We characterize convex isoperimetric sets in the Heisenberg group. We first prove Sobolev regularity for a certain class of -valued vector fields of bounded variation in the plane related to the curvature equations. Then we show that the boundary of convex isoperimetric sets is foliated by geodesics of the Carnot-Carathéodory distance.
@article{ASNSP_2009_5_8_2_391_0, author = {Monti, Roberto and Rickly, Matthieu}, title = {Convex isoperimetric sets in the {Heisenberg} group}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {391--415}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {2}, year = {2009}, mrnumber = {2548252}, zbl = {1170.49037}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2009_5_8_2_391_0/} }
TY - JOUR AU - Monti, Roberto AU - Rickly, Matthieu TI - Convex isoperimetric sets in the Heisenberg group JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 391 EP - 415 VL - 8 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2009_5_8_2_391_0/ LA - en ID - ASNSP_2009_5_8_2_391_0 ER -
%0 Journal Article %A Monti, Roberto %A Rickly, Matthieu %T Convex isoperimetric sets in the Heisenberg group %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 391-415 %V 8 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2009_5_8_2_391_0/ %G en %F ASNSP_2009_5_8_2_391_0
Monti, Roberto; Rickly, Matthieu. Convex isoperimetric sets in the Heisenberg group. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 391-415. http://archive.numdam.org/item/ASNSP_2009_5_8_2_391_0/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004), 227–260. | MR | Zbl
,[2] “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon Press, Oxford, 2000. | MR | Zbl
, and ,[3] “An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem”, Birkhäuser, 2007. | MR | Zbl
, , and ,[4] Existence and uniqueness for -area minimizers in the Heisenberg group, Math. Ann. 337 (2007), 253–293. | MR | Zbl
, and ,[5] Regularity of smooth surfaces with prescribed -mean curvature in the Heisenberg group, preprint, 2007. | MR
, and ,[6] Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 129–177. | EuDML | Numdam | MR | Zbl
, , and ,[7] A partial solution of the isoperimetric problem for the Heisenberg group, Forum Math. 20 (2008), 99–143. | MR | Zbl
, and ,[8] Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557–571. | EuDML | MR | Zbl
, and ,[9] Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479–531. | MR | Zbl
, and ,[10] Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. | MR | Zbl
and ,[11] On the isoperimetric problem in the Heisenberg group , Ann. Mat. Pura Appl. (4) 184 (2005), 533–553. | MR | Zbl
and ,[12] Isoperimetric sets on Carnot groups, Houston J. Math. 29 (2003), 609–637. | MR | Zbl
and ,[13] Brunn-Minkowski and isoperimetric inequality in the Heisenberg group, Ann. Acad. Sci. Fenn. Math. 28 (2003), 99–109. | EuDML | MR | Zbl
,[14] Heisenberg isoperimetric problem. The axial case, Adv. Calc. Var. 1 (2008), 93–121. | MR | Zbl
,[15] Isoperimetric inequality in the Grushin plane, J. Geom. Anal. 14 (2004), 355–368. | MR | Zbl
and ,[16] Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Differential Equations 13 (2001), 339–376. | MR | Zbl
and ,[17] Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 127–130. | MR | Zbl
,[18] An isoperimetric inequality on the Heisenberg group, Conference on differential geometry on homogeneous spaces (Turin, 1983). Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983), 159–174. | MR | Zbl
,[19] Minimal surfaces in the Heisenberg group, Geom. Dedicata 104 (2004), 201–231. | MR | Zbl
,[20] H-minimal graphs of low regularity in , Comment. Math. Helv. 81 (2006), 337–381. | MR | Zbl
,[21] A proof by calibration of an isoperimetric inequality in the Heisenberg group, 2008, preprint. | MR
,[22] Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group . J. Geom. Anal. 16 (2006), 703–720. | MR | Zbl
and ,[23] Area-stationary surfaces in the Heisenberg group , Adv. Math. 219 (2008), 633–671. | MR | Zbl
and ,