting
the Index theorem as in the proof of Lemma 11.1.

Thus, since
∑5

i=1 di = 3, one among E ′
1 and E ′

2 is necessarily contracted on
W and we get a contradiction.

Case II. At least one of the cycles Zi is reducible

We know from Corollary 4.11 that either Z1, Z2 are irreducible and Z3 = Z1+Z2+
E ′

k for a suitable 1 ≤ k ≤ 5 or Z1 is irreducible Z2 = Z1 + C , Z3 = 2Z1 + C + E ′
k

for a suitable 1 ≤ k ≤ 5 where C is a (−2)-curve.
Let us look at the (−6)-curve B0. In any case we have B0 Z1 = B0 Z2 = 1,

B0 Z3 = 2.

Proposition 11.4. In the above setting case II cannot occur.

Proof. If B0 was contracted on W , then it should be contained either in Z ′′ or in
Z ′′′. But when we contract the cycles Z1, Z2, Z3 the self-intersection of the image
B ′

0 of B0 is B ′2
0 = B2

0 + 1 + 1 + 4 = 0. Since B0, hence B ′
0, is irreducible, it cannot

be a component of a (−1)-cycle.
Computing B0 N3 and B0 N4 and recalling that N3 is nef whereas N4 ≡ 0, one

can easily see that B0 Z ′′ = B0 Z ′′′ = 0. Thus the image B̄0 of B0 on the rational
surface W is a curve of self-intersection 0 having a node or a cusp (depending on
the structure of the cycles Zi ) at the point obtained by contracting Z1, Z2, Z3.

In particular we note that B̄0 N̄3 = B0 N3 = 0. Hence by the Index theorem
and the rationality of W we infer B̄0 = 0. Contradiction.

Hence from Propositions 11.3 and 11.4 we obtain:

Theorem 11.5. The case n = 3�, n′ = 0, n′′ = n′′′ = 1 cannot occur with � = 1.

11.2. n = 3� − 1

From the results of Section 8.4 when we contract the (−1)-cycles G ′, Z1, Z2, Z ′
1,

Z ′
2, Z ′′ we get a rational surface W which is isomorphic to the projective plane P2

blown up at eight points P1, . . . , P8.
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We also recall that from Corollary 4.11 the cycles Z1 and Z2 are irreducible
(−1)-curves and B0 N1 = B0(N + KY − G ′ − Z1 − Z2) = 2. In particular, since
Z ′

1 N1 = Z ′
2 N1 = 0 and Z ′′N1 = 1, from the nefness of N1 one can see that B0

cannot be an irreducible component of any of these cycles, i.e. B0 is not contracted
on W . Let us compute (recall that 0 ≡ N3 ≡ N + 3KY − 3G ′ − 3

∑2
i=1 Zi −

2
∑2

i=1 Z ′
i − Z ′′)

0 = B0 N3 = 6 − B0

(
2

2∑
i=1

Z ′
i + Z ′′

)

hence 0 ≤ B0
∑2

i=1 Z ′
i ≤ 3 and we have

B̄0 N̄2 = B0 N2 = B0

(
N + 2KY − 2G ′ − 2

2∑
i=1

Zi −
2∑

i=1

Z ′
i

)
=4 − B0

2∑
i=1

Z ′
i ≥1.

Thus we can write the following table

B0 Z1 B0 Z2 B0 Z ′
1 B0 Z ′

2 B0 Z ′′ B̄0 N̄2

a) 1 1 3 0 0 1
b) 1 1 2 1 0 1
c) 1 1 1 1 2 2
d) 1 1 1 0 4 3
e) 1 1 0 0 6 4

We now apply the Index theorem. Since N̄ 2
2 = 1 and B̄0 N̄2 = s ≥ 1 we find

B̄2
0 ≤ s2 which excludes cases a), d), e) and forces B̄0 ≡ N̄2 in case b). We also

note that in case c) we have B̄2
0 = 2.

Lemma 11.6. Case b) cannot occur.

Proof. Assume case b) holds. Since B̄0 ≡ N̄2, B0 Z1 = B0 Z2 = 1 and E ′
5 Z1 =

E ′
4 Z2 = 1, if E ′

4, E ′
5 were not contracted on W we should have

1 ≤ Ē ′
k B̄0 = E ′

k N2 = E ′
k

(
N + 2KY − 2G ′ − 2

2∑
i=1

Zi −
2∑

i=1

Z ′
i

)
=−E ′

k

2∑
i=1

Z ′
i

for k = 4, 5. Then we should have E ′
k ≤ Z ′

i for some i and 0 ≤ E ′
k N2 ≤ Z ′

i N2 = 0.
Contradiction.

Thus E ′
k is contracted on W and, from the nefness of N2, E ′

k

∑
i Z ′′

i = E ′
k Z ′′ =

0 (k = 4, 5). From the definition of N and from Z ′′N = 2 we find

5 = 2B0 Z ′′ + E ′Z ′′ = E ′Z ′′ = (E ′
1 + E ′

2 + E ′
3)Z ′′. (11.6)
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Moreover, for k = 1, 2, 3, since N3 = N +3KY −3G ′ −3
∑2

i=1 Zi −2
∑2

i=1 Z ′
i −

Z ′′, 0 = E ′
k N3 = 3 − E ′

k(2
∑2

i=1 Z ′
i + Z ′′) and

E ′
k N2 = E ′

k

(
N + 2KY − 2G ′ − 2

2∑
i=1

Zi −
2∑

i=1

Z ′
i

)
= 2 − E ′

k

2∑
i=1

Z ′
i ≥ 0.

Thus

2E ′
k

2∑
i=1

Z ′
i + E ′

k Z ′′ = 3 (11.7)

and E ′
k

∑2
i=1 Z ′

i ≤ 2 forces −1 ≤ E ′
k Z ′′ ≤ 3.

Thus E ′
k Z ′′ is odd and from (11.6) there should be at least one of the curves

E ′
k (say E ′

3) such that E ′
k Z ′′ = 3, Ē ′

k N̄2 = 2. We get a contradiction since from the

Index theorem we should have (Ē ′
3 − 2N̄2)

2 ≤ 0 or equivalently Ē ′2
3 ≤ 4.

We now study case c). Let us denote by d0 the degree of the plane image of B̄0.
Since 2B̄0 + Ē ′ = N̄ − 3KW the curve 2B̄0 + Ē ′ is sent to an element of | − 6KP2 |.

We note that a quadratic transformation leaves the plane image of |2B̄0 + Ē ′|
unchanged. In particular even after any quadratic transformation the equation

2d0 +
5∑

i=1

di = 18 (11.8)

holds, where d0 is the degree of the image of B̄0 while di , i = 1, . . . , 5 are the
degrees of the plane images of the curves Ē ′

i . In particular we have d0 ≤ 9.
The curve B̄0 satisfies the linear system

∑
j

j2s j = d2
0 − B̄2

0 = d2
0 − 2∑

j

j s j = 3d0 − B̄0 N̄2 = 3d0 − 2∑
j

s j ≤ 8

where s j is the number of points among P1, . . . , P8 of multiplicity j for B̄0. Then,
as for (11.4), d0 ≥ 3 and we have the following list of solutions:

1) d0 = 3, s1 = 7 5) d0 = 7, s3 = 3, s2 = 5

2) d0 = 4, s2 = 2, s1 = 6 6) d0 = 8, s3 = 6, s2 = 2

3) d0 = 5, s2 = 5, s1 = 3 7) d0 = 9, s4 = 1, s3 = 7.

4) d0 = 6, s3 = 1, s2 = 6, s1 = 1
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Proposition 11.7. All the above solutions are equivalent up to a finite number of
Cremona quadratic transformations of P2 based at P1, . . . , P8.

Proof. See the proof of Proposition 11.2.

From the above proposition, up to Cremona transformations, we can set d0 =
8. In particular we can assume that the two double points of the octic are P7, P8.
Then we find

5∑
i=1

di = 18 − 2d0 = 2

and di ≤ 2 for any i = 1, . . . , 5. If one of the curves E ′
i is contracted on W then it

has di = 0 and the multiplicity at each of the points P1, . . . , P8 is 0.
If E ′

i is not contracted on W we have two different numerical possibilities:

E ′
i

2∑
j=1

Z j = 1, E ′
i Z ′

1 = E ′
i Z ′

2 = 0, E ′
i Z ′′ = 0 (i = 4, 5) (11.9)

E ′
i Z1 = E ′

i Z2 = 0, 2E ′
i

2∑
j=1

Z ′
i + E ′

i Z ′′ = 3 (i = 1, 2, 3). (11.10)

When (11.9) holds we find Ē ′2
i = −2 hence, since di ≤ 2, either di = 1, s1 = 3 or

di = 2, s1 = 6. Moreover Ē ′
i B̄0 = 1.

When (11.10) holds we a priori have two possibilities. In the former case

E ′
i

∑2
j=1 Z ′

j = 1, E ′
i Z ′′ = 1 and then Ē ′2

i = −1 hence Ē ′
i B̄0 = 3 and either

di = 1, s1 = 2 or di = 2, s1 = 5. In the latter case E ′
i

∑2
j=1 Z ′

j = 0, E ′
i Z ′′ = 3

hence Ē ′
i N̄2 = 2 and Ē ′2

i = 6 contradicting the Index theorem as in the proof of
Lemma 11.6.

We now fix i = 4, 5. Then since Ē ′
i N̄2 = 0 we have

∑8
j=1 m j = 3di where

m j is the multiplicity of Ē ′
i at Pj . Moreover

1 = Ē ′
i B̄0 = 8di − 3(m1 + · · · + m6) − 2(m7 + m8)

= 8di − 3
8∑

j=1

m j + (m7 + m8) = −di + m7 + m8

hence
di + 1 = m7 + m8 ≤ 2 (11.11)

since there are no singular points among P1, . . . , P8. Hence di ≤ 1 and when
di = 1 the line Ē ′

i must pass through P7 and P8.
This excludes the 6-tuple (d0, d1, d2, d3, d4, d5) = (8, 0, 0, 0, 1, 1) since both

Ē ′
4 and Ē ′

5 would be lines through the points P7 and P8.
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Then we have the following list of 6-tuples (d0, d1, d2, d3, d4, d5):

(8, 2, 0, 0, 0, 0), (8, 1, 1, 0, 0, 0), (8, 1, 0, 0, 1, 0).

For i = 1, 2, 3, since Ē ′
i N̄2 = 1 (hence

∑8
j=1 m j = 3di − 1), we have

3 = Ē ′
i B̄0 = 8di − 3(m1 + · · · + m6) − 2(m7 + m8)

= 8di − 3
8∑

j=1

m j + (m7 + m8) = −di + 3 + m7 + m8

hence
m7 + m8 = di ≤ 2. (11.12)

We now study the 6-tuple of degrees (8, 2, 0, 0, 0, 0). Using (11.11), (11.12) and
the fact that 2B̄0 + Ē ′ has total multiplicity 6 at each of the points P1, . . . , P8 we
find the following configuration

P1 P2 P3 P4 P5 P6 P7 P8
8 3 3 3 3 3 3 2 2
2 1 1 1 0 0 0 1 1
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 1

For the 6-tuple (8, 1, 1, 0, 0, 0) we find

P1 P2 P3 P4 P5 P6 P7 P8
8 3 3 3 3 3 3 2 2
1 1 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1

For the 6-tuple (8, 1, 0, 0, 1, 0) we have

P1 P2 P3 P4 P5 P6 P7 P8
8 3 3 3 3 3 3 2 2
1 1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 1
0 0 −1 0 0 0 0 0 1
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Remark 11.8. The conditions (11.11) and (11.12), the total multiplicity 6 of 2B̄0 +
Ē ′ at each of the points P1, . . . , P8 and the computation of the intersection numbers

Ē ′
i Ē ′

j =


0 i = 4, 5, i �= j
≥ 1 i �= j, 1 ≤ i, j ≤ 3
−1 1 ≤ i = j ≤ 3

are sufficient to uniquely determine the configuration of points for each 6-tuple of
degrees (d0, d1, d2, d3, d4, d5).

Lemma 11.9. The three above configurations are equivalent up to a finite number
of quadratic transformations.

Proof. We consider the 6-tuple (8, 1, 1, 0, 0, 0). Let us apply a quadratic transfor-
mation based at P1, P2, P8. Since P1 is a point of maximal multiplicity for both
B̄0 and Ē ′

1 while P2 is a point of maximal multiplicity for both B̄0 and Ē ′
2, they

cannot be infinitely near to any other point. Moreover P8 is proximate to P2 since
the line E ′

2 joins the two points and does not pass through any of the other points.
Hence a quadratic transformation based at P1, P2, P8 is well-defined and we obtain
(8, 1, 0, 0, 0, 1).

We now show that (8, 1, 1, 0, 0, 0) is equivalent to (8, 2, 0, 0, 0, 0). We know
that P8 is proximate to P2. A similar argument shows that P7 is proximate to P1.
Let us now consider the points P3, P4, P5, P6. We claim that none of them can be
proximate to P1 or to P2. If this was the case, in fact, the octic should satisfy the
proximity inequalities (see [3]) 3 ≥ 3 + 2 = 5 and we get a contradiction. Hence at
least one of them, say P3, has to be a planar point and we can perform a quadratic
transformation based at P2, P3, P8 obtaining the 6-tuple (8, 2, 0, 0, 0, 0).

Thus all the 6-tuples are equivalent up to quadratic transformations and we
can reduce to one of them, say (8, 2, 0, 0, 0, 0). We also note that the curve E ′

3 is

contracted on W . In particular we have E ′
3

∑2
j=1 Z ′

j = 2, E ′
3 Z ′′ = −1.

Moreover since E ′
3 ≤ Z ′′ we find E ′

3 N2 = 0 and then from the Index theorem
we have (E ′

3+Z ′
j )

2 = −3−1+2E ′
3 Z ′

j < 0 (recall that Z ′
j N2 = 0 for any j = 1, 2)

hence E ′
3 Z ′

1 = E ′
3 Z ′

2 = 1.
We now look at the surface Y which is isomorphic to the plane blown up at 14

points. Let us denote by P9 the point obtained by contracting Z ′′, P10 and P11 the
points obtained by contracting the cycles Z ′

j , P12 and P13 the contractions of Z1

and Z2 and, finally, P14 the contraction of G ′. From Section 8.4

2B0 + E ′ ≡ 6G ′ + 3
n∑

i=1

Zi + 2
2∑

i=1

Z ′
i + Z ′′ − 6KY

hence the total multiplicity of 2B0 + E ′ at P9 is 5, at P10 and P11 is 4, at P12 and
P13 is 3 and it is 0 at P14. Therefore we can write the following table
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
8 3 3 3 3 3 3 2 2 2 1 1 1 1 0
2 1 1 1 0 0 0 1 1 1 1 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 0 0 0
0 0 −1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 −1 0 0 0 0 1 0 0 0 0 1 0

Let us now see what the images of F ′ and H ′ are. We know that F ′G ′ = H ′G ′ = 1
hence their images pass through the point P14. We also know they have no inter-
section with B0 and with any of the curves E ′

i .
Let us now consider F ′. The computation for H ′ is similar. Its plane image is a

curve of degree d with multiplicities m1, . . . , m14 at the points P1, . . . , P14. From
the above remarks we find the following relations

m14 = 1

3
6∑

i=1

mi + 2
9∑

i=7

mi +
13∑

i=10

mi = 8d

3∑
i=1

mi +
10∑

i=7

mi = 2d

−m1 + m9 + m11 = 0

−m9 + m10 + m11 = 0

−m2 + m7 + m12 = 0

−m3 + m8 + m13 = 0 .

(11.13)

One can easily see that F ′ (hence H ′) is not contracted on W . Since F ′N1 =
F ′N2 = 0 we have F ′ ∑2

i=1 Zi = F ′ ∑2
i=1 Z ′

i = 0 = F ′Z ′′. This forces F ′Zi =
F ′Z ′

i = 0 for i = 1, 2, hence mi = 0 for 9 ≤ i ≤ 13. We can then rewrite (11.13)
as 

m14 = 1

m1 = 0

m2 + m3 = d

m7 = m2

m8 = m3

m4 + m5 + m6 = d .

(11.14)
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Since F ′ is a (−3)-curve from (11.14) we have

−3 = d2 −
14∑

i=1

m2
i = −(d − 2m2)

2 − m2
4 − m2

5 − m2
6 − 1

hence (d − 2m2)
2 + m2

4 + m2
5 + m2

6 = 2. First of all we note that

2 ≥ m2
4 + m2

5 + m2
6 ≥ m4 + m5 + m6 = d

forces d ≤ 2. If d = 2 we find m2 = 1 and (m4, m5, m6) = (1, 1, 0), (1, 0, 1) or
(0, 1, 1). Using (11.14) we find m2 = m3 = m7 = m8 = m14 = 1. Hence F ′
and H ′ cannot be both sent to conics, since otherwise they should have at least 5
common points while F ′H ′ = 0 on Y .

When d = 1 we find −1 ≤ 1 − 2m2 ≤ 1 hence either m2 = m7 = 0, m3 =
m8 = 1 or m2 = m7 = 1, m3 = m8 = 0. F ′ and H ′ cannot be sent to a conic and
a line respectively, since they should have at least 3 common points (P2, P7, P14 or
P3, P8, P14). Contradiction.

If d = 0 then −1 ≤ −2m2 ≤ 1 forces m2 = 0. Hence from (11.14) we get
m2 = m3 = m7 = m8 = 0, m4 + m5 + m6 = 0. Thus {m4, m5, m6} = {1, 0, −1}.

From the above analysis either F ′ and H ′ are both sent to lines or one of them
is contracted on P2. In the former case we have the configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
8 3 3 3 3 3 3 2 2 2 1 1 1 1 0
2 1 1 1 0 0 0 1 1 1 1 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 0 0 0
0 0 −1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 −1 0 0 0 0 1 0 0 0 0 1 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 1 0 1 0 0 1 0 0 0 0 0 1

In the latter case we can assume that the contracted curve (respectively one of the
contracted curves) has m4 = 1, m5 = −1, m6 = 0. If the second curve is a conic
we find the configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
8 3 3 3 3 3 3 2 2 2 1 1 1 1 0
2 1 1 1 0 0 0 1 1 1 1 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 0 0 0
0 0 −1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 −1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 1
2 0 1 1 0 1 1 1 1 0 0 0 0 0 1
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If it is a line we find

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
8 3 3 3 3 3 3 2 2 2 1 1 1 1 0
2 1 1 1 0 0 0 1 1 1 1 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 0 0 0
0 0 −1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 −1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 1
1 0 0 1 0 1 0 0 1 0 0 0 0 0 1

while if they are both contracted we have

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
8 3 3 3 3 3 3 2 2 2 1 1 1 1 0
2 1 1 1 0 0 0 1 1 1 1 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 0 0 0
0 0 −1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 −1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1

Lemma 11.10. The configurations given by the 6-tuples (8, 2, 0, 0, 0, 0, 1, 1) and
(8, 2, 0, 0, 0, 0, 0, 1) are equivalent up to quadratic transformations.

Proof. Let us study the configuration with two lines. One can easily see that P2 and
P3 are planar points since they are of maximal multiplicity for the octic, the conic
and one of the two lines simultaneously. Moreover P7 is proximate to P2 while P3
is proximate to P8. Thus P1 cannot be proximate to P2 or to P3 since otherwise the
octic would contradict the proximity inequalities (see [3]) 3 ≥ 3 + 2 = 5.

With a similar argument one can show that P4 and P5 are planar points too. If
we base a quadratic transformation at P3, P4, P8 we obtain the configuration with a
line and a contracted curve.

We look at the eigenvalues of the curves B0, E ′
i , 1 ≤ i ≤ 5, F ′ and H ′ for

the action of the automorphism of order 3. We know that F ′ and H ′ correspond to
different eigenvalues since they come from the blow-up of a singularity of type A2
(see [3, 17]). From now on let us set ω := e2π i/3. If B0 corresponds to the eigen-
value ω then it appears with multiplicity 1 in the branch locus of the simple triple
cover associated to X −→ Y = X/(Z/3Z). Let us assume that E ′

i corresponds to
the eigenvalue ωνi , F ′ corresponds to the eigenvalue ωνF and H ′ to ω2νF .

Proposition 11.11. The case n = 3� −1, n′ = 2, n′′ = 1 cannot occur with multi-
degrees (d0, d1, d2, d3, d4, d5, dF , dH )=(8, 2, 0, 0, 0, 0,1,1) and (8, 2,0,0,0,0,1).
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Proof. We have already shown that the two configurations in the statement are
equivalent up to quadratic transformations. Let us consider

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
8 3 3 3 3 3 3 2 2 2 1 1 1 1 0
2 1 1 1 0 0 0 1 1 1 1 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 0 0 0
0 0 −1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 −1 0 0 0 0 1 0 0 0 0 1 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 1 0 1 0 0 1 0 0 0 0 0 1

Since the total degree of the branch curve on P2 has to be a multiple of 3 and since
the two lines correspond to different eigenvalues, the conic appears with multiplicity
2 in the branch divisor, hence ν1 ≡ 2 mod 3.

The points P2, P3 are not infinitely near to any other point since they are the
only points which are triple for the octic and simple for both the conic and one of
the two lines. The total multiplicity at P3 of the branch divisor has to be a multiple
of 3. Then we obtain the equation

3 + ν1 + ν5 + νH ≡ 3 + 2 + ν5 + νH ≡ 0 mod 3

which forces νH + ν5 ≡ 2νF + ν5 ≡ 1 mod 3.
On the other hand the same computation for P2 gives us

3 + ν1 + ν4 + νF ≡ 3 + 2 + ν4 + νF ≡ 0 mod 3

which forces νF + ν4 ≡ 1 mod 3. Then since νi , νF ≡ 1, 2 mod 3 we find
νF ≡ ν4 ≡ 2 mod 3 hence ν5 ≡ 0 mod 3. Contradiction.

Proposition 11.12. The case n = 3�−1, n′ = 2, n′′ = 1 cannot occur with degrees
(d0, d1, d2, d3, d4, d5, dF , dH ) = (8, 2, 0, 0, 0, 0, 0, 2).

Proof. Let us consider the points P1, P2, P3. They are of maximal multiplicity for
both the octic and one of the two conics hence they cannot be infnitely near to any
of the points Pj , j ≥ 4. Since there is an irreducible conic passing through all the
three points, we can perform a quadratic transformation based at P1, P2, P3 and we
obtain the following configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
7 2 2 2 3 3 3 2 2 2 1 1 1 1 0
1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 1
2 0 1 1 0 1 1 1 1 0 0 0 0 0 1
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We now show that this new configuration cannot occur.
Let us consider the points P4, P5, P6. Since they are triple points for the septic

they cannot be infinitely near to any other point Pj , j ≤ 3 or j ≥ 7. Moreover the
conic H ′ passes through P5 and P6 but not through P4. Hence one among P5 and
P6 has to be a planar point.

If P6 was planar, then the total multiplicity of P6 in the branch divisor of the
simple triple cover has to be a multiple of 3. Thus 3+νH ≡ 0 mod 3 which forces
νH ≡ 0 mod 3. We get a contradiction since H ′ is an irreducible component of
the branch divisor. Thus P5 is a planar point and P6 is proximate to P5. But then
when we blow up P5 the exceptional divisor F ′ should pass through P6. Contradic-
tion.

Proposition 11.13. The case n = 3�−1, n′ = 2, n′′ = 1 cannot occur with degrees
(d0, d1, d2, d3, d4, d5, dF , dH ) = (8, 2, 0, 0, 0, 0, 0, 0).

Proof. Let us consider the points P1, P2, P3. They are of maximal multiplicity for
both the octic and one of the two conics hence they cannot be infnitely near to any
of the points Pj , j ≥ 4. Since there is an irreducible conic passing through all the
three points, we can perform a quadratic transformation based at P1, P2, P3 and we
obtain the following configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
7 2 2 2 3 3 3 2 2 2 1 1 1 1 0
1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1

We now show that this new configuration cannot occur. Let us consider the points
P4, P5, P6. Since they are triple points for the septic they cannot be infinitely near
to any other point Pj , j ≤ 3 or j ≥ 7. Moreover P4 is proximate to P5 which is
also proximate to P6. In particular P6 is a planar point.

Since P6 is planar, the total multiplicity of P6 in the branch divisor of the
simple triple cover has to be a multiple of 3. Thus 3+νH ≡ 0 mod 3 which forces
νH ≡ 0 mod 3. We get a contradiction since H ′ is an irreducible component of
the branch divisor.

Hence we obtain:

Theorem 11.14. The case n = 3� − 1, n′ = 2, n′′ = 1 cannot occur.

With analogous computations we can prove (cf. [14, Sections 5.2.1, 5.2.2]):

Theorem 11.15. The cases n = 3�, n′ = 0, n′′ = n′′′ = 1 with � = 0, n =
3� − 2, n′ = 5 and n = 3l − 3 cannot occur.
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Collecting the proofs of Theorems 5.17, 6.2, 9.4, 10.11, 10.12, 10.13, 11.5,
11.14 and 11.15 we eventually obtain Theorem 1.3.
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Edizioni Plus - Pisa University Press, 2006.

[4] A. CALABRI, C. CILIBERTO and M. MENDES LOPES, Even sets of four nodes on rational
surfaces, Math. Res. Lett. 11 (2004), 799–808.

[5] A. CALABRI, C. CILIBERTO and M. MENDES LOPES, Numerical Godeaux surfaces with
an involution, Trans. Amer. Math. Soc. 359 (2007), 1605–1632.

[6] F. CATANESE and R. PIGNATELLI, Fibrations of low genus, I, Ann. Sci. Ècole Norm. Sup.
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