We establish various estimates for the Schrödinger operator on Riemannian manifolds satisfying the doubling property and a Poincaré inequality, where is the Laplace-Beltrami operator and belongs to a reverse Hölder class. At the end of this paper we apply our result to Lie groups with polynomial growth.
@article{ASNSP_2009_5_8_4_725_0, author = {Badr, Nadine and Ben Ali, Besma}, title = {$L^{p}$ {Boundedness} of the {Riesz} transform related to {Schr\"odinger} operators on a manifold}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {725--765}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {4}, year = {2009}, mrnumber = {2647910}, zbl = {1200.35060}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2009_5_8_4_725_0/} }
TY - JOUR AU - Badr, Nadine AU - Ben Ali, Besma TI - $L^{p}$ Boundedness of the Riesz transform related to Schrödinger operators on a manifold JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 725 EP - 765 VL - 8 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2009_5_8_4_725_0/ LA - en ID - ASNSP_2009_5_8_4_725_0 ER -
%0 Journal Article %A Badr, Nadine %A Ben Ali, Besma %T $L^{p}$ Boundedness of the Riesz transform related to Schrödinger operators on a manifold %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 725-765 %V 8 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2009_5_8_4_725_0/ %G en %F ASNSP_2009_5_8_4_725_0
Badr, Nadine; Ben Ali, Besma. $L^{p}$ Boundedness of the Riesz transform related to Schrödinger operators on a manifold. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 4, pp. 725-765. http://archive.numdam.org/item/ASNSP_2009_5_8_4_725_0/
[1] An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math. 44 (1992), 691–727. | MR | Zbl
,[2] On estimates for square roots of second order elliptic operators on , Publ. Mat. 48 (2004), 159–186. | EuDML | MR | Zbl
,[3] Maximal inequalities and Riesz transform estimates on spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier (Grenoble) 57 (2007), 1975–2013. | EuDML | Numdam | MR | Zbl
and ,[4] Riesz transform on manifolds and Poincaré inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4 (2005), 531–555. | EuDML | Numdam | MR | Zbl
and ,[5] Boundedness of Banach space valued singular integral operators and applications to Hardy spaces, unpublished manuscript.
, and ,[6] Weighted norm inequalities, off diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators, J. Funct. Anal. 241 (2006), 703–746. | MR | Zbl
and ,[7] Weighted norm inequalities, off diagonal estimates and elliptic operators. Part I: General operator theory and weights, Adv. Math. 212 (2007), 225–276. | MR | Zbl
and ,[8] Real interpolation of Sobolev spaces associated to a weight, Potential Anal. 3 (2009), 345–374. | MR | Zbl
,[9] Etude des transformations de Riesz dans les variétés Riemanniennes à courbure de Ricci minorée, In: “Séminaire de Probabilités”, XXI, Lecture Notes in Math., Vol. 1247, Springer, Berlin, 1987, 137–172. | EuDML | Numdam | MR | Zbl
,[10] Vector fields and Ricci curvature, Bull. Amer. Mat. Soc. 52 (1946), 776–797. | MR | Zbl
,[11] Essential self-adjointness of Schrödinger-type operators on manifolds, Russ. Math. Surveys 57 (2002), 641–692. | MR | Zbl
, and ,[12] Subelliptic Poincaré inequalities: The case , Publ. Mat. 39 (1995), 313–334. | EuDML | MR | Zbl
, and ,[13] A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) (1982), 213–230. | EuDML | Numdam | MR | Zbl
,[14] Parabolic Schrödinger operators, J. Math. Anal. Appl. 343 (2008), 965–974. | MR | Zbl
, and ,[15] “Riemannian Geometry – A Modern Introduction”, Cambridge University Press, 1993. | MR | Zbl
,[16] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemmanian manifolds, J. Differential Geom. 17 (1982), 15–33. | MR
, and ,[17] A note on Riesz potentials and the first eigenvalue, Proc. Amer. Math. Soc. 117 (1993), 683–685. | MR | Zbl
[18] “Analyse Harmonique sur Certains Espaces Homogènes”, Lecture Notes in Math., Springer, 1971. | Zbl
and ,[19] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. | MR | Zbl
and ,[20] Riesz transforms for , Trans. Amer. Math. Soc. 351 (1999), 1151–1169. | MR | Zbl
and ,[21] Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz, Arch. Math. 83 (2004), 229–242. | MR
and ,[22] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293–314. | EuDML | MR
and ,[23] “Analysis and Geometry on Groups”, Cambridge Tracts in Mathematics, 1993. | MR | Zbl
, and ,[24] Harmonic analysis on semigroups, Ann. of Math. (2) 117 (1983), 267–283. | MR | Zbl
,[25] Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana 15 (1999), 233–265. | EuDML | MR | Zbl
and ,[26] Semigroup kernels, Poisson bounds and holomorphic functional calculus, J. Funct. Anal. 142 (1996), 89–128. | MR | Zbl
and ,[27] Resolution of a semilinear equation in , Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 275–288. | MR | Zbl
and ,[28] “Weighted Norm Inequalities and Related Topics”, North Holland Math. Studies 116, North Holland, Amsterdam, 1985. | MR | Zbl
and ,[29] The heat equation on non compact Riemannian manifolds, Math. USSR. Sb 72 (1992), 47–76. | MR
,[30] Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 3 (2005), 825–890. | EuDML | Numdam | MR | Zbl
and ,[31] Inégalités maximales pour l’opérateur de Schrödinger C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 249–252. | MR | Zbl
,[32] Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I, Math. Ann. 341 (2008), 859–896. | MR | Zbl
and ,[33] Croissance polynomiale et période des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333–379. | EuDML | Numdam | MR | Zbl
,[34] Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), 1–101. | MR | Zbl
and ,[35] Une inégalité , unpublished manuscript.
and ,[36] Change of variable results for and reverse Hölder classes, Trans. Amer. Math. Soc. 328 (1991), 639–666. | Zbl
and ,[37] -theory of Schrödinger operators with a singular potential, In: “Aspects of Positivity in Function Analysis”, North-Holland Math. Stud., 1985, 63–78. | MR
,[38] A remark on Poincaré inequality on metric spaces, Math. Scand. 95 (2004), 299–304. | MR | Zbl
and ,[39] On square functions associated to sectorial operators, Bull. Soc. Math. France 132 (2004), 137–156. | EuDML | Numdam | MR | Zbl
,[40] Ph.D thesis, 1998.
,[41] Estimations des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal. 161 (1999), 151–218. | MR
,[42] La transformée de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999), 145–238. | MR
,[43] Estimations du noyau de la chaleur sur les variétés coniques et ses applications, Bull. Sci. Math. 124 (2000), 365–384. | MR
,[44] “Lecture Notes on Geometric Analysis”, Lecture Notes series 6, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993. | MR | Zbl
,[45] Démonstration probabiliste de certaines inégalités de Littlewood-Paley, In: “Séminaire de Probabilités”, X, Lecture Notes in Math., Vol. 511, Springer-Verlag, 1976, 125–183. | Numdam | MR | Zbl
,[46] Balls and metrics defined by vector fields, Acta Math. 155 (1985), 103–147. | MR | Zbl
, and ,[47] The spectral bound and principal eigenvalues of Schrödinger operators on Riemannian manifolds, Duke Math. J. 110 (2001), 1–35. | MR | Zbl
,[48] A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 65 (1992), 27–38. | MR | Zbl
,[49] Parabolic Harnack inequality for divergence form second order differential operator, Potential Anal. 4 (1995), 429–467. | MR | Zbl
,[50] “Aspects of Sobolev-type Inequalities”, Cambridge University Press, 2002. | MR | Zbl
,[51] estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513–546. | EuDML | Numdam | MR | Zbl
,[52] Riesz transform, gaussian bounds and the method of wave equation, Math. Z. 247 (2004), 643–662. | MR | Zbl
,[53] Imaginary powers of Laplace operators, Proc. Amer. Math. Soc. 129 (2001), 1745–1754. | MR | Zbl
and ,[54] “Introduction to Fourier Analysis in Euclidean Spaces”, Princeton University Press, 1971. | Zbl
and ,[55] “Singular Integrals and Differentiability Properties of Functions”, Princeton University Press, 1970. | MR | Zbl
,[56] “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Princeton U.P, 1970. | MR | Zbl
,[57] “Weighted Hardy Spaces”, Lecture Notes in Math., Vol. 1381, Springer-Verlag, 1989. | MR | Zbl
and ,[58] Fonctions harmoniques sur les groupes de Lie, C. R. Acad. Sci. Paris, Sér. I Math., 304 (1987), 519–521. | MR | Zbl
,[59] Sobolev spaces on a Riemannian manifold and their equivalence, J. Math. Kyoto Univ. 32 (1992), 621–654. | MR | Zbl
,