
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. VIII (2009), 509-541

Geometry of invariant domains in complex semi-simple Lie groups

CHRISTIAN MIEBACH

Abstract. We investigate the joint action of two real forms of a semi-simple
complex Lie group UC by left and right multiplication. After analyzing the orbit
structure, we study the CR structure of closed orbits. The main results are an ex-
plicit formula of the Levi form of closed orbits and the determination of the Levi
cone of generic orbits. Finally, we apply these results to prove q-completeness of
certain invariant domains in UC .

Mathematics Subject Classification (2000): 22E46 (primary); 32V40 (sec-
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1. Introduction

Let UC be a connected semi-simple complex Lie group with compact real form U
which is given by the Cartan involution θ . Let us assume that there are two anti-
holomorphic involutive automorphisms σ1 and σ2 of UC which both commute with
θ and let G j = Fix(σ j ), j = 1, 2, be the corresponding real forms of UC. The
group G1 × G2 acts on UC by (g1, g2) · z := g1zg−1

2 . In this paper we investigate
complex-analytic properties of certain (G1 × G2)-invariant domains in UC through
the intrinsic Levi form of closed (G1 × G2)-orbits.

If σ1 = σ2 = θ , then we discuss the (U × U )-action on UC by left and right
multiplication. If t is a maximal torus in u, then every (U × U )-orbit intersects the
set exp(it) in an orbit of the Weyl group W := NU (t)/ZU (t). In [18] Lassalle
showed that every bi-invariant domain � ⊂ UC is of the form U exp(iω)U for a
W -invariant domain ω ⊂ t and that � is a domain of holomorphy if and only if ω is
convex. In [2] Azad and Loeb proved the stronger statement that a (U×U )-invariant
function � on � is plurisubharmonic if and only if the W -invariant function

ϕ : t → R, ϕ(η) := �
(
exp(iη)

)
,

is convex.
In the case that σ1 = σ2 and G1 = G2 =: G is of Hermitian type, there is a dis-

tinguished (G × G)-invariant in UC = GC, namely the open complex Ol’shanskiı̆
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semi-group. According to a result of Neeb ([23]) the open Ol’shanskiı̆ semi-group
is a domain of holomorphy.

Although the above results are statements about complex-analytic properties of
domains in complex Stein manifolds, the method of their proofs is representation-
theoretic. A different approach to the study of (G × G)-invariant domains in UC by
analytic methods was made by Fels and Geatti in [10]. There, Fels and Geatti gave
explicit formulas for the intrinsic Levi form of a closed orbit Mz := (G × G) · z of
maximal dimension in UC (in the following called a generic orbit) and determined
the Levi cone of Mz , which enabled them to decide whether or not there may exist
a bi-invariant domain of holomorphy containing z in its boundary.

The main results in this paper are an explicit formula for the intrinsic Levi
form of an arbitrary closed (G1 × G2)-orbit in UC and the determination of the
Levi cone of a generic orbit. We use a theorem of Matsuki [19] in order to obtain a
parameterization of closed (G1 × G2)-orbits by certain Cartan algebras in the Lie
algebra uC = Lie(UC). More precisely, there are finitely many Cartan algebras c j
such that the closed orbits are precisely those intersecting a set of the form C j =
n exp(ic j ), where the element n can be chosen from a fixed torus in U . It turns
out that the weight space decomposition of uC with respect to c j is well-suited to
describe the CR structure of closed orbits intersecting C j . In particular, the complex
tangent space of such an orbit can be identified with a direct sum of weight spaces
and the intrinsic Levi form of a closed orbit is determined by the Lie bracket of
certain weight vectors together with a coefficient which depends on the intersection
of the orbit with C j (Theorem 3.15). From this fact it can be derived that the
CR structures of closed orbits which belong to the same set C j have very similar
properties.

The method used here for the derivation of explicit formulas for the Levi form
is different from the one used in [10]. While Fels and Geatti found explicit local
extensions of complex tangent vectors to CR vector fields on a generic orbit and
computed their Lie brackets, the approach used here avoids these technical difficul-
ties by pulling back the CR structure of the orbit into the Lie algebra of G1 × G2
where the Levi form can be determined via Lie-theoretic methods. In particular, we
obtain a new proof for their results in the case G1 = G2.

A finer analysis of the weight space decomposition of uC with respect to c j
reveals that it has properties very close to a root space decomposition. The most im-
portant one is the existence of sl(2)-triples which enables us to determine the Levi
cone of generic orbits by essentially the same method as in [10] (Theorem 3.23).

In Section 4 we give several applications of the results obtained so far. First we
use the knowledge of the Levi cone in order to decide which (G1 × G2)-invariant
domains containing a generic orbit in their boundary can be Stein. Secondly, we
classify and study the rank one case in some detail since this case provides a class
of examples where the methods and results become most transparent. This is due
to the facts that complex-analytic properties of smooth domains in Stein manifolds
are determined by the classical Levi form of their boundaries and that in the rank
one case the boundaries of almost all invariant domains coincide with orbits of hy-
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persurface type. Finally, we define for certain UC, σ1 and σ2 a (G1 × G2)-invariant
domain � ⊂ UC which is the right analogue of the open complex Ol’shanskiı̆
semi-group in the case G1 �= G2. We prove that the classical Levi form of a
(G1 × G2)-invariant smooth function at a point z ∈ � splits into a contribution
coming from the complex tangent space of (G1 × G2) · z and a contribution due to
a transversal slice. Via this splitting we construct a strictly q-convex function on �

which goes to infinity at ∂�, and hence conclude that � is q-complete. However, it
should be noted that the necessary conditions on UC, σ1 and σ2 are quite restrictive
so that in most cases there is no non-trivial (G1 ×G2)-invariant q-complete domain
in UC.

Notation

If ϕ is an automorphism of a Lie group G, then by abuse of notation we write ϕ

also for the derived automorphism of g = Lie(G).

ACKNOWLEDGEMENTS. This paper is a modified version of my Ph.D. thesis [21].
The support by a Promotionsstipendium of the Studienstiftung des deutschen Volkes
and by SFB/TR 12 of the DFG is gratefully acknowledged. I would also like to
thank the referee for his or her useful comments.

2. The (G1 × G2)-Action on UC

2.1. Compatible real forms

Let U be a connected semi-simple compact Lie group. Then its universal com-
plexification UC is a connected semi-simple complex Lie group, and hence carries
a unique structure of a linear algebraic group (compare [6]). The map � : U ×
iu → UC, (u, ξ) �→ u exp(ξ), is a real-analytic diffeomorphism, called the Car-
tan decomposition of UC. Furthermore, the map θ : UC → UC, θ

(
u exp(ξ)

) :=
u exp(−ξ), is an anti-holomorphic involutive automorphism with U = Fix(θ),
called the Cartan involution of UC corresponding to the compact real form U .
Proofs of these facts can be found e.g. in [17].

Let σ1 and σ2 be two anti-holomorphic involutive automorphisms of UC,
which both commute with the Cartan involution θ . The fixed point set G j :=
Fix(σ j ) is a real form of UC for j = 1, 2. The assumption that σ j commutes with θ

implies that the Cartan decomposition of UC restricts to a real-analytic diffeomor-
phism K j × p j → G j , where K j := G j ∩U and p j := g j ∩ iu hold. Thus the real
form G j is a compatible subgroup of UC in the sense of [13]. In particular, K j is a
deformation retract of G j .

Remark 2.1. Since G j is closed, the group K j is compact and hence a maximal
compact subgroup of G j . Thus G j has only finitely many connected components.
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If the group UC is simply-connected, it follows from [26] that G j is connected.

The product group G1 × G2 acts on UC by left and right multiplication, i.e.
we define

(g1, g2) · z := g1zg−1
2

where g j ∈ G j and z ∈ UC.

Definition 2.2. We say that an element z ∈ UC is regular (with respect to G1 ×G2)
if the orbit (G1 × G2) · z has maximal dimension. The element z is called strongly
regular (with respect to G1 × G2), if it is regular and if (G1 × G2) · z is closed. We
write UC

r and UC
sr for the sets of regular and strongly regular elements, respectively.

Finally, we call the orbit (G1 × G2) · z generic if z is strongly regular.

Remark 2.3.

(a) If we consider the action of UC on itself given by conjugation, then Defini-
tion 2.2 yields the usual notion of (strongly) regular elements in linear algebraic
groups (compare [14]).

(b) The subsets UC
r and UC

sr are invariant under G1 ×G2. The set UC
sr can be proven

to be open and dense in UC which justifies the terminology “generic orbit”.
(c) In [19] an element z ∈ UC is called regular semi-simple if the automorphism

Ad(z−1)σ1 Ad(z)σ2 is semi-simple and if the Lie algebra g2 ∩ Ad(z−1)g1 is
Abelian. It can be shown that an element is regular semi-simple in Matsuki’s
sense if and only if it is strongly regular.

2.2. The isotropy representation

The following proposition is crucial. For convenience of the reader we give a sketch
of proof which makes use of the complex-analytic structure of UC.

Proposition 2.4. Let z ∈ UC be a point such that the orbit Mz := (G1 × G2) · z
is closed. Then the isotropy group (G1 × G2)z is real-reductive and the isotropy
representation of (G1 × G2)z on TzUC is completely reducible.

Proof. Since UC is a Stein manifold, there exists a smooth strictly plurisubhar-
monic exhaustion function ρ : UC → R. By compactness of U we can average
ρ using the Haar measure and hence assume that ρ is (U × U )-invariant. It fol-
lows that ω := i∂∂ρ is a (U × U )-invariant Kähler form on UC with respect to
which U × U acts in a Hamiltonian fashion. The last statement means that there
exists a (U × U )-equivariant momentum map µ : UC → u∗ ⊕ u∗. Since the group
G1 × G2 is compatible with the Cartan decomposition of UC × UC, we can re-
strict µ to the subspace (ip1)

∗ ⊕ (ip2)
∗ and obtain the restricted momentum map

µip : UC → (ip1)
∗ ⊕ (ip2)

∗. According to [13] this restricted momentum map en-
codes a lot of information about the (G1 × G2)-action on UC from which we need
the following.

(a) A (G1 × G2)-orbit is closed in UC if and only if it intersects Mip := µ−1
ip (0)

non-trivially [13, Proposition 11.2].
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(b) If z ∈ Mip, then the isotropy group (G1 × G2)z is a compatible subgroup of
UC ×UC and hence real-reductive [13, Lemma 5.5]. Together with the previous
statement this implies that isotropy groups of closed orbits are real-reductive.

(c) If z ∈ Mip, then the isotropy representation is completely reducible [13, Corol-
lary 14.9].

Hence, the proposition is proven.

In the rest of this subsection we will have a closer look at the isotropy repre-
sentation. Every element (ξ1, ξ2) ∈ g1 ⊕ g2 induces the tangent vector

d

dt

∣∣∣∣
0

(
exp(tξ1)z exp(−tξ2)

) = d

dt

∣∣∣∣
0

(
z exp(t Ad(z−1)ξ1) exp(−tξ2)

)
= (�z)∗

(
Ad(z−1)ξ1 − ξ2

) ∈ TzUC,

(2.1)

where �z denotes left multiplication with z ∈ UC. These tangent vectors span the
tangent space of the (G1×G2)-orbit through z, i.e. we obtain Tz Mz = (g1⊕g2)·z ={
(�z)∗ξ ; ξ ∈ g2 + Ad(z−1)g1

}
.

Let ρ denote the isotropy representation of (G1 × G2)z on TzUC. One checks
directly that the isotropy group at z ∈ UC is given by

(G1 × G2)z = {
(zg2z−1, g2); g2 ∈ G2 ∩ z−1G1z

}
.

Consequently, we may identify (G1 × G2)z with G2 ∩ z−1G1z via the isomorphism
� : G2 ∩ z−1G1z → (G1 × G2)z , g �→ (zgz−1, g). Similarly, we will identify the
tangent space Tz Mz with g2 + Ad(z−1)g1 via (�z)∗. We conclude from

ρ
(
�(g)

)
(�z)∗ξ = d

dt

∣∣∣∣
0
(zgz−1, g) · (

z exp(tξ)
)

= d

dt

∣∣∣∣
0

(
zg exp(tξ)g−1)

= d

dt

∣∣∣∣
0

z exp
(
t Ad(g)ξ

) = (�z)∗ Ad(g)ξ

that the map (�z)∗ intertwines the adjoint representation of G2 ∩z−1G1z on uC with
the isotropy representation of (G1 × G2)z on TzUC modulo �. We summarize our
considerations in the following:

Proposition 2.5. Modulo the isomorphism � the isotropy representation of (G1 ×
G2)z on TzUC is equivalent to the adjoint representation of G2 ∩ z−1G1z on uC.
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2.3. The orbit structure theorem

We review the main results of [19] in order to describe the orbit structure of the
(G1 × G2)-action on UC. A proof of Matsuki’s theorem which relies on the mo-
mentum map techniques developed in [13] can be found in [21].

Let a0 be a maximal Abelian subspace of p1 ∩p2 and let t0 be a maximal torus
in the centralizer of a0 in k1 ∩ k2. It follows that c0 := t0 ⊕ a0 is a maximally
non-compact θ -invariant Cartan subalgebra of g1 ∩ g2.

Remark 2.6. By maximality of a0 the group Ac
0 := exp(ia0) is a compact torus

in U .

Definition 2.7. A subset of the form C = n exp(ic) ⊂ UC is called a standard
Cartan subset, if n ∈ Ac

0 and c = t ⊕ a is a θ -stable Cartan subalgebra of g2 ∩
Ad(n−1)g1 such that t ⊃ t0, a ⊂ a0 and dim c = dim c0 hold. The standard Cartan
subset C0 := exp(ic0) is called the fundamental Cartan subset.

We call two standard Cartan subsets equivalent if there is a generic (G1 ×
G2)-orbit which intersects both non-trivially. Let {C j } j∈J be a complete set of
representatives for the equivalence classes. For each j ∈ J we define the groups

NK1×K2(C j ) := {
(k1, k2) ∈ K1 × K2; k1C j k

−1
2 = C j

}
,

ZK1×K2(C j ) := {
(k1, k2) ∈ K1 × K2; k1zk−1

2 = z for all z ∈ C j
}
,

and WK1×K2(C j ) := NK1×K2(C j )/ZK1×K2(C j ).

Remark 2.8. The group WK1×K2(C j ) is finite for each j ∈ J .

Theorem 2.9 (Matsuki). The set J is finite and we have

UC
cl =

⋃
j∈J

G1C j G2 and UC
sr =

⋃̇
j∈J

G1(C j ∩ UC
sr )G2,

where UC
cl := {z ∈ UC; (G1×G2)·z is closed}. Moreover, each generic (G1×G2)-

orbit intersects C j in a WK1×K2(C j )-orbit.

Remark 2.10. If G1 = G2, then let c0, . . . , ck be a complete set of representatives
for the equivalence classes of Cartan subalgebras of g1. We can assume without loss
of generality that each c j is θ-stable. Let {n j,l} ⊂ NUC (cl) be a complete set of
representatives for the double cosets WG1(cl)\WUC (cl)/WG1(cl). It can be shown
that the sets n j,l exp(ic j ) exhaust the equivalence classes of standard Cartan subsets
for the (G1 × G1)-action on UC. This is the content of a theorem of Bremigan ([5],
see [10] for the formulation given here).

2.4. The weight space decomposition

Let C = n exp(ic) be a standard Cartan subset. In this subsection we discuss the
weight space decomposition

uC =
⊕
λ∈

uCλ
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of uC with respect to the Cartan subalgebra c ⊂ g2 ∩ Ad(n−1)g1. Here, we have
written  = (uC, c) for the set of weights and uCλ for the weight space corre-
sponding to the weight λ. We say that the weight λ is real (respectively imaginary)
if λ �= 0 and λ(c) ⊂ R (respectively λ(c) ⊂ iR) holds. A non-zero weight which is
neither real nor imaginary is called complex. We write r , i and c for the sets
of real, imaginary and complex weights, and obtain

 \ {0} = r ∪̇ i ∪̇ c.

Remark 2.11. We extend the weight λ by C-linearity to the complexified Cartan
algebra cC. Since λ(t) ⊂ iR and λ(a) ⊂ R hold for all λ ∈ , we conclude that
the weights are real-valued on it ⊕ a.

Since n ∈ Ac
0, the automorphism τn := Ad(n−1)σ1 Ad(n)σ2 ∈ Aut(uC) is uni-

tary with respect to the Hermitian inner product 〈ξ1, ξ2〉 := −BuC
(
ξ1, θ(ξ2)

)
, where

BuC is the Killing form of uC. Consequently, τn is semi-simple with eigenvalues
in the unit circle S1. Since τn leaves c pointwise fixed, each weight space uCλ is
invariant under τn . Hence, following [19] we obtain the finer decomposition

uC =
⊕

(λ,a)∈̃

uCλ,a, (2.2)

where uCλ,a := {
ξ ∈ uCλ ; τn(ξ) = aξ

}
and ̃ := {

(λ, a) ∈  × S1; uCλ,a �= {0}}.

The elements of ̃ are called the extended weights, and (2.2) is called the extended
weight space decomposition.

Remark 2.12. Since c is a Cartan subalgebra of g2 ∩ Ad(n−1)g1, we conclude
uC0,1 = cC. Moreover, for the fundamental Cartan subspace c0 ⊂ g1 ∩ g2 we have

(g1 ∩ g2)
C = cC ⊕ ⊕

(λ,1)∈̃ uCλ,1.

We collect some properties of the extended weight space decomposition in the
following

Lemma 2.13.

(1) The Cartan involution θ maps uCλ,a onto uC−λ,a−1 . In particular, if (λ, a) is an

extended weight, then (−λ, a−1) is an extended weight, too.
(2) We have BuC

(
uCλ,a, uCµ,b

) = 0 unless (λ, a) = (−µ, b−1) ∈ ̃.

(3) Let ξλ,a ∈ uCλ,a with ‖ξλ,a‖ = 1 be given and let ηλ,a := −[
ξλ,a, θ(ξλ,a)

]
. Then

we have BuC (ηλ,a, η) = λ(η) for all η ∈ c. In particular, ηλ,a does not depend
on the element a ∈ S1, i.e. ηλ,a = ηλ,a′ =: ηλ for all (λ, a), (λ, a′) ∈ ̃.

(4) We have [ξλ,a, ξ ] = BuC (ξλ,a, ξ)ηλ for all ξ ∈ uC−λ,a−1 .

Proof. In order to prove the first claim let η = ηt + ηa ∈ t⊕ a = c and ξ ∈ uCα,λ be
given and consider[

η, θ(ξ)
] = θ

[
θ(η), ξ

] = θ [ηt − ηa, ξ ] = θ
(
λ(ηt)ξ

) − θ
(
λ(ηa)ξ

) = −λ(η)θ(ξ).
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Here we used the facts that λ(t) ⊂ iR while λ(a) ⊂ R and that θ is C-anti-linear.
Since θ commutes with τn , we conclude

τnθ(ξ) = θτn(ξ) = θ(aξ) = aθ(ξ) = a−1θ(ξ),

which proves the first claim.
The second claim follows from the fact that the Killing form BuC is invariant

under Aut(uC).
In order to prove the third one we compute

BuC (ηλ,a, η) = −BuC
([ξλ,a, θ(ξλ,a)], η) = BuC

(
θ(ξλ,a), [ξλ,a, η])

= −λ(η)BuC
(
ξλ,a, θ(ξλ,a)

)
= λ(η)‖ξλ,a‖2 = λ(η).

The last claim is proven in the same way as in [17, Lemma 2.18(a)].

Standard arguments from Lie theory (see for example [17, Chapter II.4]) lead
to the following result.

Proposition 2.14.

(1) Let λ �= 0. After a suitable normalization the elements ηλ, ξλ,a and θ(ξλ,a) form
an sl(2)-triple.

(2) If λ �= 0, then we have dimC uCλ,a = 1 and dimC uCmλ,am = 0 for all m ≥ 2.
(3) The set  \ {0} of non-zero weights fulfills the axioms of an abstract root system

in (it ⊕ a)∗.
(4) Let λ, µ ∈  \ {0} such that λ + µ ∈  \ {0} holds. Then we have [uCλ , uCµ] =

uCλ+µ.

3. CR Geometry of Closed Orbits

3.1. Preliminaries from CR geometry

In this subsection we will review the basic definitions and facts from the theory of
CR submanifolds as far as they are needed later on. For more details and complete
proofs we refer the reader to the textbooks [3] and [4].

Let Z be a complex manifold with complex structure J . A real submanifold
M of Z is called a Cauchy-Riemann or CR submanifold if the dimension of the
complex tangent space Hp M := Tp M ∩ JpTp M does not depend on the point p ∈
M . In this case, the set H M := ⋃

p∈M Hp M is a smooth subbundle of the tangent
bundle T M invariant under the complex structure J , called the complex tangent
bundle of M . A CR submanifold M ⊂ Z is called generic if Tp M + JpTp M = Tp Z
holds for all p ∈ M . For example, every smooth real hypersurface in Z is a generic
CR submanifold of Z .
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Remark 3.1. Since the group G1×G2 acts by holomorphic transformations on UC,
each closed (G1×G2)-orbit is a CR submanifold of UC. Since the (G1×G2)-action
extends to a transitive (UC × UC)-action on UC, each closed orbit is moreover
generic as a CR submanifold.

A smooth section in H M is called a CR vector field on M . A smooth map f
from M into a CR submanifold M ′ ⊂ (Z ′, J ′) is called a CR map if f∗ maps H M
into H M ′ and if f∗ J = J ′ f∗ holds. A CR function on M is a CR map M → C,
where C is equipped with its usual structure as complex manifold.

For each CR submanifold M ⊂ Z one can define the intrinsic Levi form, which
generalizes the classical Levi form of a smooth hypersurface.

Definition 3.2. The Levi form of M at the point p is the map Lp : Hp M×Hp M →
TC

p M/HC
p M defined by

Lp(v, w) :=
(

i

2
[V, W ]p − 1

2
[V, J W ]p

)
mod HC

p M,

where V and W are CR vector fields on M with Vp = v and Wp = w.

Remark 3.3. One can show that the intrinsic Levi form is well-defined, i.e. that it
does not depend on the choice of CR extensions of v, w ∈ Hp M (compare [4]).

The Levi cone Cp of M at p is by definition the closed convex cone gener-
ated by the vectors Lp(v, v) where v runs through Hp M . Because of Lp(v, w) =
Lp(w, v) the Levi cone is contained in Tp M/Hp M . The Levi cone generalizes the
signature of the classical Levi form of a hypersurface. Its significance stems from
the fact that it governs the local extension of CR functions on M to holomorphic
functions on Z .

Theorem 3.4 (Boggess, Polking). Let M be a generic CR submanifold of a com-
plex manifold Z and let us assume that the Levi cone at some point p ∈ M satisfies
Cp(M) = Tp M/Hp M. Then, for each neighborhood ω of p in M there exists a
neighborhood � of p in Z satisfying � ∩ M ⊂ ω which has the property that every
CR function on � ∩ M extends to a unique holomorphic function on �.

A proof of this theorem can be found in [4].

3.2. The complex tangent space of a closed orbit

Let z ∈ UC be given such that the orbit Mz = (G1 × G2) · z is closed in UC.
By Matsuki’s theorem we can assume that there is a standard Cartan subset C =
n exp(ic) which contains z = n exp(iη). We define

̃(z) := {
(λ, a) ∈ ̃; ae−2iλ(η) = 1

}
and set τz := Ad(z−1)σ1 Ad(z)σ2 ∈ Aut(uC).
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Lemma 3.5. The automorphism τz is semi-simple and we have

Fix(τz) = (
g2 ∩ Ad(z−1)g1

)C =
⊕

(λ,a)∈̃(z)

uCλ,a .

Proof. The first equality can be deduced from [19, page 57]. In order to prove the
second one let ξ = ∑

(λ,a) ξλ,a be an arbitrary element of uC. Then we have

τz(ξ) = Ad(z−1)σ1 Ad(z)σ2(ξ) = Ad
(
exp(−iη)

)
τn Ad

(
exp(−iη)

)
ξ

= Ad
(
exp(−iη)

)
τn

(∑
(λ,a)

e−iλ(η)ξλ,a

)
= Ad

(
exp(−iη)

) ∑
(λ,a)

ae−iλ(η)ξλ,a

=
∑
(λ,a)

ae−2iλ(η)ξλ,a .

This proves that τz is semi-simple. Moreover, τz(ξ)=ξ holds if and only if ξλ,a = 0
for all (λ, a) /∈ ̃(z).

Since g2 ∩ Ad(z−1)g1 is isomorphic to the Lie algebra of (G1 × G2)z , we
obtain the following characterization of strongly regular elements in terms of the
extended weights as a corollary.

Theorem 3.6. We have codimR(G1 ×G2) · z = dimR c+ (#̃(z)−1). The element
z is strongly regular if and only if ̃(z) = {

(0, 1)
}

holds. This implies that the
codimension of a generic orbit coincides with the rank of the real-reductive Lie
algebra g1 ∩ g2.

Finally we describe the tangent space Tz Mz in terms of the extended weight
space decomposition.

Theorem 3.7. Under the map (�z)∗ the tangent space Tz Mz is isomorphic to

g2 + Ad(z−1)g1 = (
g2 ∩ Ad(z−1)g1

) ⊕
⊕

(λ,a)/∈̃(z)

uCλ,a .

In particular, the complex tangent space of (G1 × G2) · z is isomorphic to⊕
(λ,a)/∈̃(z) u

C
λ,a.

Remark 3.8. From now on we will identify the quotient TC
z M/HC

z M with RC
z M :=

(�z)∗
(
g2 ∩Ad(z−1)g1

)C. It follows that these spaces are isomorphic as (G1 ×G2)z-
modules.



GEOMETRY OF INVARIANT DOMAINS IN COMPLEX SEMI-SIMPLE LIE GROUPS 519

Proof of Theorem 3.7. Since τz is semi-simple, we conclude from [19, Lemma 1(i)]
that

uC = i
(
g2 ∩ Ad(z−1)g1

) ⊕ (
g2 + Ad(z−1)g1

)
holds. Moreover, one checks directly that this decomposition is orthogonal with re-
spect to the real part of the Killing form BuC . Similarly, we have the decomposition

uC = Fix(τz) ⊕ Fix(τz)
⊥, Fix(τz) = (

g2 ∩ Ad(z−1)g1
)C

,

where the orthogonal complement Fix(τz)
⊥ with respect to BuC is the sum of the

τz-eigenspaces corresponding to eigenvalues �= 1. These observations imply

g2 + Ad(z−1)g1 = (
g2 ∩ Ad(z−1)g1

) ⊕ Fix(τz)
⊥.

Since the same argument as the one in the proof of Lemma 3.5 implies the equality

Fix(τz)
⊥ =

⊕
(λ,a)/∈̃(z)

uCλ,a,

the theorem is proven.

3.3. Pulling back the Levi form into the Lie algebra

As abbreviation we put G := G1 × G2 in this subsection. Consequently, we have
g := Lie(G) = g1 ⊕ g2.

As we have remarked above, every closed G-orbit Mz = G · z is a generic CR
submanifold of UC. Let πz : g → g · z = Tz Mz be the differential of the orbit map.
By Equation (2.1) the map πz is given by

πz(ξ1, ξ2) = (�z)∗
(
Ad(z−1)ξ1 − ξ2

)
.

In this subsection we will pull back the CR structure of Mz into the Lie algebra g
and compute the Levi form of Mz via this pull back. The following proposition is
essential.

Proposition 3.9. We have the Gz-invariant decomposition g = gz ⊕qz , and qz and
Tz Mz are isomorphic as Gz-spaces where the isomorphism is given by π̃z := πz|qz .
Since the complex tangent space Hz Mz is invariant under Gz, we obtain the Gz-
invariant decomposition qz = R(qz) ⊕ H(qz) where H(qz) := π̃−1

z (Hz Mz) and
R(qz) := π̃−1

z (Rz Mz).

Proof. We only have to show that the adjoint representation of Gz on g is com-
pletely reducible. This follows from Proposition 2.4 since Gz is conjugate to a
compatible subgroup of UC × UC if the orbit G · z = Mz is closed.
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Proposition 3.10. The Levi form Lz : Hz Mz × Hz Mz → RC
z Mz is given by

Lz(v,w)=πz

(
i

2

[
π̃−1

z (v), π̃−1
z (w)

]
− 1

2

[
π̃−1

z (v), π̃−1
z (iw)

])
mod HC

z Mz . (3.1)

Proof. Let v, w ∈ Hz Mz be given and let V, W be CR vector fields on Mz with
Vz = v and Wz = w. Since the orbit map G → Mz is a Gz-principal bundle, there
exist projectable vector fields Ṽ and W̃ on G with Ṽe = π̃−1

z (v) and W̃e = π̃−1
z (w)

such that πz Ṽ = V and πz W̃ = W hold. For a proof of this fact and more details
about projectable vector fields we refer the reader to [16]. Although it is in general
not possible to choose the vector fields Ṽ and W̃ to be left-invariant, the same
argument which proves well-definedness of the intrinsic Levi form applies to show
that (

i

2
[Ṽ , W̃ ]e − 1

2
[Ṽ , J̃ W ]e

)
mod HC(qz)

does only depend on the values Ṽe and W̃e (compare the proof of Lemma 1 in
Chapter 10.1 of [4]). Therefore we conclude(

i

2
[Ṽ ,W̃ ]e − 1

2
[Ṽ , J̃ W ]e

)
mod HC(qz)=

(
i

2

[
π̃−1

z (v), π̃−1
z (w)

]
−1

2

[
π̃−1

z (v), π̃−1
z (iw)

])
mod HC(qz),

and obtain

Lz(v, w) =
(

i

2
[V, W ]z − 1

2
[V, J W ]z

)
mod HC

z Mz

=
(

i

2
[πz Ṽ , πz W̃ ]z − 1

2
[πz Ṽ , πz J̃ W ]z

)
mod HC

z Mz

=
(

i

2
πz[Ṽ , W̃ ]e − 1

2
πz[Ṽ , J̃ W ]e

)
mod HC

z Mz

= πz

(
i

2
[Ṽ , W̃ ]e − 1

2
[Ṽ , J̃ W ]e mod HC(qz)

)
= πz

(
i

2

[
π̃−1

z (v), π̃−1
z (w)

]
− 1

2

[
π̃−1

z (v), π̃−1
z (iw)

]
mod HC(qz)

)
= πz

(
i

2

[
π̃−1

z (v), π̃−1
z (w)

]
− 1

2

[
π̃−1

z (v), π̃−1
z (iw)

])
mod HC

z Mz .

This finishes the proof.

In the next subsection we will use the weight space decomposition in order to
determine the map π̃−1

z explicitly.
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3.4. The Levi form of a closed orbit

This rather technical subsection contains the computations which are necessary to
achieve the final formula of the Levi form.

Lemma 3.11. We have

gz = ker(πz) = {
(Ad(z)ξ, ξ); ξ ∈ g2 ∩ Ad(z−1)g1

}
.

Proof. One checks directly that
{
(Ad(z)ξ, ξ); ξ ∈ g2 ∩ Ad(z−1)g1

} ⊂ ker(πz)

holds. The other inclusion follows from dimensional reasons.

Lemma 3.12. The subspace qz = R(qz) ⊕ H(qz) is determined by the following.

(i) We have

R(qz) = π̃−1
z

(
g2 ∩ Ad(z−1)g1

) = {
(Ad(z)ξ, −ξ); ξ ∈ g2 ∩ Ad(z−1)g1

}
.

(ii) We have

(π̃z)
−1(uCλ,a) = {(

Ad(z)σ2(ξ) + σ1
(
Ad(z)σ2(ξ)

)
, ξ + σ2(ξ)

); ξ ∈ uCλ,a

}
for all (λ, a) ∈ ̃ \ ̃(z).

Proof. Firstly, we have to show that
{
(Ad(z)ξ, −ξ); ξ ∈ g2 ∩ Ad(z−1)g1

}
is con-

tained in qz = g⊥
z where the orthogonal complement is taken with respect to the

Killing form of g1 ⊕ g2. Hence, let ξ, ξ ′ ∈ g2 ∩ Ad(z−1)g1 and consider

Bg1⊕g2

(
(Ad(z)ξ, ξ), (Ad(z)ξ ′, −ξ ′)

) = Bg1(Ad(z)ξ, Ad(z)ξ ′) − Bg2(ξ, ξ ′)
= BuC (ξ, ξ ′) − BuC (ξ, ξ ′) = 0.

A simple computation shows
{
(Ad(z)ξ, −ξ); ξ ∈ g2∩Ad(z−1)g1

} ⊂ R(qz). Since
the converse inclusion follows from dimensional reasons, the first claim is proven.

A similar argument as above implies that
{(

Ad(z)σ2(ξ)+σ1
(
Ad(z)σ2(ξ)

)
, ξ +

σ2(ξ)
); ξ ∈ uCλ,a

}
lies in qz . In order to prove the second assertion let ξ ∈ uCλ,a be

given and consider

π̃z
(
Ad(z)σ2(ξ) + σ1

(
Ad(z)σ2(ξ)

)
, ξ + σ2(ξ)

)
= σ2(ξ) + Ad(z−1)σ1 Ad(z)σ2(ξ) − ξ − σ2(ξ)

= τz(ξ) − ξ = (
ae−2iλ(η) − 1

)
ξ =: ϕλ,a(ξ).

Since ϕλ,a(ξ) ∈ uCλ,a holds, the lemma is proven.

Remark 3.13. Note that the map ϕλ,a : uCλ,a → uCλ,a , ξ �→ (
ae−2iλ(η) − 1

)
ξ , is

an isomorphism if and only if (λ, a) /∈ �̃(z) holds. In this case the inverse map is
given by

ϕ−1
λ,a(ξ) = 1

ae−2iλ(η) − 1
ξ.
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Definition 3.14. A Levi basis of Hz Mz is a basis (ξλ,a)(λ,a) of Hz Mz such that
ξλ,a ∈ uCλ,a and σ2(ξλ,a) = ξσ2(λ),a hold for all (λ, a) ∈ ̃ \ ̃(z).

From now on we fix a Levi basis (ξλ,a) of Hz Mz .

Theorem 3.15. We obtain the following formula for the Levi form of Mz:

Lz(ξλ,a, ξµ,b) =


i

ae−2iλ(η) − 1

[
ξλ,a, ξσ2(µ),b

]
if (λ + σ2(µ), ab) ∈ ̃(z)

0 else
.

Proof. We will start by computing π̃−1
z (ξλ,a) for ξλ,a ∈ uCλ,a . Lemma 3.12 gives us

π̃−1
z (ξ) =

(
Ad(z)σ2(ϕ

−1
λ,aξ) + σ1

(
Ad(z)σ2(ϕ

−1
λ,aξ)

)
, ϕ−1

λ,aξ + σ2(ϕ
−1
λ,aξ)

)
=

(
Ad(z)

(
σ2(ϕ

−1
λ,aξ) + τz(ϕ

−1
λ,aξ)

)
, ϕ−1

λ,aξ + σ2(ϕ
−1
λ,aξ)

)
=

(
Ad(z)

(
ϕ−1

λ,aξ + σ2(ϕ
−1
λ,aξ)

) + Ad(z)ξ, ϕ−1
λ,aξ + σ2(ϕ

−1
λ,aξ)

)
for any ξ ∈ uCλ,a . In the next step we determine the Lie bracket[

π̃−1
z (ξλ,a), π̃−1

z (ξµ,b)
]
.

Since the Lie bracket of g = g1 ⊕ g2 is defined component-wise, we consider[
Ad(z)

(
ϕ−1

λ,aξλ,a + σ2(ϕ
−1
λ,aξλ,a)

)
+ Ad(z)ξα,λ, Ad(z)

(
ϕ−1

µ,bξµ,b + σ2(ϕ
−1
µ,bξµ,b)

) + Ad(z)ξµ,b

]
= Ad(z)

[
ϕ−1

λ,aξλ,a + σ2(ϕ
−1
λ,aξλ,a) + ξλ,a, ϕ−1

µ,bξµ,b + σ2(ϕ
−1
µ,bξµ,b) + ξµ,b

]
and [

ϕ−1
λ,aξλ,a + σ2(ϕ

−1
α,λξλ,a), ϕ−1

µ,bξµ,b + σ2(ϕ
−1
µ,bξµ,b)

]
.

The application of πz to the element in g1 ⊕ g2 whose components are given by the
above gives[

ϕ−1
λ,aξλ,a + σ2(ϕ

−1
α,λξλ,a), ξµ,b

]
+

[
ξλ,a, ϕ−1

µ,bξµ,b + σ2(ϕ
−1
µ,bξµ,b)

]
+ [ξλ,a, ξµ,b].

(3.2)
By the same computation we obtain for πz

([π̃−1
z (ξ1), π̃

−1
z (iξ2)]

)
the following ex-

pression:[
ϕ−1

λ,aξλ,a + σ2(ϕ
−1
α,λξλ,a), iξµ,b

]
+

[
ξλ,a, ϕ−1

µ,biξµ,b + σ2(ϕ
−1
µ,biξµ,b)

]
+[ξλ,a, iξµ,b].

(3.3)
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To arrive at the Levi form, we have to multiply (3.2) by i
2 and subtract (3.3) mul-

tiplied by 1
2 . Due to the facts that ϕλ,a and ϕµ,b are complex-linear, while σ2 is

anti-linear over C, this leads to

i
[
ξλ,a, σ2(ϕ

−1
µ,bξµ,b)

]
.

Inserting the concrete expression for ϕ−1
µ,b yields

πz

(
i

2

[
π̃−1

z (ξλ,a), π̃−1
z (ξµ,b)

] − 1

2

[
π̃−1

z (ξλ,a), π̃−1
z (iξµ,b)

])
= i

µ−1e2iβ(η) − 1

[
ξλ,a, σ2(ξµ,b)

]
.

To arrive at the Levi form, we have to project this element onto
(
g2 ∩Ad(z−1)g1

)C.
Consequently, we only obtain a nonzero contribution if

[
ξλ,a, σ2(ξµ,b)

] ∈ Fix(τz)

holds. By the definition of a Levi basis this condition translates into the one formu-
lated in the theorem. This finishes the proof.

Remark 3.16. By Theorem 3.15 the nullspace of the Levi form of a generic orbit
coincides with ⊕

(0,a)∈̃: a �=1

uC0,a .

According to [20, Lemma 5.1] the subalgebra uC0 is a Cartan subalgebra of uC.
Since dimC uC0,1 = dimC cC coincides with the rank of g1 ∩ g2, we conclude that

the multiplicity of the eigenvalue 0 of Lz is given by rk(uC) − rk(g1 ∩ g2).

3.5. The quadratic Levi form

In this subsection we will derive explicit formulas for the quadratic Levi form of a
generic orbit Mz = (G1 × G2) · z from Theorem 3.15. For (λ, a) ∈ ̃ we define

uC[λ, a] := uCλ,a + uCσ2(λ),a + uC−λ,a−1 + uC−σ2(λ),a−1 .

Since the uC[λ, a] ⊥ uC[µ, b] with respect to the Levi formLz for
(
λ+σ2(µ),ab

)
/∈

̃(z) = {
(0, 1)

}
, the Levi form is determined by its restriction to these spaces for

which explicit formulas are given in the next proposition. We make use of the
partition  \ {0} = r ∪̇ i ∪̇ c.

Proposition 3.17. Let (λ, a) ∈ ̃ be given.

(1) For λ ∈ r we obtain

L̂z(rλξλ,a + r−λξ−λ,a−1) = −2 Im

(
rλr−λ

ae−2iλ(η) − 1

)
[ξλ,a, ξ−λ,a−1].
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(2) For λ ∈ i and a = 1 we obtain

L̂z(rλξλ,1 + r−λξ−λ,1) =
(

|rλ|2
e−2iλ(η) − 1

− |r−λ|2
e2iλ(η) − 1

)
i[ξλ,1, ξ−λ,1].

(3) For λ ∈ i and a = −1 we obtain

L̂z(rλξλ,−1 + r−λξ−λ,−1) = −
(

|rλ|2
e−2iλ(η) + 1

− |r−λ|2
e2iλ(η) + 1

)
i[ξλ,−1, ξ−λ,−1].

(4) For λ ∈ i and a �= ±1 we obtain

L̂z(rλ,aξλ,a + rλ,a−1ξλ,a−1 + r−λ,aξ−λ,a + r−λ,a−1ξ−λ,a−1)

= 2 Re

(
irλ,arλ,a−1

ae−2iλ(η) − 1
[ξλ,a, ξ−λ,a−1]

)
+ 2 Re

(
ir−λ,ar−λ,a−1

ae2iλ(η) − 1
[ξ−λ,a, ξλ,a−1]

)
.

(5) For λ ∈ c and a = 1 we obtain

L̂z
(
rλξλ,1 + sλσ2(ξλ,1) + r−λξ−λ,1 + s−λσ2(ξ−λ,1)

)
= 2 Re

((
irλs−λ

e−2iλ(η) − 1
− ir−λsλ

e2iλ(η) − 1

)
[ξλ,1, ξ−λ,1]

)
.

(6) For λ ∈ c and a = −1 we obtain

L̂z
(
rλξλ,−1 + sλσ2(ξλ,−1) + r−λξ−λ,−1 + s−λσ2(ξ−λ,−1)

)
= 2 Re

((
ir−λsλ

e2iλ(η) + 1
− irλs−λ

e−2iλ(η) + 1

)
[ξλ,−1, ξ−λ,−1]

)
.

(7) For λ ∈ c and a �= ±1 we obtain

L̂z
(
rλ,aξλ,a + sλ,aσ2(ξλ,a) + r−λ,a−1ξ−λ,a−1 + s−λ,a−1σ2(ξ−λ,a−1)

)
= 2 Re

(
irλ,as−λ,a−1

ae−2iλ(η) − 1
[ξλ,a, ξ−λ,a−1]

)
+ 2 Re

(
ir−λ,a−1sλ,a

a−1e2iλ(η) − 1
[ξ−λ,a−1, ξλ,a]

)
.

Proof. The proof is a straightforward application of Theorem 3.15. As illustration
we will prove the first assertion. If λ is a real weight, we have σ2(λ) = λ and
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therefore uC[λ, a] = uCλ,a ⊕ uC−λ,a−1 . For arbitrary numbers rλ, r−λ ∈ C we obtain

L̂z(rλξλ,a + r−λξ−λ,a−1) = |rλ|2L̂z(ξλ,a) + rλr−λLz(ξλ,a, ξ−λ,a−1)

+ rλr−λLz(ξ−λ,a−1, ξλ,a) + |r−λ|2L̂z(ξ−λ,a−1)

= 2 Re
(
rλr−λLz(ξλ,a, ξ−λ,a−1)

)
= 2 Re

(
irλr−λ

ae−2iλ(η) − 1
[ξλ,a, ξ−λ,a−1]

)
= 2 Re

(
irλr−λ

ae−2iλ(η) − 1

)
[ξλ,a, ξ−λ,a−1],

since σ2[ξλ,a, ξ−λ,a−1] = [ξλ,a, ξ−λ,a−1] for real weights λ.

3.6. Reduction to the (σ1, σ2)-irreducible case

In this subsection we will introduce the appropriate reduction method in order to
facilitate the determination of the Levi cone.

Definition 3.18. We say that uC is (σ1, σ2)-irreducible if there is no non-trivial
ideal in uC which is invariant under σ1 and σ2.

The next lemma characterizes (σ1, σ2)-irreducibility in terms of the set of
weights  = (uC, c0) where c0 = t0 ⊕ a0 is the fundamental Cartan subalge-
bra of g1 ∩ g2.

Lemma 3.19. The Lie algebra uC is (σ1, σ2)-irreducible if and only if the root
system � :=  \ {0} ⊂ (it0 ⊕ a0)

∗ is irreducible.

Proof. Let us assume that uC is (σ1, σ2)-irreducible. If the root system � is not
irreducible, there is a decomposition � = �1 ∪̇ �2 into non-empty subsystems �1,
�2 such that for all λ j ∈ � j neither of λ1 ± λ2 is a root. It follows that

uCj := uC0, j ⊕
⊕
λ∈� j

uCλ ,

where uC0, j := Span
{[uCλ , uC−λ]; λ ∈ � j

}
, is a non-trivial ideal invariant under σ1

and σ2, which contradicts the fact that uC is (σ1, σ2)-irreducible.
In order to prove the converse, let us assume that uC1 is a non-trivial ideal

in uC invariant under σ1 and σ2. Consequently, its orthogonal complement uC2
with respect to the Killing form BuC is also a non-trivial σ1- and σ2-stable ideal
and uC = uC1 ⊕ uC2 . It is not hard to see that this decomposition induces similar
decompositions of g1∩g2, c0, and hence also of the root system � which contradicts
the fact that � is irreducible.

Since the computation of the Levi form is local and the Levi form is invariant
under local biholomorphisms, it does no harm to go over to coverings. Hence, we
assume that UC is simply-connected.
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Theorem 3.20. There exists an up to re-ordering unique decomposition uC = uC1 ⊕
· · · ⊕ uCN into (σ1, σ2)-irreducible ideals. If UC is simply-connected, we have the
corresponding decomposition of UC, of the real forms G1 and G2, and of the orbits
and their (complex) tangent spaces. This decomposition of the complex tangent
space of a closed orbit is orthogonal with respect to its Levi form. Consequently,
the Levi cone is the direct product of the Levi cones of each factor.

Proof. Since uC is semi-simple, it is the direct sum of its simple ideals, and each
of these is θ -invariant. Since σ1 and σ2 are automorphisms of uC, they map simple
ideals onto simple ideals. This observation proves that uC has a unique decompo-
sition into (σ1, σ2)-irreducible ideals. Moreover, the simple ideals which appear in
one (σ1, σ2)-irreducible ideal must be all isomorphic.

Let uC = uC1 ⊕· · ·⊕uCN denote this decomposition and let UC
k be the subgroup

of UC with Lie algebra uCk . Since UC is simply-connected, we obtain

UC ∼= UC
1 × · · · × UC

N ,

and since each semi-simple normal subgroup UC
k is invariant under σ1 and σ2, we

have similar decompositions

G j ∼= (G j )1 × · · · × (G j )N

for j = 1, 2. Here, (G j )k is the fixed point set of σ j |UC
k

. It follows that the
(G1 × G2)-orbits are also direct products of their intersections with the normal
subgroups UC

k . Since the uCk are ideals, we have a corresponding decomposition
of the set of weights into strongly orthogonal subsystems. Finally, the computation
of the Levi form in Theorem 3.15 tells us that the respective parts of the complex
tangent spaces are Levi-orthogonal.

3.7. The Levi cone

In this subsection we will determine the full Levi cone of a generic (G1×G2)-orbit.
We assume that UC is simply-connected and that uC is (σ1, σ2)-irreducible.

Let z = n exp(iη) be a regular element contained in the standard Cartan subset
C := n exp(ic). Since z is regular, we have e2iλ(η) �= 1 for all (λ, 1) ∈ ̃. Hence,
we conclude λ(η) �= 0 for all (λ, 1) ∈ ̃i . The following lemma is then a direct
consequence of Proposition 3.17.

Lemma 3.21. The Levi cone Cz of the generic orbit (G1 × G2) · z is generated by

(1) ±[ξλ,a, ξ−λ,a−1] for (λ, a) ∈ ̃r ,
(2) −i[ξλ,1, ξ−λ,1] for (λ, 1) ∈ ̃i with λ(η) > 0,
(3) i[ξλ,1, ξ−λ,1] for (λ, 1) ∈ ̃i with λ(η) < 0,
(4) ±i[ξλ,−1, ξ−λ,−1] for (λ, −1) ∈ ̃i ,
(5) ± Re

([ξλ,a, ξ−λ,a−1]) and ± Im
([ξλ,a, ξ−λ,a−1]) for (λ, a) ∈ ̃i with λ �= ±1,

and
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(6) ± Re
([ξλ,a, ξ−λ,a−1]) and ± Im

([ξλ,a, ξ−λ,a−1]) for (λ, a) ∈ ̃c.

Remark 3.22. Since we have defined the real structure on cC via σ2, we obtain

Re
([ξλ,a, ξ−λ,a−1]) = [ξλ,λ, ξ−λ,a−1] + σ2

([ξλ,a, ξ−λ,a−1])
= [ξλ,a, ξ−λ,a−1] + [ξσ2(λ),λ, ξ−σ2(λ),λ−1].

The imaginary part Im
([ξλ,a, ξ−λ,a−1]) can be expressed by an analogous formula.

In order to state the main theorem we have to review some properties of real
simple Lie algebras of Hermitian type. For a more detailed exposition of these
topics we refer the reader to [12] and [24].

Recall that a simple real Lie algebra g = k ⊕ p is said to be of Hermitian type
if the center of k is non-trivial. This condition implies that a maximal torus t ⊂ k
is a Cartan subalgebra of g. Then every root α in � = �(gC, t) is imaginary, and
either gCα ⊂ kC or gCα ⊂ pC holds. In the first case we call α a compact root,
while in the second case α is said to be non-compact. We write �k and �p for the
sets of compact and non-compact roots, respectively. Since g is Hermitian, the root
system � possesses a good ordering, i.e. there is a choice of the set �+ of positive
roots such that each positive non-compact root is larger than every compact root.
This is equivalent to the fact that the set �+

p is invariant under the Weyl group
W (�k). There are two natural W (�k)-invariant cones Cmin ⊂ Cmax, where Cmin is
the closed convex cone generated by{−i

[
ξα, σ (ξα)

]; ξα ∈ gCα , α ∈ �+
p

} ⊂ t

and
Cmax := {

η ∈ t; iα(η) ≥ 0 for all α ∈ �+
p

}
.

Let C0
max be the interior of Cmax. Then the open subset G exp(iC0

max)G ⊂ GC

is closed under multiplication and hence a semi-group, called the open complex
Ol’shanskiı̆ semi-group.

Theorem 3.23. Let uC be (σ1, σ2)-irreducible and let (G1 × G2) · z be a generic
orbit where z = n exp(iη) lies in the standard Cartan subset C := n exp(ic).

(1) If the standard Cartan subspace c is non-compact, then Cz = c holds.
(2) If c is compact and if a �= 1 for some (λ, a) ∈ ̃, then we have Cz = c.
(3) If c is compact and if a = 1 for all generalized weights, then σ1 = σ2 holds and

there are the following cases.

(i) If g1 = g2 =: g is of Hermitian type and if η lies in Cmax, then the Levi cone
Cz is isomorphic to the dual of the positive Weyl chamber defined by +. In
particular, the Levi cone is pointed.

(ii) If g is of Hermitian type and η /∈ Cmax, then Cz = c.
(iii) If g is not of Hermitian type, then Cz = c.
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Remark 3.24. The reader will note that the statement of Theorem 3.23 differs also
for the case σ1 = σ2 from the corresponding [10, Theorem 5.3]. Indeed, as L. Geatti
has kindly pointed out, the formulation of the third part of [10, Theorem 5.3] is not
correct. The correct statement in Theorem 3.23 and its proof in the case σ1 = σ2
are due to an unpublished erratum written by L. Geatti.

It will turn out to be convenient to express the generators of the Levi cone in
terms of the coroots ηλ ∈ it ⊕ a. Therefore we will identify c = t ⊕ a with it ⊕ a
via the map (η1, η2) �→ (iη1, η2). By abuse of notation, we denote the image of the
Levi cone under this map again by Cz ⊂ it⊕ a. According to Lemma 2.13 we have

[ξλ,a, ξ−λ,a−1] = BuC (ξλ,a, ξ−λ,a−1)ηλ ∈ Cηλ.

Hence, we can normalize the ξλ,a such that [ξλ,a, ξ−λ,a−1] = ηλ holds for all λ ∈
+ \ i and [ξλ,a, ξ−λ,a−1] = ±ηλ holds for λ ∈ +

i depending on the sign of
BuC (ξλ,a, ξ−λ,a−1).

Remark 3.25. In the case where g1 = g2 =: g and t is a compact Cartan subalge-
bra of g, we obtain after the above normalization

[ξα, ξ−α] =
{

ηα for α ∈ �+
p

−ηα for α ∈ �+
k ,

since the real part of BuC is positive definite on p and negative definite on k.

Proof of Theorem 3.23. (1) Let c be non-compact. Since \{0} satisfies the axioms
for an abstract root system, we may choose a set � ⊂ + of simple weights. By
Lemma 3.21 we know that ±ηλ lies in Cz for λ ∈  \ i , and we have to show
that ±ηλ ∈ Cz holds for all λ ∈ . It is enough to prove this fact for all ηλ with
λ ∈ �i := � ∩ i .

If λ, µ ∈ �i with λ + µ ∈  are given, then λ + µ ∈ +
i holds. Since c is

non-compact, this observation implies that there exists an element µ ∈ � \ �i . Let
λ ∈ �i be arbitrary (if �i = ∅, the proof is finished). Since  \ {0} is irreducible
by Lemma 3.19, its Dynkin diagram is connected and hence we find a sequence
λ = λ1, . . . , λN = µ of simple roots which are adjacent in the Dynkin diagram.
Consequently, we obtain λ j + · · · + λN ∈  \ i for all 0 ≤ j ≤ N − 1. This
implies

±ηλ j +···+λN = ±(ηλ j +···+λN−1 + ηλN ) ∈ Cz

for all 0 ≤ j ≤ N − 1. Since ±ηλN lies in Cz , we conclude ±ηλ j +···+λN−1 ∈ Cz for
all j . Iterating this argument we finally arrive at ±ηλ ∈ Cz which was to be shown.

(2) Let us assume that c is compact and that there exists (λ, a) ∈ ̃ with a �= 1.
In this case we have  = i and ±ηλ ∈ Cz for all λ such that there exists a �= 1
with (λ, a) ∈ ̃. If there are two weights λ1, λ2 ∈  such that (λ j , a) ∈ ̃ implies
a = 1 for j = 1, 2 and such that λ1 + λ2 is again a weight, then we conclude from
Proposition 2.14 that

(λ1 + λ2, a) ∈ ̃ =⇒ a = 1
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holds. Consequently, each set � ⊂ + of simple roots must contain a root µ with
±ηµ ∈ Cz . Now the claim follows from the same argument as above.

(3) Let c = t be a compact Cartan subalgebra of g2 ∩ Ad(n−1)g1 such that
a = 1 holds for each extended weight (λ, a) ∈ ̃. It is enough to prove that this
assumption implies g1 = g2 since then the claim follows from [10] and Geatti’s
erratum.

The proof of g1 = g2 relies on the comparison of the weight space decompo-
sitions

uC = tC ⊕
⊕

λ∈\{0}
uCλ,1 and

(
g2 ∩ Ad(n−1)g1)

C = tC ⊕
⊕
λ∈′

uCλ,1,

where ′ denotes the set of non-zero weights λ for which uCλ,1 is contained in(
g2 ∩ Ad(n−1)g1

)C. Note that this is well-defined since dim uCλ,1 = 1 by Propo-
sition 2.14. Since the weight space decomposition is in both cases defined with
respect to t, a basis of ′ has to be a basis of  \ {0}, too. Since the root system
 \ {0} is reduced by Proposition 2.14, we conclude

uC = (
g2 ∩ Ad(n−1)g1

)C
,

and hence, that g2 ∩ Ad(n−1)g1 is a real form of uC. For dimensional reasons this
implies

g2 = g2 ∩ Ad(n−1)g1 = Ad(n−1)g1,

i.e. σ2 = Ad(n−1)σ1 Ad(n).
By the definition of a standard Cartan subset, the fundamental Cartan subalge-

bra c0 ⊂ g1 ∩ g2 has the same dimension as t. Therefore, we obtain

rk(g1 ∩ g2) = dim c0 = dim t = rk
(
g2 ∩ Ad(n−1)g1

)C = rk uC,

which implies in the same way as above that g1 ∩ g2 is a real form of uC and hence
that g1 = g2 holds.

4. Applications

4.1. The criterion of Fels and Geatti

We restate Corollary 5.6 from [10] whose proof relies on Theorem 3.4.

Theorem 4.1 (Fels, Geatti). Let Z be a complex manifold on which the Lie group
G acts by holomorphic transformations. Let the orbit Mz = G · z be a generic CR
submanifold such that Cz = Tz Mz/Hz Mz holds. Then there exists no G-invariant
Stein domain in Z which contains Mz in its boundary. Furthermore, there is no non-
constant G-invariant plurisubharmonic function which is defined in a neighborhood
of Mz.
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Theorem 4.1 gives a necessary condition for an invariant domain with a generic
orbit in its boundary to be Stein. In our situation we obtain the following result.

Theorem 4.2. Let C = n exp(ic) be a standard Cartan subset and let � be a con-
nected component of the open set G1(C ∩ UC

sr )G2. Then � does not contain any
proper (G1 × G2)-invariant Stein subdomain unless c is compact and τn has a = 1
as only eigenvalue. In this case G1 = G2 must be of Hermitian type and � is a
translate of the open Ol’shanskiı̆ semi-group in UC.

Consequently, we see that in the case G1 �= G2 there are no invariant Stein
subdomains in UC in whose boundary a generic orbit lies. The reader should note
that there are only finitely many (G1 × G2)-invariant domains whose boundaries
consist entirely of non-generic orbits.

4.2. q-pseudo-convex functions and q-completeness

In this subsection we quickly review the notions of q-pseudo-convex functions and
q-complete complex manifolds. Let � be a domain in a complex manifold Z . We
call a smooth function on � strictly q-pseudo-convex if its Levi form has at least
n − q positive eigenvalues, n := dimC �, at each point of �. Hence, a strictly
0-pseudo-convex function is the same as a strictly plurisubharmonic function. If �

admits a strictly q-pseudo-convex exhaustion function, we say that � is q-complete.
The solution of the Levi problem implies that a domain is Stein if and only if it is
0-complete. For more properties of q-complete complex spaces we refer the reader
to [1].

Remark 4.3. A standard argument of complex analysis (compare [24, Corollary
XIII.5.4] for the case q = 0 and [7] for the generalization to q > 0) shows that
a domain � in a Stein manifold Z is q-complete if and only if there exists a non-
negative strictly q-pseudo-convex function � on � with the property �(zn) → ∞
whenever zn → z ∈ ∂�.

A domain � ⊂ Z with smooth boundary is called Levi–q-convex, if the bound-
ary ∂� can locally be defined by a function whose Levi form has at most q negative
eigenvalues when restricted to the complex tangent space at any point of ∂�.

By a theorem of Docquier and Grauert [8] a domain � with smooth boundary
in a Stein manifold Z is Stein if and only if it is Levi–0-convex. In [9] this result is
generalized to arbitrary q.

Theorem 4.4 (Oka, Docquier-Grauert, Eastwood-Suria). Let Z be a Stein man-
ifold and let � ⊂ Z be a domain with smooth boundary. Then � is strictly q-
complete if and only if � is Levi–q-convex.

4.3. The rank one case

If the closed orbit Mz = (G1×G2)·z is a hypersurface in UC, its intrinsic Levi form
coincides with the classical Levi form of that hypersurface, and hence the signature
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of L̂z is defined. According to Theorem 4.4 this signature encodes information
about complex-analytic properties of the domains bounded by Mz . In this subsec-
tion we will use Matsuki’s classification of pairs of involutive automorphisms of
simply-connected compact Lie groups in order to classify the triples (UC, G1, G2)

where UC is simply-connected and the generic (G1 × G2)-orbit is a hypersurface.
Moreover, we will determine the signature of the Levi form of each generic hyper-
surface orbit.

In [20] pairs of involutive automorphisms of simply-connected semi-simple
compact Lie groups are classified under the following notion of equivalence.

Definition 4.5. Let U be a simply-connected semi-simple compact Lie group. Two
pairs of involutive automorphisms (σ1, σ2) and (σ ′

1, σ
′
2) are called equivalent if there

exist an automorphism ϕ ∈ Aut(U ) and an element u ∈ U such that

σ ′
1 = ϕσ1ϕ

−1 and σ ′
2 = Int(u)ϕσ2ϕ

−1 Int(u)−1

hold.

Since in our case the involutive automorphisms σ1, σ2 : UC → UC commute
with θ and are anti-holomorphic, they are completely determined by their restric-
tions to U . Therefore, we may apply the classification result from [20].

Theorem 4.6 (Matsuki). Let UC be simply-connected. If the generic (G1 × G2)-
orbit is a hypersurface in UC, then UC is of the form

UC = S × · · · × S︸ ︷︷ ︸
k times

,

where S is a θ -stable normal subgroup of UC either isomorphic to SL(2,C) or
SL(3,C). Let σ and τ be anti-holomorphic involutive automorphisms of S com-
muting with θ |S. If k is odd, then we have

σ1(g1, . . . , gk) = (
σ(g1), θ(g3), θ(g2), . . . , θ(gk), θ(gk−1)

)
σ2(g1, . . . , gk) = (

θ(g2), θ(g1), . . . , θ(gk−1), θ(gk−2), τ (gk)
)
,

and if k is even, then

σ1(g1, . . . , gk) = (
σ(g1), θ(g3), θ(g2), . . . , θ(gk−1), θ(gk−2), τ (gk)

)
σ2(g1, . . . , gk) = (

θ(g2), θ(g1), . . . , θ(gk), θ(gk−1)
)

holds. If S = SL(2,C), then the pair (σ, τ ) is equivalent to one of
{
(σ1,1, σ1,1),

(σ1,1, θ), (θ, θ)
}
, where σ1,1 is the involution defining the non-compact real form

SU(1, 1) of SL(2,C). If S = SL(3,C), then the only possibility for (σ, τ ) up to

equivalence is
(
σ(g), τ (g)

) = (
g, I2,1θ(g)I2,1

)
with I2,1 :=

( 1 0 0
0 1 0
0 0 −1

)
.
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Proof. Since the semi-simple complex Lie group UC is assumed to be simply-
connected, we can identify the automorphism group Aut(UC) with Aut(uC). By
[20, Proposition 2.2] there exists a θ -invariant decomposition

uC = uC1 ⊕ · · · ⊕ uCN

into σ1- and σ2-invariant semi-simple ideals uCj . Moreover, each uCj is of the form

uCj = s j ⊕ · · · ⊕ s j︸ ︷︷ ︸
k j times

,

where s j is a θ -stable simple ideal in uCj , such that the restriction of the pair (σ1, σ2)

(or (σ2, σ1)) to uCj is equivalent to one of the following three types:

(1) The number k j is even and

σ1(ξ1, . . . , ξk) = (
ϕ(ξk), θ(ξ3), θ(ξ2), . . . , θ(ξk−1), θ(ξk−2), ϕ

−1(ξ1)
)

σ2(ξ1, . . . , ξk) = (
θ(ξ2), θ(ξ1), . . . , θ(ξk), θ(ξk−1)

)
,

for some C-anti-linear automorphism ϕ of s j commuting with θ |s j .
(2) The number k is even and

σ1(ξ1, . . . , ξk) = (
σ(ξ1), θ(ξ3), θ(ξ2), . . . , θ(ξk−1), θ(ξk−2), τ (ξk)

)
σ2(ξ1, . . . , ξk) = (

θ(ξ2), θ(ξ1), . . . , θ(ξk), θ(ξk−1)
)
,

where σ and τ are C-anti-linear involutive automorphisms of s j commuting
with θ |s j .

(3) The number k is odd and

σ1(ξ1, . . . , ξk) = (
σ(ξ1), θ(ξ3), θ(ξ2), . . . , θ(ξk), θ(ξk−1)

)
σ2(ξ1, . . . , ξk) = (

θ(ξ2), θ(ξ1), . . . , θ(ξk−1), θ(ξk−2), τ (ξk)
)
,

where σ and τ are C-anti-linear involutive automorphisms of s j commuting
with θ |s j .

The condition that the generic (G1 × G2)-orbit is a hypersurface is equivalent to
rk(g1 ∩g2) = 1. In particular, this condition implies that uC is (σ1, σ2)-irreducible,
and we have uC = s ⊕ · · · ⊕ s (k times) for a simple complex Lie algebra s.

If uC is of the first type, one checks directly that

g1 ∩ g2 ∼= (sθϕ)R

holds. Consequently rk(g1 ∩ g2) is even and in particular larger than 1. This ex-
cludes the first type.
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Let uC be of the second or the third type. Again it is not hard to see that

g1 ∩ g2 ∼= sσ ∩ sτ

holds. It follows that the simple complex Lie algebra s contains the complex sub-
algebra (g1 ∩ g2)

C which is given as the set of fixed points of the C-linear semi-
simple automorphism στ . Hence, we have to find all pairs (s, ϕ) of simple complex
Lie algebras s and semi-simple automorphisms ϕ such that sϕ has rank 1. Using
the classification of semi-simple automorphisms of simple complex Lie algebras
(compare [27, Chapter 3.3] and the references therein) it can be shown that the only
possibilities for s are sl(2,C) and sl(3,C). Then the claim follows from [20, Propo-
sition 2.1] where the pairs of involutions on the classical Lie algebras are classified
up to equivalence.

Remark 4.7. Let UC = S × · · · × S (k times) with S = SL(2,C), and let us
consider the involutions σ1 and σ2 on UC corresponding to (σ1,1, θ) in the way
described in Theorem 4.6. In this case we see that g1 ∩ g2 =: t0 ∼= so(2,R) is one-
dimensional and compact. Hence, the fundamental Cartan subset C0 = exp(it0) is
an exact slice for the (G1 × G2)-action on UC, i.e. every (G1 × G2)-orbit intersects
C0 in exactly one point. In particular, we conclude that each element z ∈ UC is
strongly regular and that G1 × G2 acts properly on UC.

In the following let us consider a point z ∈ UC such that the orbit Mz =
(G1 ×G2) ·z is a closed hypersurface in UC. Without loss of generality we take z to
be of the form z = n exp(iη) ∈ C for some standard Cartan subset C = n exp(ic).
Because of rk(g1 ∩ g2) = 1 the Cartan subalgebra c ⊂ g1 ∩ g2 is one-dimensional
and hence either c = t is a maximal torus in k1 ∩ k2 or c = a is a maximal Abelian
subspace of p1 ∩ p2. Let

uC =
⊕

(λ,a)∈̃

uCλ,a

be the extended weight space decomposition of uC with respect to c.
Let us first assume that c = a is non-compact. In this case every weight is

real and we conclude from Theorem 3.15 that the only non-zero contributions to
the Levi form of Mz stem from the terms

Lz(ξλ,a, ξ−λ,a−1) = i

ae−2iλ(η) − 1
[ξλ,a, ξ−λ,a−1],

where λ �= 0 and ξλ,a is a non-zero element in uCλ,a with σ2(ξλ,a) = ξλ,a . Conse-
quently, the restriction of the Levi form to

uC[λ, a] = uCλ,a ⊕ uC−λ,a−1, λ ∈ +,

has with respect to the bases (ξλ,a, ξ−λ,a−1) of uC[λ, a] and [ξλ,a, ξ−λ,a−1] of a the
matrix  0

i

ae−2iλ(η) − 1

− i

a−1e2iλ(η) − 1
0

 ,
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which has the eigenvalues ± 1
|ae−2iλ(η)−1| . Hence, we obtain a pair of one positive

and one negative eigenvalue of the Levi form on uC[λ, a] for each λ ∈ +.
If c = t is compact, each weight is imaginary and we have to handle the cases

a = ±1 and a �= ±1 separately. If a = ±1, then a = a−1 and consequently

uC[λ, a] = uCλ,a ⊕ uC−λ,a, λ ∈ +,

holds. As basis of uC[λ, a] we choose (ξλ,a, ξ−λ,a) with σ2(ξλ,a) = ξ−λ,a , and as
basis of t we take i[ξλ,a, ξ−λ,a]. Then the Levi form has with respect to these bases
the matrix  1

ae−2iλ(η) − 1
0

0 − 1

ae2iλ(η) − 1

 .

If a = 1, then both eigenvalues have the same sign, and if a = −1, the eigenvalues
have different sign.

For a �= ±1 we have

uC[λ, a] = uCλ,a ⊕ uC−λ,a−1 ⊕ uC
λ,a−1 ⊕ uC−λ,a, λ ∈ +,

and take (ξλ,a, ξ−λ,a−1,ξλ,a−1,ξ−λ,a) as a basis of uC[λ, a]. Under the assumption
BuC (ξλ,a,ξ−λ,a−1)= BuC (ξλ,a−1,ξ−λ,a) we obtain i[ξλ,a, ξ−λ,a−1]= i[ξλ,a−1, ξ−λ,a]
which we take as a basis of t. With respect to these bases the restriction of the Levi
form has the matrix

0
1

ae−2iλ(η) − 1
0 0

1

a−1e−2iλ(η) − 1
0 0 0

0 0 0
1

a−1e−2iλ(η) − 1

0 0
1

ae−2iλ(η) − 1
0


,

whose eigenvalues are given by ± 1
|ae−2iλ(η)−1| and ± 1

|a−1e−2iλ(η)−1| .

We summarize these results in the following

Theorem 4.8. If c = a is non-compact, then each generic orbit Mz with z ∈
n exp(ia) is Levi–q-convex with

q = #+.

If c = t is compact, let us choose an ordering on the set of weights such that
λ(η) < 0 for all λ ∈ + and z = n exp(iη). Then each generic orbit Mz with
z ∈ n exp(it) is Levi–q-convex with

q = #
{
(λ, −1) ∈ ̃; λ ∈ +} + #

{
(λ, a) ∈ ̃; λ ∈ +, a �= ±1

}
.
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Moreover, this numbers for q are sharp, i.e. Mz is not Levi–q ′-convex for any
q ′ < q.

Theorem 4.4 and Theorem 4.8 yield the following result.

Theorem 4.9. Let Mz be a closed hypersurface orbit where z ∈ C = n exp(ic) and
let � be an invariant domain with ∂� = Mz.

(1) If c = a is non-compact, then � or UC \ � is strictly q-complete with

q = #+,

and this q is optimal.
(2) If c = t is compact, then � or UC \ � is strictly q-complete with

q = #
{
(λ, −1) ∈ ̃; λ ∈ +} + #

{
(λ, a) ∈ ̃; λ ∈ +, a �= ±1

}
and this q is optimal.

4.4. The Levi form of invariant functions and q-complete domains

Let us assume in this subsection that the intersection g1 ∩ g2 has arbitrary rank
and contains a compact Cartan subalgebra t. For z ∈ exp(it), by Matsuki’s result
a generic orbit Mz = (G1 × G2) · z intersects the corresponding standard Cartan
subset C = exp(it) in an orbit of the group WK1×K2(C).

Remark 4.10. It can be shown that there exists a group isomorphism from

W := WK1∩K2(t) := NK1∩K2(t)/ZK1∩K2(t)

onto WK1×K2(C) such that the diffeomorphism t → C , η �→ exp(iη), intertwines
the W -action on t with the WK1×K2(C)-action on C modulo this isomorphism [21].

We call a non-zero weight λ ∈  compact, if (λ, 1) ∈ ̃ = ̃(uC, t) and if
λ
([ξλ,1, σ2(ξλ,1)]

)
< 0 for some ξλ,1 ∈ uCλ,1, and non-compact otherwise.

Remark 4.11. Let (λ, 1) ∈ ̃ be given. Since t is compact, the C-linear involution
σ2θ stabilizes uCλ,1. Since this space is one-dimensional, it follows that σ2θ = ± id

holds on uCλ,1. Using the fact that after a suitable normalization λ(ηλ) = 2 for
ηλ = −[

ξλ,1, θ(ξλ,1)
]

(Proposition 2.14) we conclude that λ is compact if and only
if σ2 = θ holds on uCλ,1 ⊕ uC−λ,1. Let sλ = Cηλ ⊕ uCλ,1 ⊕ uC−λ,1

∼= sl(2,C). If λ is
compact, we have sλ ∩g2 ∼= su(2), while this intersection is isomorphic to su(1, 1)

for non-compact λ.

Let us assume that there exists a good ordering + on the set of non-zero
weights, i.e. that that each positive non-compact weight is larger than every compact
weight. This implies that the convex cone

Cmax := {
η ∈ t; iλ(η) ≥ 0 for all non-compact λ ∈ +} ⊂ t

is W -invariant. Let � := G1 exp(iC0
max)G2, where C0

max is the interior of Cmax.
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Example 4.12. A sufficient condition for the existence of � is that the intersection
g1 ∩ g2 is of Hermitian type.

Lemma 4.13. The group G1 × G2 acts properly on �.

Proof. Using [25, Theorems 1.2.9 and 2.3.3] we only have to show that for all z ∈ �

the isotropy (G1 ×G2)z is compact. We can assume that z lies in exp(iC0
max). Then

(G1 × G2)z is a closed compatible subgroup of UC ×UC and therefore it is enough
to prove that g2 ∩ Ad(z−1)g1 is contained in u. If z is strongly regular, then it
follows that g2 ∩ Ad(z−1)g1 = t is contained in u. Therefore we have to consider
non-regular points. By Theorem 3.6 the element z = exp(iη) ∈ exp(it) is non-
regular if and only if there is an extended weight (λ, a) �= (0, 1) with e2iλ(η) = a.
Since t is compact, we have λ(η) ∈ iR and hence a = e2iλ(η) ∈ S1 ∩ R>0 = {1},
i.e. a = 1 and λ(η) = 0. Thus for a non-regular element z = exp(iη) ∈ � only
compact weights (λ, 1) can appear in ̃(z), which implies(

g2 ∩ Ad(z−1)g1
)C ⊂ tC ⊕

⊕
(λ,1)∈̃:λ compact

uCλ,1.

Since by the above remark σ2 coincides with θ on uCλ,1 for compact λ, we conclude

that g2 ∩ Ad(z−1)g1 is contained in u which completes the proof.

It is known that the mapping R : C∞(�)G1×G2 → C∞(C0
max)

W ,

� �→ ϕ : η �→ �
(
exp(iη)

)
,

is an isomorphism (compare [11]). The inverse E := R−1 is called the extension
operator.

One would expect that the Levi form of an invariant smooth function on �

is determined by the direction tangent to the (G1 × G2)-orbits and by a direction
transversal to the orbit. The following lemma explains how the Levi form L(�)(z)
is influenced by the complex tangent space of (G1 × G2) · z = Mz .

Lemma 4.14. Let � ∈ C∞(�)G1×G2 be given. If v, w ∈ Hz Mz ⊂ Tz�, then we
have

L(�)(z)(v, w) = −dc�(z)Lz(v, w),

where Lz is the Levi form of Mz.

Proof. By definition, the Levi form of � ∈ C∞(�) at the point z ∈ � is the
Hermitian form L(�)(z) on Tz� associated to the (1, 1)-form ω := − 1

2 ddc�. We
use the formula

dω(V, W ) = V
(
ω(W )

) − W
(
ω(V )

) − ω
([V, W ])
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and extend v to a CR vector field V on Mz to compute as follows:

−ddc�(z)(v, Jzv) = −v
(
dc�(J V )

) + Jzv
(
dc�(V )

) + dc�(z)[V, J V ]
= v

(
d�(V )

) + Jzv
(
d�(J V )

) + dc�(z)[V, J V ]
= v

(
V (�)

) + Jzv
(
J V (�)

) + dc�(z)[V, J V ].
Since the vector fields V and J V are tangent to the orbit and since � is constant
along the orbit, we obtain

L(�)(z)(v, v) = − 1
2 ddc�(z)(v, Jv) = 1

2 d�(z)J [V, J V ]z = −d�(z)J L̂z(v).

Thus the claim follows from the polarization identities.

Proposition 4.15. Let z ∈ � and let Tz� = TzUC be identified with

uC =
⊕

(λ,a)∈̃

uCλ,a (4.1)

via (�z)∗. Let ϕ ∈ C∞(C0
max)

W be given and let � := E(ϕ) be its extension to
a smooth (G1 × G2)-invariant function on �. Then the decomposition (4.1) is
orthogonal with respect to the Levi form L(�)(z).

Proof. First we assume that z ∈ � ∩ UC
sr holds. In view of Lemma 4.14 it is

enough to show that tC and Hz Mz ∼= ⊕
(λ,a) �=(0,1) u

C
λ,a are orthogonal with respect

to L(�)(z). Thus let v ∈ t and w ∈ uCλ,a be given. Since Jv and w are tangent to
Mz = (G1 × G2) · z, there are elements η, ξ ∈ qz ⊂ g1 ⊕ g2 such that Jv = η�(z)
and w = ξ�(z) hold, where η� and ξ� are the corresponding vector fields on
�. Using the same arguments as in the proof of Lemma 4.14 together with the
invariance of � we obtain

L(�)(z)(v, w) = dc�(z)[η�, ξ�](z) − idc�(z)[η�, ξ�](z).
Since [η�, ξ�](z) = [η, ξ ]�(z) ∈ Hz Mz , the invariance of � implies

dc�(z)[η�, ξ�](z) = 0,

which was to be shown.
Finally, if z ∈ � is not contained in UC

sr , we can still compute the Levi form
separately on each uC[λ, a] which appears in the tangent space of (G1 × G2) · z
because L(�)(z) depends continuously on z.

We will apply Proposition 4.15 in order to establish existence of a strictly q-
pseudo-convex exhaustion function on �. The following theorem extends Neeb’s
result on open complex Ol’shanskiı̆ semi-groups to the case G1 �= G2.
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Theorem 4.16. The domain � is q-complete for

n − q = rk(g1 ∩ g2) + #
{
(λ, a) ∈ ̃; a = 1

}
.

Proof. In the first step we decompose the convex cone Cmax into its maximal lin-
ear subspace and a pointed convex cone. More precisely, let H(Cmax) := Cmax ∩
(−Cmax) be the maximal linear subspace of Cmax; since Cmax is polyhedral, ele-
mentary considerations show that we can write Cmax as Cmax = C̃max ⊕ H(Cmax)

where C̃max is a W -invariant pointed convex cone in a W -invariant complement of
H(Cmax) in t (see for example [15], Remark 1.25).

Let ψ ∈ C∞(
H(Cmax)

)W be a strictly convex positive exhaustion function
and let χ be the characteristic function of C̃max (see e.g. [24], Chapter V.5, for
the definition). We need the following properties of χ which are proven in [24,
Theorem V.5.4]:

(i) χ is positive, strictly convex and analytic on C̃0
max;

(ii) χ is W -invariant (since |det w| = 1 for all w ∈ W );
(iii) if xn → x ∈ ∂C̃max, then χ(xn) → ∞;
(iv) the mapping C0

max →(C∗
max)

0, x �→−d(log χ)(x), is bijective; by [22, Lemma
I.11] this means that the function log χ (and hence χ ) is Cmax-decreasing.

Combining the functions χ and ψ we obtain the function

ϕ : C0
max → R>0, ϕ(x + y) = χ(x) + ψ(y)

(
x ∈ C̃0

max, y ∈ H(Cmax)
)
.

We conclude that ϕ is a smooth strictly convex function with ϕ(xn) → ∞ whenever
xn → x ∈ ∂Cmax.

Let � := E(ϕ) be the corresponding smooth (G1 × G2)-invariant function in
�. Since G1 × G2 acts by holomorphic transformations, it is sufficient to com-
pute the Levi form of � at points z = exp(iη) ∈ exp(iC0

max) where η ∈ C0
max.

Due to Proposition 4.15 we may compute the Levi form L(�)(z) on each uC[λ, a]
separately where again we identify Tz� with uC.

Since ϕ is strictly convex, its extension � is strictly plurisubharmonic on � ∩
exp(tC). Hence, we obtain for every z ∈ � at least dim t = rk(g1 ∩ g2) positive
eigenvalues of L(�)(z).

Next, we consider generalized weights of the form (λ, 1) ∈ ̃. We have
uC[λ, 1] = uCλ,1 ⊕ uC−λ,1 and set sλ := Cηλ ⊕ uC[λ, 1] ∼= sl(2,C). Moreover,
we write η = ηλ + (η − ηλ) and consequently have z = exp

(
i(η − ηλ)

)
exp(ηλ).

Since left multiplication with exp
(
i(η − ηλ)

)
is holomorphic, we can reduce the

computation of L(�)(z) to the case of functions on Sλ
∼= SL(2,C) which are in-

variant under SU(2) × SU(2) (when λ is compact) or to functions on the open
Ol’shanskiı̆ semi-group in SL(2,C) invariant under SU(1, 1) × SU(1, 1) (when λ

is non-compact).
We will show by direct computations that L(�)(z) is positive on each uC[λ, 1].

To do this we start with the case that λ is compact. As remarked above, we can
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reduce the computations to the case that UC = Sλ = SL(2,C) and G1 × G2 =
SU(2) × SU(2). In this case

t :=
{
ηt :=

(
i t 0
0 −i t

)
; t ∈ R

}
is a maximal torus in su(2), the set of roots is given by � = {±α} where α(ηt ) =
2i t , and uCα = C

(
0 1
0 0

)
. The Weyl group of t acts by the reflection ηt �→ η−t =

−ηt . We may assume that the base point z0 of the (G1 × G2)-orbit is of the form
z0 = exp(iηt0) with t0 > 0. Next, we describe the intrinsic Levi form Lz0 on
uC[α] = uCα ⊕ uC−α . By Theorem 3.15 we have uCα ⊥ uC−α with respect to Lz0 and

Lz0(ξα, ξα) = i

e−2iα(ηt0 ) − 1

[
ξα, θ(ξα)

] = − 1

e4t0 − 1
iηα ∈ t as well as

Lz0(ξ−α, ξ−α) = i

e2iα(ηt0 ) − 1

[
θ(ξα), ξα

] = 1

e−4t0 − 1
iηα ∈ t,

where ξα = (
0 1
0 0

)
and ξ−α = θ(ξα) hold. In particular we have iηα = (

i 0
0 −i

)
.

Since t0 is positive, the coefficients in front of iηα are in both cases negative. In the
rest of the proof we identify t with the real real line R by mapping iηα to 1. Under
the identification t ∼= R we view ϕ as a strictly convex function R → R≥0. Since
ϕ(t) = ϕ(−t) holds by W -invariance, elementary arguments show that ϕ must have
a minimum in 0 ∈ R and must be monotonely increasing on R>0 and monotonely
decreasing on R<0. This observation proves

−d�(z0)J L̂z0(ξα) = −ϕ′(t0)
−1

e4t0 − 1
> 0

and

−d�(z0)J L̂z0(ξ−α) = −ϕ′(t0)
1

e−4t0 − 1
> 0.

The fact that L(�)(z) is positive on uC[λ, 1] can be viewed as a special case of the
theorem of Azad and Loeb that W -invariant strictly convex functions on a maximal
torus in su(2) extend to strictly plurisubharmonic functions on SL(2,C).

If λ is non-compact, then we may assume that UC = Sλ = SL(2,C) and
G1 × G2 = SU(1, 1) × SU(1, 1). The subspace t = R

(
i 0
0 −i

)
is a compact Cartan

subalgebra of g = su(1, 1) which gives the same root system as above. Choosing
the ordering such that the root α is positive, we obtain

Cmax ∩ sλ =
{
ηt =

(
i t 0
0 −i t

)
; iα(ηt ) = −2t ≥ 0

}
= {

ηt ; t ≤ 0
}
.

Hence, if t0 < 0, then z0 = exp(iηt0) lies in � ∩ UC
sr . By Theorem 3.15 we have

Lz0(ξα, ξα) = i

e−2iα(ηt0 ) − 1

[
ξα, σ (ξα)

] = 1

e4t0 − 1
iηα ∈ C0

max and

Lz0(ξ−α, ξ−α) = i

e2iα(ηt0 ) − 1

[
σ(ξα), ξα

] = − 1

e−4t0 − 1
iηα ∈ C0

max,
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where ξα = (
0 1
0 0

)
and ξ−α = (

0 0
1 0

)
hold. Note that the coefficients in front of iηα

are negative. Again we identify t with R via iηα ↔ 1. Under this identification
C0

max ∩ sλ is mapped onto (−∞, 0) since iηα = (
i 0
0 −i

)
/∈ C0

max ∩ sλ holds. The
characteristic function χ restricts to a monotonely increasing strictly convex func-
tion χ̂ : (−∞, 0) → R≥0 with the property χ̂(t) → ∞ for t → 0. This implies

−d�(z0)J L̂z0(ξα) = −χ̂ ′(t0)
1

e4t0 − 1
> 0,

and

−d�(z0)J L̂z0(ξ−α) = −χ̂ ′(t0)
−1

e−4t0 − 1
> 0,

i.e. we obtain two positive eigenvalues of the Levi form L(�).
Hence, we conclude that the extension � is strictly q-pseudo-convex for

n − q = dim tC + #
{
(λ, 1) ∈ ̃; λ compact

} + #
{
(λ, 1) ∈ ̃; λ non-compact

}
.

If zn → z ∈ ∂�, then �(zn) → ∞ holds by construction and hence we conclude
that � is q-complete for the above q.

Remark 4.17. The fact that each (λ, 1) ∈ ̃ yields positive eigenvalues for the
Levi form of � can also be deduced from [24, Corollary XIII.5.17] if g1 ∩ g2 is
of Hermitian type since we have (g1 ∩ g2)

C = tC ⊕ ⊕
(λ,1)∈̃ uCλ,1 and since the

characteristic function χ of Cmax is strictly convex and Cmax-decreasing.
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