In this article we study the Jacobi equation associated with the geodesics in a pseudo-hermitian manifold wish vanishing Webster torsion. We develop integral geometric formula generalizing the well known Santalo formula in Riemannian geometry. As applications we obtain volume comparison results under suitable curvature assumptions as well as isoperimetric inequalities for domains in such manifolds.
@article{ASNSP_2009_5_8_2_279_0, author = {Chanillo, Sagun and Yang, Paul}, title = {Isoperimetric inequalities & volume comparison theorems on {CR} manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {279--307}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {2}, year = {2009}, mrnumber = {2548248}, zbl = {1176.32014}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2009_5_8_2_279_0/} }
TY - JOUR AU - Chanillo, Sagun AU - Yang, Paul TI - Isoperimetric inequalities & volume comparison theorems on CR manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 279 EP - 307 VL - 8 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2009_5_8_2_279_0/ LA - en ID - ASNSP_2009_5_8_2_279_0 ER -
%0 Journal Article %A Chanillo, Sagun %A Yang, Paul %T Isoperimetric inequalities & volume comparison theorems on CR manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 279-307 %V 8 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2009_5_8_2_279_0/ %G en %F ASNSP_2009_5_8_2_279_0
Chanillo, Sagun; Yang, Paul. Isoperimetric inequalities & volume comparison theorems on CR manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 279-307. http://archive.numdam.org/item/ASNSP_2009_5_8_2_279_0/
[1] The tangent space in Sub-Riemannian Geometry, in Sub-Riemannian Geometry, Progr. Math., Birkhäuser, Basel 144 (1996), 1–78. | MR | Zbl
,[2] Minimal surfaces in pseudohermitian geometry, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (2005), 129–177. | EuDML | Numdam | MR | Zbl
, , and ,[3] Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup. 13 (1980), 419–435. | EuDML | Numdam | MR | Zbl
,[4] On Riemannian metrics adapted to three dimensional contact manifolds, with an appendix by A. Weinstein, Lecture Notes in Math., Vol. 1111, Springer Berlin, 1985, 279–308. | MR
and ,[5] Une inegalite isoperimetrique sur le group de Heisenberg, C.R. Acad. Sc. Paris 295 (1982), 127–130. | MR | Zbl
[6] Forms differentielles sur les varíetés de contact, J. Differential Geom. 39 (1994), 281–330. | MR | Zbl
,[7] “A Differential Geometric Study on Strongly Pseudo-convex Manifolds”, Kinokuniya, Tokyo, 1975. | MR | Zbl
,[8] “Introduction to Pseudo-differential and Fourier Integral Operators”, Vol. 1, Plenum Press. | MR
[9] Sobolev inequalities on Lie groups and symmetric spaces, J. Funct. Anal. 86 (1989), 19–40. | MR | Zbl
;[10] Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25–41. | MR | Zbl
,