H1 and BMO for certain locally doubling metric measure spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 543-582.

Suppose that (M,ρ,μ) is a metric measure space, which possesses two “geometric” properties, called “isoperimetric” property and approximate midpoint property, and that the measure μ is locally doubling. The isoperimetric property implies that the volume of balls grows at least exponentially with the radius. Hence the measure μ is not globally doubling. In this paper we define an atomic Hardy space H1(μ), where atoms are supported only on “small balls”, and a corresponding space BMO(μ) of functions of “bounded mean oscillation”, where the control is only on the oscillation over small balls. We prove that BMO(μ) is the dual of H1(μ) and that an inequality of John–Nirenberg type on small balls holds for functions in BMO(μ). Furthermore, we show that the Lp(μ) spaces are intermediate spaces between H1(μ) and BMO(μ), and we develop a theory of singular integral operators acting on function spaces on M. Finally, we show that our theory is strong enough to give H1(μ)-L1(μ) and L(μ)-BMO(μ) estimates for various interesting operators on Riemannian manifolds and symmetric spaces which are unbounded on L1(μ) and on L(μ).

Classification : 42B20, 42B30, 46B70, 58C99
Carbonaro, Andrea 1 ; Mauceri, Giancarlo 1 ; Meda, Stefano 2

1 Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italia
2 Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italia
@article{ASNSP_2009_5_8_3_543_0,
     author = {Carbonaro, Andrea and Mauceri, Giancarlo and Meda, Stefano},
     title = {$H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {543--582},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {3},
     year = {2009},
     mrnumber = {2581426},
     zbl = {1180.42008},
     language = {en},
     url = {https://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/}
}
TY  - JOUR
AU  - Carbonaro, Andrea
AU  - Mauceri, Giancarlo
AU  - Meda, Stefano
TI  - $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2009
SP  - 543
EP  - 582
VL  - 8
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - https://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/
LA  - en
ID  - ASNSP_2009_5_8_3_543_0
ER  - 
%0 Journal Article
%A Carbonaro, Andrea
%A Mauceri, Giancarlo
%A Meda, Stefano
%T $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 543-582
%V 8
%N 3
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/
%G en
%F ASNSP_2009_5_8_3_543_0
Carbonaro, Andrea; Mauceri, Giancarlo; Meda, Stefano. $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 543-582. https://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/

[1] J.-Ph. Anker, Lp Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. 132 (1990), 597–628. | MR | Zbl

[2] P. Auscher, T. Coulhon, X.T. Duong and S. Hofmann, Riesz transforms on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911–957. | EuDML | Numdam | MR | Zbl

[3] J. Bergh and J. Löfström, “Interpolation Spaces. An Introduction”, Grundlehren der mathematischen Wissenschaften, Bd. 223, Springer–Verlag, Berlin Heidelberg New York, 1976. | MR | Zbl

[4] R. L. Bishop and R. Crittenden, “Geometry of Manifolds”, Academic Press, New York, 1964. | MR

[5] M. Bownik, Boundedness of operators on Hardy spaces via atomic decomposition, Proc. Amer. Math. Soc. 133 (2005), 3535–3542. | MR | Zbl

[6] S. M. Buckley, Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math. 79 (1999), 215–240. | MR | Zbl

[7] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. | MR | Zbl

[8] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), 249–304. | MR | Zbl

[9] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15 (1982), 213–230. | EuDML | Numdam | MR | Zbl

[10] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–165. | EuDML | MR | Zbl

[11] A. Carbonaro, G. Mauceri and S. Meda, H1 and BMO for certain locally doubling metric measure spaces of finite measure, to appear in Colloq. Math. | Zbl

[12] I. Chavel, “Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives”, Cambridge Tracts in Mathematics, Vol. 145, Cambridge University Press, Cambridge, 2001. | MR | Zbl

[13] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15–53. | MR | Zbl

[14] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 61 (1990), 601–628. | EuDML | MR | Zbl

[15] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. | MR | Zbl

[16] T. Coulhon and X. T. Duong, Riesz transforms for 1<p2, Trans. Amer. Math. Soc. 351 (1999), 1151–1169. | MR | Zbl

[17] M. Cwickel and S. Janson, Interpolation of analytic families of operators, Studia Math. 79 (1984), 61–71. | EuDML | MR | Zbl

[18] G. David, Morceaux de graphes lipschitziens et intégrales singuliéres sur une surface, Rev. Mat. Iberoamericana 4 (1989), 73–114. | EuDML | MR | Zbl

[19] X.T. Duong and L.X. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), 1375-1420. | MR | Zbl

[20] X.T. Duong and L.X. Yan, Duality of Hardy and BMO spaces associated inequality, interpolation, and applications th operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943–973. | MR | Zbl

[21] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. | MR | Zbl

[22] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. | MR | Zbl

[23] C. Fefferman and E.M. Stein, Hp spaces of several variables, Acta Math. 87 (1972), 137–193. | MR | Zbl

[24] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27–42. | MR | Zbl

[25] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math Helv. 56 (1981), 179–195. | EuDML | MR | Zbl

[26] R. F. Gundy, Sur les transformations de Riesz pour le semigroupe d’Ornstein–Uhlenbeck, C. R. Acad. Sci. Paris Sci. Sér. I Math. 303 (1986), 967–970. | MR | Zbl

[27] E. Hebey, “Sobolev Spaces on Riemannian Manifolds”, Lecture Notes in Mathematics, Vol. 1635, Springer-Verlag, Berlin, 1996. | MR | Zbl

[28] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960), 93–140. | MR | Zbl

[29] A. D. Ionescu, Fourier integral operators on noncompact symmetric spaces of real rank one, J. Funct. Anal. 174 (2000), 274–300. | MR | Zbl

[30] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. | MR | Zbl

[31] M. Ledoux, A simple analytic proof of an inequality of P. Buser, Proc. Amer. Math. Soc. 121 (1994), 951–959. | MR | Zbl

[32] P. Macmanus and C. Pérez, Trudinger inequalities without derivatives, Trans. Amer. Math. Soc. 354 (2002), 1997–2002. | MR | Zbl

[33] R. Macías, “Interpolation Theorems on Generalized Hardy Spaces”, Ph. D. thesis, Washington University, 1974. | MR

[34] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures, Duke Math. J. 102 (2000), 533–565. | MR | Zbl

[35] G. Mauceri and S. Meda, H1 and BMO for the Ornstein–Uhlenbeck operator, J. Funct. Anal. 252 (2007), 278–313. | MR | Zbl

[36] S. Meda, P. Sjögren and M. Vallarino, On the H1-L1 boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), 2921–2931. | MR | Zbl

[37] M. Miranda Jr., D. Pallara, F. Paronetto and M. Preunkert, Heat Semigroup and Functions of Bounded Variation on Riemannian Manifolds, J. Reine Angew. Math. 613 (2007), 99–120. | MR | Zbl

[38] Nazarov, Treil and Volberg, The Tb-theorem on non-homogeneous spaces, Acta Math. 190 (2003), 151–239. | MR

[39] E. Russ, H1L1 boundedness of Riesz transforms on Riemannian manifolds and on graphs, Potential Anal. 14 (2001), 301–330. | MR | Zbl

[40] L. Saloff-Coste, “Aspects of Sobolev-type Inequalities”, London Math. Soc. Lecture Note Series, Vol. 289, Cambridge University Press, 2002. | MR | Zbl

[41] E. M. Stein, “Topics in Harmonic Analysis Related to the Littlewood–Paley Theory”, Annals of Math. Studies, Vol. 63, Princeton N.J., 1970. | MR | Zbl

[42] E. M. Stein, “Harmonic Analysis. Real variable Methods, Orthogonality and Oscillatory Integrals”, Princeton Math. Series, Vol. 43, Princeton N.J., 1993. | Zbl

[43] M. E. Taylor, Lp-estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773–793. | MR | Zbl

[44] X. Tolsa, BMO, H1, and Calderón-Zygmund operators for non doubling measures, Math. Ann. 319 (2001), 89–149. | MR | Zbl

[45] A. Torchinsky, “Real Variable Methods in Harmonic Analysis”, Pure and Applied Mathematics, Vol. 123, Academic Press, 1986. | MR | Zbl

[46] J. Verdera, On the T(1)-theorem for the Cauchy integral, Ark. Mat. 38 (2000), 183–199. | MR | Zbl

[47] D. Yang and Y. Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. (2008), DOI 10.1007/s00365-008-9015-1 | MR