Convex isoperimetric sets in the Heisenberg group
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 391-415.

We characterize convex isoperimetric sets in the Heisenberg group. We first prove Sobolev regularity for a certain class of 2 -valued vector fields of bounded variation in the plane related to the curvature equations. Then we show that the boundary of convex isoperimetric sets is foliated by geodesics of the Carnot-Carathéodory distance.

Classification : 49Q20, 53C17
Monti, Roberto 1 ; Rickly, Matthieu 2

1 Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Trieste, 63, 35121 Padova, Italia
2 Institute of Mathematics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
@article{ASNSP_2009_5_8_2_391_0,
     author = {Monti, Roberto and Rickly, Matthieu},
     title = {Convex isoperimetric sets in the {Heisenberg} group},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {391--415},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {2},
     year = {2009},
     mrnumber = {2548252},
     zbl = {1170.49037},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2009_5_8_2_391_0/}
}
TY  - JOUR
AU  - Monti, Roberto
AU  - Rickly, Matthieu
TI  - Convex isoperimetric sets in the Heisenberg group
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2009
SP  - 391
EP  - 415
VL  - 8
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2009_5_8_2_391_0/
LA  - en
ID  - ASNSP_2009_5_8_2_391_0
ER  - 
%0 Journal Article
%A Monti, Roberto
%A Rickly, Matthieu
%T Convex isoperimetric sets in the Heisenberg group
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 391-415
%V 8
%N 2
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2009_5_8_2_391_0/
%G en
%F ASNSP_2009_5_8_2_391_0
Monti, Roberto; Rickly, Matthieu. Convex isoperimetric sets in the Heisenberg group. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 391-415. http://archive.numdam.org/item/ASNSP_2009_5_8_2_391_0/

[1] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004), 227–260. | MR | Zbl

[2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon Press, Oxford, 2000. | MR | Zbl

[3] L. Capogna, D. Danielli, D. P. Scott and J. T. Tyson, “An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem”, Birkhäuser, 2007. | MR | Zbl

[4] J.-H. Cheng, J.-F. Hwang and P. Yang, Existence and uniqueness for p-area minimizers in the Heisenberg group, Math. Ann. 337 (2007), 253–293. | MR | Zbl

[5] J.-H. Cheng, J.-F. Hwang and P. Yang, Regularity of C 1 smooth surfaces with prescribed p-mean curvature in the Heisenberg group, preprint, 2007. | MR

[6] J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang, Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 129–177. | EuDML | Numdam | MR | Zbl

[7] D. Danielli, N. Garofalo and D.-M. Nhieu, A partial solution of the isoperimetric problem for the Heisenberg group, Forum Math. 20 (2008), 99–143. | MR | Zbl

[8] B. Franchi, S. Gallot and R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557–571. | EuDML | MR | Zbl

[9] B. Franchi, R. Serapioni and F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479–531. | MR | Zbl

[10] N. Garofalo and D.-M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. | MR | Zbl

[11] G. P. Leonardi and S. Masnou, On the isoperimetric problem in the Heisenberg group n , Ann. Mat. Pura Appl. (4) 184 (2005), 533–553. | MR | Zbl

[12] G. P. Leonardi and S. Rigot, Isoperimetric sets on Carnot groups, Houston J. Math. 29 (2003), 609–637. | MR | Zbl

[13] R. Monti, Brunn-Minkowski and isoperimetric inequality in the Heisenberg group, Ann. Acad. Sci. Fenn. Math. 28 (2003), 99–109. | EuDML | MR | Zbl

[14] R. Monti, Heisenberg isoperimetric problem. The axial case, Adv. Calc. Var. 1 (2008), 93–121. | MR | Zbl

[15] R. Monti and D. Morbidelli, Isoperimetric inequality in the Grushin plane, J. Geom. Anal. 14 (2004), 355–368. | MR | Zbl

[16] R. Monti and F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Differential Equations 13 (2001), 339–376. | MR | Zbl

[17] P. Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 127–130. | MR | Zbl

[18] P. Pansu, An isoperimetric inequality on the Heisenberg group, Conference on differential geometry on homogeneous spaces (Turin, 1983). Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983), 159–174. | MR | Zbl

[19] S. D. Pauls, Minimal surfaces in the Heisenberg group, Geom. Dedicata 104 (2004), 201–231. | MR | Zbl

[20] S. D. Pauls, H-minimal graphs of low regularity in 1 , Comment. Math. Helv. 81 (2006), 337–381. | MR | Zbl

[21] M. Ritoré, A proof by calibration of an isoperimetric inequality in the Heisenberg group, 2008, preprint. | MR

[22] M. Ritoré and C. Rosales, Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group n . J. Geom. Anal. 16 (2006), 703–720. | MR | Zbl

[23] M. Ritoré and C. Rosales, Area-stationary surfaces in the Heisenberg group 1 , Adv. Math. 219 (2008), 633–671. | MR | Zbl