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On the set of complex points of a 2-sphere

NIKOLAY SHCHERBINA

Abstract. Let G be a strictly pseudoconvex domain in C2 with C∞-smooth
boundary ∂G. Let S be a 2-dimensional sphere embedded into ∂G. Denote by
E the set of all complex points on S. We study how the structure of the set E
depends on the smoothness of S.
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1. Introduction

Let M be a 2-dimensional C1-smooth manifold in C2. A point p on M is called
a complex point, if the tangent plane Tp M to M at p is a complex line. Denote
by E the set of all complex points on M . If M is smooth enough and in a general
position, then the set E consists of isolated points. In this case the topology of
M can be described in terms of the local behaviour of M near the points of E
(see [11]). The structure of the set M near the points in E plays a key role in different
questions of complex analysis (see, for example, [2, 3, 9, 10, 12, 15]. In this paper
we study the structure of the set E in the case, when M is a 2-dimensional sphere,
denoted by S in what follows, embedded into the boundary ∂G of a C∞-smooth
strictly pseudoconvex domain G in C2 (this case is important for applications, as
was shown in [5] and [6]). It is easy to see that, due to strict pseudoconvexity of
G, the set E has no interior points in S. Our goal here is to give a more explicit
description of the set E depending on the smoothness of S. Recall, that a manifold
is said to be of class C2− if it can be represented locally as the graph of a function
that belongs to the class Lip1,α for each positive α < 1. Our main result can now
be formulated as follows.

Theorem 1.1. Let G be a strictly pseudoconvex domain in C2 with C∞-smooth
boundary ∂G. Let S be a 2-dimensional sphere embedded into ∂G. Then, depend-
ing on the smoothness of S, the following holds:
1) If S is of class C2, then the set E of complex points of S is contained in a C1-

smooth nonclosed curve γ ⊂ S.
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2) There exists a 2-dimensional sphere S ⊂ ∂G of class C2− such that the set E
contains a Jordan curve of positive 2-dimensional measure.
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2. Proof of the first part of the theorem

We start with an argument which goes back to Bishop [2] (see also [9]). Namely, if
p is a point of E , then after a polynomial change of coordinates that moves p to the
origin we can locally represent S as the disc

D =
{
(z, f (z)) ∈ C2 : z ∈ �

}
with � being a small disc centered at the origin and f being a complex valued
C2-smooth function. Moreover, in view of strict pseudoconvexity of G, after this
change of coordinates the function f will have the special form

f (z) = 1

2
|z|2 − β Re z2 + o(|z|2), β ≥ 0

near zero. Recall, that zero is called an elliptic point if 0 ≤ β < 1
2 , a hy-

perbolic point if β > 1
2 and a parabolic point if β = 1

2 . Elliptic and hyper-
bolic points are always isolated in E . In the case of a parabolic point we can
use the real coordinates z = x + iy and represent f as f (z) = y2 + o(|z|2).
Hence ∂z̄ f (z) = iy + o(|z|) and then, by the implicit function theorem, we ob-
tain that σ = {z ∈ � : Im ∂z̄ f (z) = 0} is a C1-smooth curve and locally E =
{(z, f (z)) : z ∈ σ and Re ∂z̄ f (z) = 0}. Therefore, locally the set E is a closed sub-
set of a C1-smooth curve.

Since the set E is compact, the only obstruction for E to be a subset of a non-
closed C1-smooth curve γ ⊂ S is that there is a closed C1-smooth curve � ⊂ E .

Assume, to get a contradiction, that such a closed C1-smooth curve � ⊂ E
exists. Consider a complex tangential C∞-smooth closed curve �′ in ∂G (complex
tangential here means that for each point p ∈ �′ the tangent line Tp �′ to �′ at p is
contained in the complex tangent plane TC

p (∂G) to ∂G at p) close enough to � in

the C1-metric. Then, using a partition of unity along the curve �′, we can construct
a small C1-perturbation S′ of S in ∂G such that �′ ⊂ S′ and each point in �′ is a
complex point on S′. Moreover, S′ can be made C∞-smooth in a neighbourhood of
�′. For each point p ∈ �′, consider the unit vector �u(p) tangent to �′, the vector
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i �u(p) ∈ TC
p (∂G) and the unit vector �n(p) ∈ Tp(∂G) orthogonal to TC

p (∂G) and
such that the vectors (�u(p), i �u(p), �n(p)) define the positive orientation of ∂G at
the point p. Let O(p) be the rotation of Tp(∂G) around the direction �u(p) that
transforms the vector i �u(p) into the vector �n(p). Using the tubular neighbourhood
theorem (see, for example, [8, Theorem 1.4]) we can change S′ in a neighbourhood
of �′ to get a new 2-sphere, S′′ ⊂ ∂G, C∞-smooth near �′ such that �′ ⊂ S′′ and
�n(p) ∈ Tp(S′′) for each point p ∈ �′. It is easy to see that S′′ is totally real near
�′. Then we can perturb S′′ slightly outside a small neighbourhood of �′ to get a
C∞-smooth 2-sphere S̃ ⊂ ∂G in general position. To finish the proof of the first
part of our theorem we use an argument of Gromov (see [7, page 342]). Namely,
by the result of Bedford-Klingenberg [3] and Kružilin [10], there is a smooth 3-ball
B which is the disjoint union of holomorphic discs {Dα}, such that ∂B = S̃. By
Chirka’s theorem [4] we know that discs Dα are C∞-smooth to the boundary ∂ Dα

near the totally real part of S̃ (i.e. outside of finitely many complex points of S̃)
and, moreover, the boundary ∂ Dα of each disc Dα is C∞-smooth at this part of S̃
and transversal there to the distribution {TC

p (∂G)} of complex tangencies to ∂G.
Consider a disc Dα0 from the family {Dα} such that its boundary ∂ Dα0 “touches”
the curve �′ “for the first time” and let p be a point of ∂ Dα0 ∩ �′. More precisely,
let Dα0 ⊂ B be a holomorphic disc with the property that ∂ Dα0 ∩ �′ 
= ∅ and such
that for some connected component of the set B\Dα0 , each holomorphic disc Dα ,
which is contained in this component, satisfies ∂ Dα ∩�′ = ∅. Now we can see that,
on the one hand, since the curves ∂ Dα0 and �′ are tangent to each other at the point
p, and since the curve �′ was chosen to be complex tangential, the curve ∂ Dα0 is
complex tangential at p. On the other hand, since the point p is contained in the
totally real part of S̃, the curve ∂ Dα0 has to be transversal to TC

p (∂G). This gives
the desired contradiction and completes the proof of the first part of the theorem.

Remark 2.1. In the special case when the boundary of the domain G is diffeomor-
phic to a 3-dimensional sphere, the fact that the closed complex tangential curve
� ⊂ S ⊂ ∂G mentioned above does not exist can also be deduced from the [1, The-
orem 1].

3. Proof of the second part of the theorem

We prove the second part of the theorem in several steps. First, we construct a spe-
cial arc E ⊂ R2

x,y of positive 2-dimensional measure. Then we define a function G

on E such that G ∈ C2−(E) with the functions G ′
x (x, y) = y and G ′

y(x, y) = 0
chosen to be the first derivatives of G on E . Next, following an idea of H. Whitney
(see [14]), we construct a nonconstant function H ∈ C2−(E) with H ′

x (x, y) = 0
and H ′

y(x, y) = 0. Using G and H we define a function F ∈ C2−(E) with
F ′

x (x, y) = y and F ′
y(x, y) = 0 which is zero at both endpoints of E . Then,

using E , we construct a Jordan curve Ẽ ⊂ R2
x,y of positive 2-dimensional mea-

sure and, using F , we define a function F̃ on Ẽ of class C2−(Ẽ) with derivatives
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F̃ ′
x (x, y) = y and F̃ ′

y(x, y) = 0. Next, applying Whitney’s extension theorem to

the function F̃ , we contruct a 2-sphere S2 ⊂ R3
x,y,z of class C2− which contains

a Jordan curve of positive 2-dimensional measure such that at each point of this
curve the tangent plane to S2 coincides with the corresponding plane of the stan-
dard contact distribution in R3

x,y,z . Finally, using the Darboux theorem, we embed
this sphere into the boundary bG of the given strictly pseudoconvex domain G.

3.1. Construction of the arc E

First, we define for each α ∈ (0, 1) an auxiliary set

Eα =
([

0,
1 − α

2

]
∪

[
1 + α

2
, 1

])
×

([
0,

1 − α

2

]
∪

[
1 + α

2
, 1

])

∪ ({0} × [0, 1]) ∪
(

[0, 1] ×
{

1 + α

2

})
∪ ({1} × [0, 1]) .

We denote A = (0, 0), B = (1, 0), Q0 = [0, 1−α
2 ] × [0, 1−α

2 ], Q1 = [0, 1−α
2 ] ×

[ 1+α
2 , 1], Q2 = [ 1+α

2 , 1] × [ 1+α
2 , 1], and Q3 = [ 1+α

2 , 1] × [0, 1−α
2 ]. Further, we

denote A0 = A = (0, 0), B0 = (0, 1−α
2 ), A1 = (0, 1+α

2 ), B1 = ( 1−α
2 , 1+α

2 ), A2 =
( 1+α

2 , 1+α
2 ), B2 = (1, 1+α

2 ), A3 = (1, 1−α
2 ), and B3 = B = (1, 0) (see the set Eα

in Figure 3.1).

Q1 Q2

Q0 Q3

B1 A2
B2A1

A0= A = (0, 0) B3= B = (1, 0)

A3B0

α

α

Figure 3.1. The set Eα .

To define the set E we consider the sequence αn = 1
(n+1)2 , n = 1, 2, . . . We con-

struct the set E as the intersection of a decreasing sequence of compact sets En
which will be defined inductively. We set E1 = Eα1 . To define the set E2 we
consider the image Ẽα2 of the set Eα2 under the homothety with coefficient 1−α1

2 .
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Then for each i = 0, 1, 2, 3 we consider the set Ei obtained from the set Ẽα2 by
an orthogonal transformation (if necessary) and translation in such a way that the
image of the points A and B will coincide with the points Ai and Bi , respectively.
It is easy to see that we need an orthogonal transformation only for i = 0, 3. The
set E2 is obtained from the set E1 by replacing for each i = 0, 1, 2, 3 the square
Qi by the corresponding set Ei . For each j = 0, 1, 2, 3 we denote by Qi j , Ai j and
Bi j the images of the square Q j and the points A j , B j in the corresponding set Ei ,
respectively (the set E2 is shown in Figure 3.2).

Q11 Q12 Q21 Q22

Q10 Q13 Q20 Q23

Q03 Q02 Q31 Q30

Q00 Q01 Q32 Q33

B31A02

A32B01

B12A11 A21

A13B10

B22

A23B20

A10 = A1 B23 = B2

B03 = B0 A30 = A3

A00 = A0 = A B33 = B3 = B

B13 = B1 A20 = A2

A03  B02 A31  B30

B11  A12 B21  A22

B00  A01 B32  A33

Figure 3.2. The set E2.

To describe the inductive step of our construction we assume that the set En is al-
ready constructed and define the set En+1. Consider the image Ẽαn+1 of the set
Eαn+1 under the homothety with coefficient

∏n
i=1

( 1−αi
2

)
. Then for each multiindex

(i1, i2, . . . , in), i j = 0, 1, 2, 3, j = 1, 2, . . . , n, consider the set Ei1...in obtained
from the set Ẽαn+1 by an orthogonal transformation (if necessary) and translation in
such a way that the image of the points A and B will coincide with the points Ai1...in

and Bi1...in , respectively. The set En+1 is obtained from the set En by replacing
each square Qi1...in by the corresponding set Ei1...in . For each i j = 0, 1, 2, 3, j =
1, 2, . . . , n + 1, we denote by Qi1...in+1, Ai1...in+1 and Bi1...in+1 the images of the
square Qin+1 and the points Ain+1, Bin+1 in the corresponding set Ei1...in , respec-
tively. Note, that for each multiindex (i1, . . . , in) one has Ai1...in0 = Ai1...in and
Bi1...in3 = Bi1...in .

Since {En} is a decreasing sequence of compact sets, E = ⋂∞
n=1 En is a

nonempty compact subset of R2
x,y . It is easy to see that it is an arc (see the set

E in Figure 3.3).



78 NIKOLAY SHCHERBINA

Figure 3.3. The set E .

To estimate the area of the set E we observe that

Area (En) = (1 − αn)
2 Area (En−1) =

n∏
k=1

(1 − αk)
2 =

n∏
k=1

(
1 − 1

(k + 1)2

)2

=
(

1

2

(
1 + 1

n + 1

))2

>
1

4

for every n = 1, 2, . . .. Hence, the set E has a positive 2-dimensional measure (and,
moreover, Area (E) = 1

4 ).

3.2. Definition and properties of the function G

For each n = 1, 2, . . . let �n be the connected component of the set (0, 1)×(−1, 1)\
En containing the square (0, 1) × (−1, 0) and let Jn = ∂�n ∩ ([0, 1] × [0, 1]). On
each curve Jn we define a function Gn in the following way. For a point p ∈ Jn
we denote by J p

n a part of Jn with initial point A and endpoint p and then we set
Gn(p) = ∫

J p
n

ydx .

We will need the following estimate on the function Gn .

Lemma 3.1. Let Qi1i2...im be a square obtained after m ≥ 6 steps of our construc-
tion above. Then for each natural number n > m and all points p, q ∈ Jn∩Qi1i2...im

one has∣∣∣∣Gn(q) − Gn(p) −
∫

[p,q]
ydx

∣∣∣∣ < Area (Qi1i2...im ) = 1

22m+2

(
m + 2

m + 1

)2

. (3.1)

Proof. We proceed by induction on m having the number n fixed and decreasing the
number m. For each pair of points r, s ∈ Jn we denote by Jr,s

n the part of the curve
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Jn with the endpoints r and s. For m = n − 1 we observe from the definition of the
function Gn and Green’s theorem that Gn(q) − Gn(p) − ∫

[p,q] ydx represents the

sum (with signes) of the areas of domains bounded by the arc J p,q
n and the segment

[p, q] (see Figure 3.4).

Qi1i2…in−1

Jp,q
n

p

q

Figure 3.4. The curve J p,q
n in the square Qi1i2...in−1 .

Since these domains are contained in the square Qi1i2...in−1 , we conclude that the
inequality (3.1) holds true in this case. The same argument cannot be applied in the
case of general m due to the fact that the corresponding domains will not be disjoint
anymore and, therefore, their areas will be counted with multiplicities. That is why
in the case of an arbitrary m we need to improve the argument above and to use the
inductive procedure.

Assume that the inequality (3.1) holds true for all squares Qi1i2...im and all
points p, q ∈ Jn ∩ Qi1i2...im with m ≥ m0 + 1 (n being fixed). Consider a square
Qi1i2...im0

and points p, q ∈ Jn ∩ Qi1i2...im0
. Observe first that the segment [p, q]

can intersect at most three of the squares Qi1i2...im0 im0+1 , im0+1 = 0, 1, 2, 3. We
assume in what follows that it intersects exactly three of them (in the other cases the
argument is easier, since some terms in our estimates will disappear), namely the
squares Qi1i2...im0 0, Qi1i2...im0 1 and Qi1i2...im0 2 (the cases of another three squares
can be treated similarly). Consider an orientation of the segment [p, q] from the
point p to the point q and for each i = 0, 1, 2 denote by pi and p′

i the first and the
last, respectively, (according to the orientation of [p, q]) points of the set [p, q] ∩
J p,q

n ∩ Qi1i2...im0 i . Note, that p0 = p and p′
2 = q. For each i = 0, 1, 2 we have by

our inductive hypotesis that∣∣∣∣∣Gn(p′
i ) − Gn(pi ) −

∫
[pi ,p′

i ]
ydx

∣∣∣∣∣< Area (Qi1i2...im0 i )<
1

4
Area (Qi1i2...im0

). (3.2)

Since the segment [p′
0, p1] intersects the curve Jn only at its endpoints, we con-

clude from the Green’s theorem that Gn(p1)−Gn(p′
0)−

∫
[p′

0,p1] ydx represents the
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area of the domain 	1 bounded by the curve J
p′

0, p1
n and the segment [p′

0, p1] (see
Figure 3.5).

q = p'
2

p2

p'
1

p1

p = p0

p'
0

Ωi1i2…im0Σ1

Figure 3.5. The sets 	1 and �
i1i2...im0
n in the square �i1i2...im0

.

Since the domain 	1 is contained in the set �
i1i2...im0
n = �n ∩ Qi1i2...im0

, and since
�n ∩ Qi1i2...im0

⊂ Qi1i2...im0
\ En , it follows that

0<Gn(p1)−Gn(p′
0)−

∫
[p′

0,p1]
ydx =Area (	1)< Area (�n ∩ Qi1i2...im0

)

< Area (Qi1i2...im0
) − Area (En ∩ Qi1,i2...im0

)

= Area (Qi1i2...im0
)(1 − (1 − αm0+1)

2 . . . (1 − αn)
2)

= Area (Qi1i2...im0
)

(
1 −

(
1 − 1

(m0 + 2)2

)2

. . .

(
1 − 1

(n + 1)2

)2
)

= Area (Qi1i2...im0
)

(
1 −

(
(m0 + 1)(n + 2)

(m0 + 2)(n + 1)

)2
)

< Area (Qi1i2...im0
)

(
1 −

(
m0 + 1

m0 + 2

)2
)

<
2

m0 + 2
Area (Qi1i2...im0

).

(3.3)

Similarly, Gn(p2) − Gn(p′
1) − ∫

[p′
1,p2] ydx represents the area with the negative

sign (due to the orientation of its boundary) of the domain 	2 bounded by the curve

J
p′

1, p2
n and the segment [p′

1, p2]. Let 
 be the smallest rectangle in Qi1i2...im0
that coutains the squares Qi1i2...im0 12, Qi1i2...im0 13, Qi1i2...im0 20 and Qi1i2...im0 21 (see
Figure 3.6).
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q = p'2
p2

p'
1

p1

p = p0

p'
0

Σ2

Π

Figure 3.6. The sets 	2 and 
 in the square �i1i2...im0
.

Since the domain 	2 is a subdomain of 
, and since we have an obvious estimate
Area (
) < 1

4 Area (Qi1i2...im0
), we conclude that

0 > Gn(p2) − Gn(p′
1) −

∫
[p′

1,p2]
ydx = −Area (	2) > −Area (
)

> −1

4
Area (Qi1i2...im0

).

(3.4)

Taking into account different signs of the terms in the inequalities (3.3) and (3.4)
we have for m0 ≥ 6 the following estimate∣∣∣∣∣

(
Gn(p1)−Gn(p′

0)−
∫

[p′
0,p1]

ydx

)
+

(
Gn(p2)−Gn(p′

1)−
∫

[p′
1,p2]

ydx

)∣∣∣∣∣
<

1

4
Area (Qi1i2...im0

).

(3.5)

Finally, the inequalites (3.2) and (3.5) imply that∣∣∣∣Gn(q) − Gn(p) −
∫

[p,q]
ydx

∣∣∣∣ <

2∑
i=0

∣∣∣∣∣(Gn(p′
i ) − Gn(pi ) −

∫
[pi ,p′

i ]
ydx

∣∣∣∣∣
+

∣∣∣∣∣
(

Gn(p1) − Gn(p′
0) −

∫
[p′

0,p1]
ydx

)
+ (Gn(p2) − Gn(p′

1) −
∫

[p′
1,p2]

ydx

∣∣∣∣∣
<

3

4
Area (Qi1i2...im0

) + 1

4
Area (Qi1i2...im0

) = Area (Qi1i2...im0
).

This completes the proof of the lemma.
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Now we define the function G on the arc E . Let p be a point of E . Consider a
sequence of points pn ∈ Jn, n = 1, 2, . . ., such that pn → p, as n → ∞ and set
G(p) = limn→∞ Gn(pn).

To prove that the function G is well defined we consider the Cantor set Q def=⋂∞
n=1

⋃
(i1,i2,...,in) Qi1i2...in and observe that since the set E \ Q is constituted by

horizontal and vertical segments, and in view of the definition of the functions
Gn , it is enough to prove that the sequence Gn(pn) converges for pn → p with
p, pn ∈ Q, n = 1, 2, . . . Let pn1 and pn2 , n1 > n2, be two points of our sequence
pn ∈ Jn

⋂
Q, n = 1, 2, . . ., and let Qi1i2...im be the smallest of the described

above squares that contains both of these points. Observe that the vertex Ai1i2...im

of the square Qi1i2...im is contained in both curves Jn1 and Jn2 . It follows then from
Green’s theorem that Gn1(Ai1i2...im ) − Gn2(Ai1i2...im ) represents the area of the set

bounded by the curves J
A,Ai1i2...im

n1 and J
A,Ai1i2...im

n2 . Since this set is a subset of the
set �n1 \ �̄n2 , we conclude that

| Gn1(Ai1i2...im ) − Gn2(Ai1i2...im ) |< Area (�n1 \ �̄n2). (3.6)

For each j = 1, 2 we have (by the lemma):∣∣∣∣∣Gn j (pn j ) − Gn j (Ai1i2...im ) −
∫

[Ai1i2...im ,pn j ]
ydx

∣∣∣∣∣ < Area (Qi1i2...im ).

If we denote by lm the length of a side of Qi1i2...im (it depends only on m), then the
last inequality gives us

2∑
j=1

| Gn j (pn j ) − Gn j (Ai1i2...im )| <

2∑
j=1

∣∣∣∣∣
∫

[Ai1i2...im ,pn j ]
ydx

∣∣∣∣∣ + 2 Area (Qi1i2...im )

< 2lm + 2 Area (Qi1i2...im ) < 3lm = 3
m∏

i=1

(
1 − αi

2

)
= 3

2m+1
· m + 2

m + 1
. (3.7)

It follows now from (3.6) and (3.7) that

| Gn1(pn1) − Gn2(pn2) |≤
2∑

j=1

| Gn j (pn j ) − Gn j (Ai1i2...im ) |

+ | Gn1(Ai1i2...im ) − Gn2(Ai1i2...im ) |< 3

2m+1
· m + 2

m + 1
+ Area (�n1 \ �̄n2).

Since for points p, pn1, pn2 ∈ Q the number m will tend to infinity as pn1, pn2 →
p, and since Area (�n1 \ �̄n2) → 0 as n1, n2 → ∞, we conclude that the limit
of the sequence Gn(pn) as n → ∞ exists and, therefore, the function G is well
defined.
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Next, we prove that G ∈ C2−(E) with G ′
x (x, y) = y and G ′

y(x, y) = 0 chosen
to be the first derivatives of G at each point (x, y) ∈ E . To do this rigorously we
recall the definition of a function belonging to the class C2−(E) (this definition is
due to H. Whitney. Further details can be found, for example, in [13]).

Definition 3.2. Let E be a compact subset of R2
x,y and let f be a function defined

on E . We say that f belongs to the class C2−(E) if there exist bounded functions
f ′
x and f ′

y defined on E with the property that for each ε > 0 there is a constant M
such that

| f (x + �x, y + �y) − f (x, y) − f ′
x (x, y)�x − f ′

y(x, y)�y|
≤ M(|�x | + |�y|)2−ε

(3.8)

for all (x, y), (x + �x, y + �y) ∈ E .

To prove that G ∈ C2−(E) we consider two points p, p + �p ∈ E . Since the
function G obviously is smooth on each of the segments [Bi1...in , Ai1...(in+1)], in =
0, 1, 2, and satisfies condition (3.8) with G ′

x (x, y) = y and G ′
y(x, y) = 0 there,

the general case, when p, p + �p ∈ E , can be easily reduced to the case when
p and p + �p are contained in the Cantor set Q. That is why we assume in what
follows that p, p + �p ∈ Q. Consider as above a number m such that p, p + �p
belong to a square Qi1...im for some indices (i1, . . . , im), but not to a smaller square
Qi1,...imim+1, im+1 = 0, 1, 2, 3. Since p and p + �p belong to different squares
Qi1...imim+1 and Qi1...imi ′m+1

, it follows that the distance between these points is not
less than the minimal distance between Qi1...imim+1 and Qi1...imi ′m+1

, that is,

|�p| ≥ αm+1

(
1 − α1

2

)
. . .

(
1 − αm

2

)
= 1

(m + 2)2
· 1

2m

m∏
k=1

(
1 − 1

(k + 1)2

)

= 1

2m+1
· 1

(m + 1)(m + 2)
. (3.9)

Now we estimate the left hand side of the condition (3.8) for our function G

LG(p, p + �p)
def= G(p + �p) − G(p) − G ′

x (p)�x − G ′
y(p)�y

= G(p + �p) − G(p) − y�x,

where p = (x, y) and �p = (�x, �y). It is easy to see that∫
[p,p+�p]

ydx = y�x + 1

2
�x�y,

hence

|LG(p, p+�p)| ≤
∣∣∣∣G(p + �p) − G(p) −

∫
[p,p+�p]

ydx

∣∣∣∣+1

2
|�x ||�y|. (3.10)
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It follows from the lemma above that∣∣∣∣G(p + �p) − G(p) −
∫

[p,p+�p]
ydx

∣∣∣∣ ≤ 1

22m+2

(
m + 2

m + 1

)2

. (3.11)

Since p, p + �p ∈ Qi1...im , one can estimate |�x | and |�y| from above by the

length of the side of Qi1...im , that is, by 1
2m+1

(
m+2
m+1

)
. Therefore, we have by (3.10)

and (3.11) that

|LG(p, p + �p)| ≤ 3

2
· 1

22m+2

(
m + 2

m + 1

)2

. (3.12)

Finally, we conclude from the estimates (3.9) and (3.12) that in order to prove, that
G satisfies condition (3.8) we only need to verify that for each ε > 0 there is a
constant M such that

3

2
· 1

22m+2

(
m + 2

m + 1

)2

≤ M

(
1

2m+1
· 1

(m + 1)(m + 2)

)2−ε

as m → ∞

which is equivalent to the inequality

1

(2ε)m+1
≤ M

2

3

(
1

(m + 1)(m + 2)

)2−ε (
m + 1

m + 2

)2

as m → ∞.

The last inequality is obviously satisfied, since the left hand side tends to zero much
faster than the right hand side, as m → ∞. This proves that the function G belongs
to the class C2−(E).

3.3. Definition and properties of the functions H and F

First, we define the function H on the Cantor set Q. Each point p in this set is
uniquely determined as the intersection of the decreasing sequence Qi1 ⊃ Qi1i2 ⊃
Qi1i2i3 ⊃ . . . of the squares Qi1...in . Then, we define the value of H at the point
p as H(p) = ∑∞

n=1
in
4n . It is easy to see that for each in = 0, 1, 2 one has

H(Ai1...in−1(in+1)) = ∑n
k=1

ik
4k + 1

4n and H(Bi1...in−1in ) = ∑n
k=1

ik
4k +∑∞

k=n+1
3
4k =∑n

k=1
ik
4k + 1

4n , therefore, we can extend the function H as a constant to each seg-

ment [Bi1...in−1in , Ai1...in−1(in+1)], in = 0, 1, 2, with the value
∑n

k=1
ik
4k + 1

4n there.
This defines the function H on the whole set E .

Now we show that H ∈C2−(E) with the functions H ′
x (x,y)=0 and H ′

y(x,y)=
0 chosen to be the first derivatives of H on E . We proceed in the same way as
in the case of the function G, namely, we consider two points p, p + �p ∈ E .
Since, by definition, H is a constant on each of the intervals constituting the set
E \Q, we only need to verify that the function H satisfies condition (3.8) for points
p, p + �p ∈ Q. Let, as above, m be a number such that p, p + �p ∈ Qi1...im , but
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p, p + �p 
∈ Qi1...imim+1 for any im+1 = 0, 1, 2, 3. Then the definition of H gives
us that |H(p + �p) − H(p)| ≤ 1

4m . Hence, by estimate (3.9) , it is enough to show
that for each ε > 0 there is M such that

1

4m
≤ M

(
1

2m+1
· 1

(m + 1)(m + 2)

)2−ε

as m → ∞,

which is obviously true with the same argument as above for the function G.
To define the function F on the set E we first note that by definition of H one

has H(A) = 0 and H(B) = 1. Then, since by definition of G we have G(A) = 0,
there is a constant C such that for the function F = G + C H one has F(A) = 0
and F(B) = 0. Finally, we observe that since G ∈ C2−(E) with G ′

x (x, y) = y
and G ′

y(x, y) = 0, and since H ∈ C2−(E) with H ′
x (x, y) = 0 and H ′

y(x, y) = 0,

it follows that F ∈ C2−(E) with F ′
x (x, y) = y and F ′

y(x, y) = 0 at each point
(x, y) ∈ E .

3.4. Construction of the sphere S ⊂ ∂G

Let A be the linear transformation of R2
x,y represented by the matrix

(
0 1

−1 0

)
.

Consider the sets E1 = E + �ey, E2 = −AE + �ex + �ey, E3 = −E + �ex and
E4 = AE , where �ex and �ey are the unit vectors in the coordinate directions x and
y, respectively, and then define the set Ẽ as Ẽ = ⋃4

i=1 Ei (the set Ẽ is shown in
Figure 3.7).

E1

E3

E4 E2

Figure 3.7. The set Ẽ .
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It is easy to see that Ẽ is a Jordan curve of positive 2-dimensional measure in R2
x,y .

Applying to each of the sets Ei , i = 1, 2, 3, 4, a construction similar to the one that
we had above for the function F on the set E , we will get functions Fi defined on
the corresponding sets Ei with the properties:

1) Fi ∈ C2−(Ei ),
2) ∂ Fi

∂x (x, y) = y and ∂ Fi

∂y (x, y) = 0 for each (x, y) ∈ Ei ,

3) Fi has zero values at the endpoints of the arc Ei .

Hence, we can define a function F̃ on the set Ẽ as F̃(p) = Fi (p) for p ∈
Ei , i = 1, 2, 3, 4, and for this function we will obviously obtain F̃ ∈ C2−(Ẽ)

with ∂ F̃
∂x (x, y) = y and ∂ F̃

∂y (x, y) = 0 at each point (x, y) ∈ Ẽ . Then, by the classi-
cal extension theorem of Whitney (see, for example, [13, Theorem 4 on page 177]),

there is a function
≈
F ∈ C2−(R2

x,y) such that
≈
F ∈ C∞(R2

x,y \ Ẽ) and
≈
F(p) = F̃(p)

for each p ∈ Ẽ . If we restrict the function
≈
F to a disc D ⊂ R2

x,y such that Ẽ ⊂ D
and consider a smooth extension of the graph of this restriction to a 2-dimensional
sphere S2 embedded into R3

x,y,z , then the graph �(F̃) of F̃ will be a Jordan curve

in S2 of positive 2-dimensional measure and at each point of this curve the tan-
gent plane to S2 will coincide with the corresponding plane of the standard contact
distribution {dz − ydx = 0}.

Now let G be a given strictly pseudoconvex domain in C2 with C∞-smooth
boundary and let q be a point of ∂G. Then, by the theorem of Darboux, there is
a neighbourhood U of q in ∂G and a C∞-smooth diffeomorphism � of U onto
a neighbourhood V of the origin in R3

x,y,z such that the distribution of complex

tangencies {TC
p (∂G)} will be transformed by � to the standard contact distribution

in R3
x,y,z . We can assume without loss of generality that S2 ⊂ V (if not, we consider

a linear transformation x → cx, y → cy, z → c2z of R3
x,y,z which preserves the

standard contact structure and use the image of S2 under this transformation with
c > 0 sufficiently small instead of S2). Then S = �−1(S2) will be a 2-dimensional
sphere in ∂G of class C2− and the set � = �−1(�(F̃)) ⊂ S will be a Jordan curve
of positive 2-dimensional measure such that at each point p ∈ � the tangent plane
Tp S to S is a complex line. This proves the second part of the theorem.
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