We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form
@article{ASNSP_2008_5_7_4_741_0, author = {Farina, Alberto and Sciunzi, Berardino and Valdinoci, Enrico}, title = {Bernstein and {De} {Giorgi} type problems: new results via a geometric approach}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {741--791}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {4}, year = {2008}, mrnumber = {2483642}, zbl = {1180.35251}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2008_5_7_4_741_0/} }
TY - JOUR AU - Farina, Alberto AU - Sciunzi, Berardino AU - Valdinoci, Enrico TI - Bernstein and De Giorgi type problems: new results via a geometric approach JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 741 EP - 791 VL - 7 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2008_5_7_4_741_0/ LA - en ID - ASNSP_2008_5_7_4_741_0 ER -
%0 Journal Article %A Farina, Alberto %A Sciunzi, Berardino %A Valdinoci, Enrico %T Bernstein and De Giorgi type problems: new results via a geometric approach %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 741-791 %V 7 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2008_5_7_4_741_0/ %G en %F ASNSP_2008_5_7_4_741_0
Farina, Alberto; Sciunzi, Berardino; Valdinoci, Enrico. Bernstein and De Giorgi type problems: new results via a geometric approach. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 4, pp. 741-791. http://archive.numdam.org/item/ASNSP_2008_5_7_4_741_0/
[1] On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math. 65 (2001), 9-33. | MR | Zbl
, and ,[2] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000) (electronic), 725-739. | MR | Zbl
and ,[3] Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997-1998), 69-94. | Numdam | MR | Zbl
, and ,[4] Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z. 26 (1927), 551-558. | JFM | MR
,[5] A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math. 47 (1994), 1457-1473. | MR | Zbl
, and ,[6] Regularity, monotonicity and symmetry of positive solutions of -Laplace equations, J. Differential Equations 206 (2004), 483-515. | MR | Zbl
and ,[7] Properties of entire solutions of non-uniformly elliptic equations arising in geometry and in phase transitions, Calc. Var. Partial Differential Equations 15 (2002), 451-491. | MR | Zbl
and ,[8] Convergence problems for functionals and operators, In: “Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978)”, Bologna, 1979, 131-188, Pitagora Editrice. | MR | Zbl
,[9] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850. | MR | Zbl
,[10] “Measure theory and fine properties of functions”, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. | MR | Zbl
and ,[11] “Propriétés qualitatives de solutions d'équations et systèmes d'équations non-linéaires”, Habilitation à diriger des recherches, Paris VI, 2002.
,[12] One-dimensional symmetry for solutions of quasilinear equations in , Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 6 (2003), 685-692. | MR | Zbl
,[13] Liouville-type theorems for elliptic problems, In: “Handbook of Differential Equations: Stationary Partial Differential Equations” M. Chipot (ed.), Vol. IV Elsevier B. V., Amsterdam, 2007, 61-116. | MR | Zbl
,[14] Bernstein and De Giorgi type problems: new results via a geometric approach, Preliminary version of this paper, available at http://cvgmt.sns.it/papers/, 2007.
, and ,[15] D symmetry for solutions of semilinear and quasilinear elliptic equations, Preprint, 2008. | MR | Zbl
and ,[16] The structure of complete stable minimal surfaces in -manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), 199-211. | MR | Zbl
and ,[17] On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), 481-491. | MR | Zbl
and ,[18] “Elliptic partial differential equations of second order”, Classics in Mathematics, Springer-Verlag, Berlin, 2001. | MR | Zbl
and ,[19] “Analysis”, Vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1997. | MR | Zbl
and ,[20] A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math. 38 (1985), 679-684. | MR | Zbl
,[21] Positive solutions of elliptic equations, Pacific J. Math. 75 (1978), 219-226. | MR | Zbl
and ,[22] Regularity of flat level sets in phase transitions, to appear in Ann. of Math. 2008. | MR | Zbl
,[23] “Geometria 2”, Bollati Boringhieri, Torino, 1994.
,[24] “Singular Sets and Asymptotics in Geometric Analysis” 2007.
,[25] Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, preprint, 2008. | Zbl
and ,[26] Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal. 141 (1998), 375-400. | MR | Zbl
and ,[27] A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math. 503 (1998), 63-85. | MR | Zbl
and ,[28] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150. | MR | Zbl
,[29] Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. | MR | Zbl
,[30] Flat level set regularity of -Laplace phase transitions, Mem. Amer. Math. Soc. 182 (2006), vi-144. | MR | Zbl
, and ,