Diophantine triples with values in binary recurrences
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 4, p. 579-608

In this paper, we study triples a,b and c of distinct positive integers such that ab+1,ac+1 and bc+1 are all three members of the same binary recurrence sequence.

Classification:  11D72,  11D61,  11B37
@article{ASNSP_2008_5_7_4_579_0,
     author = {Fuchs, Clemens and Luca, Florian and Szalay, Laszlo},
     title = {Diophantine triples with values in binary recurrences},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 7},
     number = {4},
     year = {2008},
     pages = {579-608},
     zbl = {1193.11032},
     mrnumber = {2483637},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2008_5_7_4_579_0}
}
Fuchs, Clemens; Luca, Florian; Szalay, Laszlo. Diophantine triples with values in binary recurrences. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 4, pp. 579-608. http://www.numdam.org/item/ASNSP_2008_5_7_4_579_0/

[1] Y. Bugeaud, P. Corvaja and U. Zannier, An upper bound for the G 243 (2003), 79-84. | MR 1953049 | Zbl 1021.11001

[2] Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10. | MR 1990827 | Zbl 1042.11019

[3] Y. Bugeaud and F. Luca, On the period of the continued fraction expansion of square root of 2 2n+1 +1, Indag. Math. (N.S.) 16 (2005), 21-35. | MR 2138048 | Zbl 1135.11005

[4] P. Corvaja and U. Zannier, Diophantine equations with power sums and Universal Hilbert Sets, Indag. Math. (N.S.) 9 (1998), 317-332. | MR 1692189 | Zbl 0923.11103

[5] P. Corvaja and U. Zannier, A lower bound for the height of a rational function at S-unit points, Monatsh. Math. 144 (2005), 203-224. | MR 2130274 | Zbl 1086.11035

[6] P. Corvaja and U. Zannier, S-unit points on analytic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 38 (2005), 76-92. | MR 2136482 | Zbl 1118.11033

[7] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214. | MR 2039327 | Zbl 1037.11019

[8] A. Dujella, Diophantine m-tuples, webpage available at http://web.math.hr/duje/ dtuples.html.

[9] C. Fuchs, An upper bound for the G.C.D. of two linear recurring sequences, Math. Slovaca 53 (2003), 21-42. | MR 1964201 | Zbl 1048.11025

[10] C. Fuchs, Diophantine problems with linear recurrences via the Subspace Theorem, Integers 5 (2005), #A08. | MR 2191754 | Zbl 1140.11337

[11] C. Fuchs, Polynomial-exponential equations involving multirecurrences, Studia Sci. Math. Hungar., to appear. | MR 2657024 | Zbl 1224.11060

[12] C. Fuchs and A. Scremin, Polynomial-exponential equations involving several linear recurrences, Publ. Math. Debrecen 65 (2004), 149-172. | MR 2075259 | Zbl 1064.11031

[13] W. J. Leveque, On the equation y m =f(x), Acta Arith. 9 (1964), 209-219. | MR 169813 | Zbl 0127.27201

[14] F. Luca, On shifted products which are powers, Glas. Mat. Ser. III 40 (2005), 13-20. | MR 2195856 | Zbl 1123.11011

[15] F. Luca, On the greatest common divisor of u-1 and v-1 with u and v near 𝒮-units, Monatsh. Math. 146 (2005), 239-256. | MR 2184226 | Zbl 1107.11029

[16] F. Luca and T. N. Shorey, Diophantine equations with products of consecutive terms in Lucas sequences, II, Acta Arith., to appear. | MR 2413365 | Zbl 1230.11041

[17] F. Luca and L. Szalay, Fibonacci Diophantine triples, Glas. Mat. Ser. III 43 (2008), 252-264. | MR 2460699 | Zbl 1218.11020

[18] H. P. Schlickewei and W. M. Schmidt, Linear equations in members of recurrence sequences, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 219-246. | Numdam | MR 1233637 | Zbl 0803.11010

[19] W. M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential Equations, In: “Diophantine Approximation, Proc. of the C.I.M.E. Conference, Cetraro (Italy) 2000”, F. Amoroso, U. Zannier (eds.), Springer-Verlag, LN 1819, 2003, 171-247. | MR 2009831 | Zbl 1034.11011

[20] T. N. Shorey and R. Tijdeman, “Exponential Diophantine Equations”, Cambridge Univ. Press, Cambridge, 1986. | MR 891406 | Zbl 1156.11015

[21] J. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta's conjecture for blowups, Monats. Math. 145 (2005), 333-350. | MR 2162351 | Zbl 1197.11070

[22] K. R. Yu, p-adic logarithmic forms and group varieties, II, Acta Arith. 89 (1999), 337-378. | MR 1703864 | Zbl 0928.11031

[23] U. Zannier, “Some applications of Diophantine Approximation to Diophantine Equations (with special emphasis on the Schmidt Subspace Theorem)”, Forum, Udine, 2003.

[24] U. Zannier, Diophantine equations with linear recurrences. An overview of some recent progress, J. Théor. Nombres Bordeaux 17 (2005), 423-435. | Numdam | MR 2152233 | Zbl 1162.11330