On the set of complex points of a 2-sphere
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 8 (2009) no. 1, p. 73-87

Let G be a strictly pseudoconvex domain in 2 with C -smooth boundary G. Let S be a 2-dimensional sphere embedded into G. Denote by the set of all complex points on S. We study how the structure of the set depends on the smoothness of S.

Classification:  32T15,  32V40,  53D10
@article{ASNSP_2009_5_8_1_73_0,
     author = {Shcherbina, Nikolay},
     title = {On the set of complex points of a 2-sphere},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {1},
     year = {2009},
     pages = {73-87},
     zbl = {1194.32028},
     mrnumber = {2512201},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2009_5_8_1_73_0}
}
Shcherbina, Nikolay. On the set of complex points of a 2-sphere. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 8 (2009) no. 1, pp. 73-87. http://www.numdam.org/item/ASNSP_2009_5_8_1_73_0/

[1] D. Bennequin, Entrelacements et équations de Pfaff, Astérisque 107-108 (1983), 87–161. | MR 753131

[2] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1–21. | MR 200476 | Zbl 0154.08501

[3] E. Bedford and W. Klingenberg, On the envelope of holomorphy of a 2-sphere in 2 , J. Amer. Math. Soc. 4 (1991), 623–643. | MR 1094437 | Zbl 0736.32009

[4] E. M. Chirka, Regularity of the boundaries of analytic sets, Mat. Sb. 117 (1982), 291–336; English transl. in Sb. Math. 45 (1983), 291–335. | MR 648411

[5] Ya. Eliashberg, Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser., Vol. 151, Cambridge Univ. Press, Cambridge, 1990, 45–67. | MR 1171908

[6] O. G. Eroshkin, On a topological property of the boundary of an analytic subset of a strictly pseudoconvex domain in 2 , Mat. Zametki 49 (1991), 149–151; English transl. in Math. Notes 49 (1991), 546–547. | MR 1137185

[7] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347. | MR 809718 | Zbl 0592.53025

[8] M. W. Hirsch, “Differential Topology”, Grad. Texts in Math., Vol. 33, Springer-Verlag, New York, 1976. | MR 448362 | Zbl 0356.57001

[9] B. Jöricke, Local polynomial hulls of discs near isolated parabolic points, Indiana Univ. Math. J. 46 (1997), 789–826. | MR 1488338 | Zbl 0901.32010

[10] N. G. Kružilin, Two-dimensional spheres on the boundaries of pseudoconvex domains in 2 , Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 1194–1237; English transl. in Math. USSR Izv. 39 (1992), 1151–1187. | MR 1152210

[11] H. F. Lai, Characteristic classes of real manifolds immersed in complex manifolds, Trans. Amer. Math. Soc. 172 (1972), 1–33. | MR 314066 | Zbl 0247.32005

[12] S. Nemirovski, Complex analysis and differential topology on complex surfaces, Uspekhi Mat. Nauk 54 (1999), 47–74; English transl. in Russian Math. Surveys 54 (1999), 729–752. | MR 1741278

[13] E. Stein, “Singular Integrals and Differentiability Properties of Functions”, Princeton Univ. Press, Princeton, 1970. | MR 290095 | Zbl 0207.13501

[14] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514–517. | JFM 61.1117.01 | MR 1545896

[15] J. Wiegerinck, Local polynomially convex hulls at degenerated CR singularities of surfaces in 2 , Indiana Univ. Math. J. 44 (1995), 897–915. | MR 1375355 | Zbl 0847.32013