In this paper we study the problem where is a smooth bounded domain of , , . We will show that, under some assumptions, the solutions to (0.1) are close to suitable linear combinations of eigenfunctions of the problem.
@article{ASNSP_2009_5_8_3_429_0, author = {Grossi, Massimo}, title = {On the shape of solutions of an asymptotically linear problem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {429--449}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {3}, year = {2009}, mrnumber = {2574338}, zbl = {1182.35116}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2009_5_8_3_429_0/} }
TY - JOUR AU - Grossi, Massimo TI - On the shape of solutions of an asymptotically linear problem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 429 EP - 449 VL - 8 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2009_5_8_3_429_0/ LA - en ID - ASNSP_2009_5_8_3_429_0 ER -
%0 Journal Article %A Grossi, Massimo %T On the shape of solutions of an asymptotically linear problem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 429-449 %V 8 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2009_5_8_3_429_0/ %G en %F ASNSP_2009_5_8_3_429_0
Grossi, Massimo. On the shape of solutions of an asymptotically linear problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 429-449. http://archive.numdam.org/item/ASNSP_2009_5_8_3_429_0/
[1] Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth, Commun. Contemp. Math. 10 (2008), 1–23. | MR | Zbl
, , and ,[2] A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J. 22 (1972/73), 65–74. | MR | Zbl
,[3] Real analyticity and non-degeneracy, Math. Ann. 325 (2003), 369–392. | MR | Zbl
,[4] Asymptotic behavior of positive solutions of some elliptic problems, Pacific J. Math. 210 (2003), 215–228. | MR | Zbl
, and ,[5] Uniqueness of least energy solutions to a semilinear elliptic equation in , Manuscripta Math. 84 (1994), 13–19. | EuDML | MR | Zbl
,[6] Perturbazione dello spettro dell’operatore di Laplace, in relazione ad una variazione del campo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1972), 151–169. | EuDML | Numdam | MR
,[7] “Minimax Methods in Critical Point Theory with Applications to Differential Equations”, CBMS Regional Conference Series in Mathematics, Amer. Math. Soc., Vol. 65, Providence RI, 1986. | MR | Zbl
,[8] Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), 1059–1078. | MR | Zbl
,