We give a minoration of the dimension of the vector space spanned on a cyclotomic field by the values of -adic Hurwitz zeta function. As a corollary, we obtain the existence of irrationality values of -adic functions. The proof uses hypergeometric series and a criterion of linear independence.
@article{ASNSP_2010_5_9_1_189_0, author = {Bel, Pierre}, title = {Fonctions $L$ $ $p$-adiques et irrationalit\'e}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {189--227}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {1}, year = {2010}, mrnumber = {2668878}, zbl = {1203.11051}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2010_5_9_1_189_0/} }
TY - JOUR AU - Bel, Pierre TI - Fonctions $L$ $ $p$-adiques et irrationalité JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 189 EP - 227 VL - 9 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2010_5_9_1_189_0/ LA - en ID - ASNSP_2010_5_9_1_189_0 ER -
%0 Journal Article %A Bel, Pierre %T Fonctions $L$ $ $p$-adiques et irrationalité %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 189-227 %V 9 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2010_5_9_1_189_0/ %G en %F ASNSP_2010_5_9_1_189_0
Bel, Pierre. Fonctions $L$ $ $p$-adiques et irrationalité. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 189-227. http://archive.numdam.org/item/ASNSP_2010_5_9_1_189_0/
[1] Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math. 146 (2001), 193–207. | MR
and ,[2] Irrationality of some -adic L-values, Acta Math. Sin. (Engl. Ser.) 24 (2009), 663–686. | MR | Zbl
,[3] Irrationality of certain -adic periods for small , Int. Math. Res. Not. 20 (2005), 1235–1249. | MR | Zbl
,[4] “Number Theory”, Vol. II, Analytic and Modern Tools, Graduate Texts in Mathematics, 240, Springer, New-York, 2007. | MR
,[5] “Transcendental Numbers”, In: Encyclopaedia of Mathematical Sciences, Vol. 44, Springer, New-York, 1998. | MR
and ,[6] Linear independence of forms in polylogarithms, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 1–11. | EuDML | Numdam | MR | Zbl
,[7] Linear independence of numbers, Mosc. Univ. Math. Bull. 40 (1985), 69–74; traduction Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1 (1985), 46–54. | MR | Zbl
,[8] Simultaneous polynomial approximations of the Lerch function, Canadian J. Math. 61 (2009), 1341–1356. | MR | Zbl
,