We prove necessary and sufficient criteria of invertibility for planar harmonic mappings which generalize a classical result of H. Kneser, also known as the Radó–Kneser–Choquet theorem.
@article{ASNSP_2009_5_8_3_451_0, author = {Alessandrini, Giovanni and Nesi, Vincenzo}, title = {Invertible harmonic mappings, beyond {Kneser}}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {451--468}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {3}, year = {2009}, mrnumber = {2574339}, zbl = {1182.31002}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2009_5_8_3_451_0/} }
TY - JOUR AU - Alessandrini, Giovanni AU - Nesi, Vincenzo TI - Invertible harmonic mappings, beyond Kneser JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 451 EP - 468 VL - 8 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2009_5_8_3_451_0/ LA - en ID - ASNSP_2009_5_8_3_451_0 ER -
%0 Journal Article %A Alessandrini, Giovanni %A Nesi, Vincenzo %T Invertible harmonic mappings, beyond Kneser %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 451-468 %V 8 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2009_5_8_3_451_0/ %G en %F ASNSP_2009_5_8_3_451_0
Alessandrini, Giovanni; Nesi, Vincenzo. Invertible harmonic mappings, beyond Kneser. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 451-468. http://archive.numdam.org/item/ASNSP_2009_5_8_3_451_0/
[1] Unique determination of multiple cracks by two measurements, SIAM J. Control Optim. 34 (1996), 913–921. | MR | Zbl
and ,[2] Univalent -harmonic mappings, Arch. Ration. Mech. Anal. 158 (2001), 155–171. | MR | Zbl
and ,[3] Univalent -harmonic mappings: applications to composites, ESAIM Control Optim. Calc. Var. 7 (2002), 379–406 (electronic). | EuDML | Numdam | MR | Zbl
and ,[4] Extremal mappings of finite distortion, Proc. London Math. Soc. (3) 91 (2005), 655–702. | MR | Zbl
, , and ,[5] Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J. 50 (2001), 747–757. | MR | Zbl
, and ,[6] Univalent harmonic mappings in the plane, In: “Handbook of Complex Analysis: Geometric Function Theory”, Vol. 2, Elsevier, Amsterdam, 2005, 479–506. | MR | Zbl
and ,[7] Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156–165. | MR | Zbl
,[8] Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25. | MR | Zbl
and ,[9] “Harmonic Mappings in the Plane”, Cambridge Tracts in Mathematics, Vol. 156, Cambridge University Press, Cambridge, 2004. | MR | Zbl
,[10] Determining cracks by boundary measurements, Indiana Univ. Math. J. 38 (1989), 527–556. | MR | Zbl
and ,[11] Unique determination of a collection of a finite number of cracks from two boundary measurements, SIAM J. Math. Anal. 27 (1996), 1336–1340. | MR | Zbl
and ,[12] Lösung der Aufgabe 41, Jber. Deutsch. Math.-Verein. 35 (1926), 123–124.
,[13] On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689–692. | JFM | MR
,[14] Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J. 30 (1963), 63–80. | MR | Zbl
and ,[15] “An Introduction to Complex Function Theory”, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1991. | MR | Zbl
,[16] Aufgabe 41, Jber. Deutsch. Math.-Verein. 35 (1926), 49. | JFM
,[17] “On the problem of Plateau, Subharmonic Functions”, Reprint, Springer-Verlag, New York, 1971. | MR | Zbl
,[18] Uniqueness of Plateau’s problem for certain contours with a one-to-one, nonconvex projection onto a plane, In: “Geometric Analysis and the Calculus of Variations”, J. Jost (ed.), Int. Press, Cambridge, MA, 1996, 297–314. | Zbl
,[19] “A Course of Higher Mathematics”, Vol. III, Part two, Complex variables. Special functions, Translated by D. E. Brown. Translation edited by I. N. Sneddon, Pergamon Press, Oxford, 1964. | MR
,[20] “Leçons sur les Principes Topologiques de la Théorie des Fonctions Analytiques”, deuxième édition, augmentée de notes sur les fonctions analytiques et leurs surfaces de Riemann, Gauthier-Villars, Paris, 1956. | MR | Zbl
,[21] “Vorlesungen über Topologie, I.: Flächentopologie”, Die Grundlehrender mathematischen Wissenschaften. Bd. 8 , J. Springer, Berlin, 1923. | JFM
,[22] A global invertibility theorem for manifolds with boundary, Proc. Roy. Soc. Edinburgh Sect. A 99 (1985), 283–284. | MR | Zbl
,[23] Singularities of harmonic maps and applications of the Gauss-Bonnet formula, Amer. J. Math. 99 (1977), 1329–1344. | MR | Zbl
,