Let be a non-compact, real semisimple Lie group. We consider maximal complexifications of which are adapted to a distinguished one-parameter family of naturally reductive, left-invariant metrics. In the case of their realization as equivariant Riemann domains over is carried out and their complex-geometric properties are investigated. One obtains new examples of non-univalent, non-Stein, maximal adapted complexifications.
@article{ASNSP_2009_5_8_1_17_0, author = {Halverscheid, Stefan and Iannuzzi, Andrea}, title = {A family of adapted complexifications for $SL_2(\mathbb{R})$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {17--49}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {1}, year = {2009}, mrnumber = {2512199}, zbl = {1180.53053}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2009_5_8_1_17_0/} }
TY - JOUR AU - Halverscheid, Stefan AU - Iannuzzi, Andrea TI - A family of adapted complexifications for $SL_2(\mathbb{R})$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 17 EP - 49 VL - 8 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2009_5_8_1_17_0/ LA - en ID - ASNSP_2009_5_8_1_17_0 ER -
%0 Journal Article %A Halverscheid, Stefan %A Iannuzzi, Andrea %T A family of adapted complexifications for $SL_2(\mathbb{R})$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 17-49 %V 8 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2009_5_8_1_17_0/ %G en %F ASNSP_2009_5_8_1_17_0
Halverscheid, Stefan; Iannuzzi, Andrea. A family of adapted complexifications for $SL_2(\mathbb{R})$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 1, pp. 17-49. http://archive.numdam.org/item/ASNSP_2009_5_8_1_17_0/
[1] Symplectic reduction and the homogeneous complex Monge-Ampère equation, Ann. Global Anal. Geom. 19 (2001), 327–353. | MR | Zbl
,[2] On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990), 1–12. | EuDML | MR | Zbl
and ,[3] Complexification and hypercomplexification of manifolds with a linear connection, Internat. J. Math. 14 (2003), 813–824. | MR | Zbl
,[4] Pseudokähler forms on complex Lie groups, Doc. Math. 5 (2000), 595–611. | EuDML | MR | Zbl
,[5] On the uniqueness and characterization of Grauert tubes, In: “Complex Analysis and Geometry”, V. Ancona and A. Silva (eds.), Lecture Notes in Pure and Applied Math., Vol. 173, 1995, 119–133. | Zbl
,[6] The geometry of grauert tubes and complexification of symmetric spaces, Duke Math. J. 118 (2003), 465–491. | MR | Zbl
, and ,[7] “Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces”, Lecture Notes Math., Vol. 1598, Springer-Verlag, Berlin 1995. | MR | Zbl
, and ,[8] “Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups”, Mem. Amer. Math. Soc., Vol. 215, 1979. | MR | Zbl
and ,[9] Pseudo-Kählerian structure on domains over a complex semisimple Lie group, Math. Ann. 232 (2002), 1–29. | MR | Zbl
,[10] “Cycle Spaces of Flag Domains: A Complex Geometric Viewpoint”, Progress in Mathematics, Vol. 245, Birkhäuser, Boston, 2005. | MR | Zbl
, and ,[11] On univalence of equivariant Riemann domains over the complexification of a non-compact, Riemannian symmetric space, Pacific J. Math. 238 (2008), 275–330. | MR | Zbl
and ,[12] Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37 (1985), 467–487. | MR | Zbl
,[13] Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom. 34 (1991), 561–570 (first part); J. Differential Geom. 35 (1992), 627–641 (second part). | MR | Zbl
and ,[14] Maximal complexifications of certain Riemannian homogeneous spaces, Trans. Amer. Math. Soc. 355 (2003), 4581–4594. | MR | Zbl
and ,[15] On naturally reductive left-invariant metrics of . Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 171–187. | EuDML | Numdam | MR | Zbl
and ,[16] Geometric invariant theory on Stein spaces. Math. Ann. 289 (1991), 631–662. | EuDML | MR | Zbl
,[17] Integration of local actions on holomorphic fiber spaces, Nagoya Math. J. 146 (1997), 31–53 | MR | Zbl
and ,[18] “Differential Geometry, Lie Groups and Symmetric Spaces”, Graduate Studies in Mathematics, Vol. 34, Amer. Math. Soc., Providence R.I., 2001. | Zbl
,[19] Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundles of Riemannian manifolds, Math. Ann. 290 (1991), 689–712. | EuDML | MR | Zbl
and ,[20] “Semi-Riemannian Geometry”, Academic Press, New York, 1983. | MR
,[21] Stein manifolds with compact symmetric center, Math. Ann. 289 (1991), 355–382. | EuDML | MR | Zbl
and ,[22] On envelopes of holomorphy, Commun. Pure Appl. Math. 16 (1963), 9–17. | MR | Zbl
,[23] The characterization of strictly parabolic manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 87–154. | EuDML | Numdam | MR | Zbl
,[24] Complex structures on tangent bundles of Riemannian manifolds, Math. Ann. 291 (1991), 409–428. | EuDML | MR | Zbl
,[25] Adapted complex structures and Riemannian homogeneous spaces, In: “Complex Analysis and Applications” (Warsaw, 1997) Ann. Polon. Math. 70 (1998), 215–220. | EuDML | MR | Zbl
,[26] Canonical complex structures associated to connections, Math. Ann. 329 (2004), 553-591. | MR | Zbl
,[27] “Lie Groups, Lie Algebras, and their Representations”, Springer-Verlag, New York, 1984. | MR | Zbl
,[28] “Invariant Stein Domains: A Contribution to the Program of Gelfand and Gindikin”, PhD Thesis, Berichte aus der Mathematik, Shaker Verlag, Aachen 1996. | Zbl
,