Suppose that
@article{ASNSP_2009_5_8_3_543_0, author = {Carbonaro, Andrea and Mauceri, Giancarlo and Meda, Stefano}, title = {$H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {543--582}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {3}, year = {2009}, mrnumber = {2581426}, zbl = {1180.42008}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/} }
TY - JOUR AU - Carbonaro, Andrea AU - Mauceri, Giancarlo AU - Meda, Stefano TI - $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 543 EP - 582 VL - 8 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/ LA - en ID - ASNSP_2009_5_8_3_543_0 ER -
%0 Journal Article %A Carbonaro, Andrea %A Mauceri, Giancarlo %A Meda, Stefano %T $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 543-582 %V 8 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/ %G en %F ASNSP_2009_5_8_3_543_0
Carbonaro, Andrea; Mauceri, Giancarlo; Meda, Stefano. $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 543-582. https://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/
[1]
[2] Riesz transforms on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911–957. | EuDML | Numdam | MR | Zbl
, , and ,[3] “Interpolation Spaces. An Introduction”, Grundlehren der mathematischen Wissenschaften, Bd. 223, Springer–Verlag, Berlin Heidelberg New York, 1976. | MR | Zbl
and ,[4] “Geometry of Manifolds”, Academic Press, New York, 1964. | MR
and ,[5] Boundedness of operators on Hardy spaces via atomic decomposition, Proc. Amer. Math. Soc. 133 (2005), 3535–3542. | MR | Zbl
,[6] Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math. 79 (1999), 215–240. | MR | Zbl
,[7] Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. | MR | Zbl
,[8] Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), 249–304. | MR | Zbl
and ,[9] A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15 (1982), 213–230. | EuDML | Numdam | MR | Zbl
,[10] Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–165. | EuDML | MR | Zbl
,
[11]
[12] “Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives”, Cambridge Tracts in Mathematics, Vol. 145, Cambridge University Press, Cambridge, 2001. | MR | Zbl
,[13] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15–53. | MR | Zbl
, and ,
[14] A
[15] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. | MR | Zbl
and ,
[16] Riesz transforms for
[17] Interpolation of analytic families of operators, Studia Math. 79 (1984), 61–71. | EuDML | MR | Zbl
and ,[18] Morceaux de graphes lipschitziens et intégrales singuliéres sur une surface, Rev. Mat. Iberoamericana 4 (1989), 73–114. | EuDML | MR | Zbl
,
[19] New function spaces of
[20] Duality of Hardy and
[21] “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. | MR | Zbl
and ,[22] Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. | MR | Zbl
,
[23]
[24] A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27–42. | MR | Zbl
,[25] Curvature, diameter and Betti numbers, Comment. Math Helv. 56 (1981), 179–195. | EuDML | MR | Zbl
,[26] Sur les transformations de Riesz pour le semigroupe d’Ornstein–Uhlenbeck, C. R. Acad. Sci. Paris Sci. Sér. I Math. 303 (1986), 967–970. | MR | Zbl
,[27] “Sobolev Spaces on Riemannian Manifolds”, Lecture Notes in Mathematics, Vol. 1635, Springer-Verlag, Berlin, 1996. | MR | Zbl
,
[28] Estimates for translation invariant operators in
[29] Fourier integral operators on noncompact symmetric spaces of real rank one, J. Funct. Anal. 174 (2000), 274–300. | MR | Zbl
,[30] On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. | MR | Zbl
and ,[31] A simple analytic proof of an inequality of P. Buser, Proc. Amer. Math. Soc. 121 (1994), 951–959. | MR | Zbl
,[32] Trudinger inequalities without derivatives, Trans. Amer. Math. Soc. 354 (2002), 1997–2002. | MR | Zbl
and ,[33] “Interpolation Theorems on Generalized Hardy Spaces”, Ph. D. thesis, Washington University, 1974. | MR
,[34] BMO for nondoubling measures, Duke Math. J. 102 (2000), 533–565. | MR | Zbl
, , and ,
[35]
[36] On the
[37] Heat Semigroup and Functions of Bounded Variation on Riemannian Manifolds, J. Reine Angew. Math. 613 (2007), 99–120. | MR | Zbl
, , and ,
[38] Nazarov, Treil and Volberg, The
[39]
[40] “Aspects of Sobolev-type Inequalities”, London Math. Soc. Lecture Note Series, Vol. 289, Cambridge University Press, 2002. | MR | Zbl
,[41] “Topics in Harmonic Analysis Related to the Littlewood–Paley Theory”, Annals of Math. Studies, Vol. 63, Princeton N.J., 1970. | MR | Zbl
,[42] “Harmonic Analysis. Real variable Methods, Orthogonality and Oscillatory Integrals”, Princeton Math. Series, Vol. 43, Princeton N.J., 1993. | Zbl
,
[43]
[44] BMO,
[45] “Real Variable Methods in Harmonic Analysis”, Pure and Applied Mathematics, Vol. 123, Academic Press, 1986. | MR | Zbl
,
[46] On the
[47] A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. (2008), DOI 10.1007/s00365-008-9015-1 | MR
and ,