Taylorian points of an algebraic curve and bivariate Hermite interpolation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 3, pp. 545-577.

We introduce and study the notion of Taylorian points of algebraic curves in 2 , which enables us to define intrinsic Taylor interpolation polynomials on curves. These polynomials in turn lead to the construction of a well-behaved Hermitian scheme on curves, of which we give several examples. We show that such Hermitian schemes can be collected to obtain Hermitian bivariate polynomial interpolation schemes.

Classification: 41A05, 41A63, 46A32, 14Q05
@article{ASNSP_2008_5_7_3_545_0,
     author = {Bos, Len and Calvi, Jean-Paul},
     title = {Taylorian points of an algebraic curve and bivariate {Hermite} interpolation},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {545--577},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 7},
     number = {3},
     year = {2008},
     mrnumber = {2466439},
     zbl = {1177.41001},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2008_5_7_3_545_0/}
}
TY  - JOUR
AU  - Bos, Len
AU  - Calvi, Jean-Paul
TI  - Taylorian points of an algebraic curve and bivariate Hermite interpolation
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2008
SP  - 545
EP  - 577
VL  - 7
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2008_5_7_3_545_0/
LA  - en
ID  - ASNSP_2008_5_7_3_545_0
ER  - 
%0 Journal Article
%A Bos, Len
%A Calvi, Jean-Paul
%T Taylorian points of an algebraic curve and bivariate Hermite interpolation
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2008
%P 545-577
%V 7
%N 3
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2008_5_7_3_545_0/
%G en
%F ASNSP_2008_5_7_3_545_0
Bos, Len; Calvi, Jean-Paul. Taylorian points of an algebraic curve and bivariate Hermite interpolation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 3, pp. 545-577. http://archive.numdam.org/item/ASNSP_2008_5_7_3_545_0/

[1] B. Bojanov and Y. Xu., On polynomial interpolation of two variables, J. Approx. Theory 120 (2003), 267-282. | MR | Zbl

[2] B. D. Bojanov, H. A. Hakopian and A. A. Sahakian, “Spline Functions and Multivariate Interpolations”, Mathematics and its Applications, Vol. 248, Academic Publishers Group, Dordrecht, 1993. | MR | Zbl

[3] L. Bos, On certain configurations of points in 𝐑 n which are unisolvent for polynomial interpolation, J. Approx. Theory 64 (1991), 271-280. | MR | Zbl

[4] L. P. Bos and J.-P. Calvi, Multipoint taylor interpolation, Calcolo 51 (2008), 35-51. | MR | Zbl

[5] J.-P. Calvi and L. Filipsson, The polynomial projectors that preserve homogeneous differential relations: a new characterization of Kergin interpolation, East J. Approx. 10 (2004), 441-454. | MR | Zbl

[6] D. Cox, J. Little and D. O'Shea, “Ideals, Varieties, and Algorithms”, Undergraduate Texts in Mathematics, Springer, New York, third edition, 2007. | MR | Zbl

[7] C. De Boor and A. Ron, On multivariate polynomial interpolation, Constr. Approx. 6 (1990), 287-302. | MR | Zbl

[8] C. De Boor and A. Ron, The least solution for the polynomial interpolation problem, Math. Z. 210 (1992), 347-378. | MR | Zbl

[9] Lars Filipsson, Complex mean-value interpolation and approximation of holomorphic functions, J. Approx. Theory 91 (1997), 244-278. | MR | Zbl

[10] M. Gasca and T. Sauer, Polynomial interpolation in several variables, Adv. Comput. Math. 12 (2000), 377-410. Multivariate polynomial interpolation. | MR | Zbl

[11] H. A. Hakopian and M. F. Khalaf, On the poisedness of Bojanov-Xu interpolation, J. Approx. Theory 135 (2005), 176-202. | MR | Zbl

[12] H. A. Hakopian and M. F. Khalaf, On the poisedness of Bojanov-Xu interpolation, II, East J. Approx. 11 (2005), 187-220. | MR | Zbl

[13] F. Kirwan, “Complex Algebraic Curves”, London Mathematical Society Student Texts, Vol. 23, Cambridge University Press, Cambridge, 1992. | MR | Zbl

[14] R. A. Lorentz, “Multivariate Birkhoff Interpolation”, Lecture Notes in Mathematics, Vol. 1516. ix, Springer-Verlag, 1992. | MR | Zbl

[15] R. A. Lorentz, Multivariate Hermite interpolation by algebraic polynomials: A survey, J. Comput. Appl. Math. 122 (2000), 167-201. | MR | Zbl

[16] M. G. Marinari, H. M. Möller and T. Mora, Gröbner bases of ideals defined by functionals with an application to ideals of projective points, Appl. Algebra Engrg. Comm. Comput. 4 (1993), 103-145. | MR | Zbl

[17] H. M. Möller, Hermite interpolation in several variables using ideal-theoretic methods, In: “Constructive Theory of Functions of Several Variables”, Proc. Conf., Math. Res. Inst., Oberwolfach, 1976, Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977, 155-163. | MR | Zbl