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Existence of weak solutions for unsteady
motions of generalized Newtonian fluids

LARS DIENING, MICHAEL RŮŽIČKA AND JÖRG WOLF

Abstract. We prove the existence of weak solutions u : QT → Rn of the equa-
tions of unsteady motion of an incompressible fluid with shear-dependent viscos-
ity in a cylinder QT = � × (0, T ), where � ⊂ Rn denotes a bounded domain.
Under the assumption that the extra stress tensor S possesses a q-structure with

q > 2n
n+2 , we are able to construct a weak solution u ∈ Lq (0, T ; W 1,q

0 (�)) ∩
Cw([0, T ]; L2(�)) with div u = 0. Our approach is based on the Lipschitz trun-
cation method, which is new in this context.

Mathematics Subject Classification (2000): 76D03(primary);35D05,46,34A34
(secondary).

1. Introduction. Statement of the main result

Let � ⊂ Rn , n ≥ 2, be a bounded domain. For 0 < T < ∞ we set QT :=
�×(0, T ). The isothermal motion of a homogeneous, incompressible fluid through
� is governed by the balance equations for linear momentum and mass, which read1

ρ ∂t u + ρ div(u ⊗ u) − div S + ∇ p = ρf in QT , (1.1)

div u = 0 in QT , (1.2)

where u = (u1, . . . , un) is the velocity, p the pressure, S = (Si j )
n
i, j=1 the extra

stress tensor, f = ( f 1, . . . , f n) the external body force and ρ the constant density.
In the following we divide the equation (1.1) by the constant density ρ and relabel
S/ρ and p/ρ again as S and p, respectively. Moreover, for mathematical simplicity
we assume that f = div F, where F = (Fi j )

n
i, j=1 is a given tensor. The above system

(1.1), (1.2) has to be completed by boundary and initial conditions and by consti-
tutive assumptions for the extra stress tensor. Concerning the former we assume at

1 Here, div v := ∑
i ∂xi v

i , where ∂xi = ∂
∂xi

(i = 1, . . . , n).
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the initial time t = 0
u(0) = u0 in �, (1.3)

where u0 denotes the initial velocity, which is a given vector field with div u0 = 0.
On the boundary ∂� we assume the following condition of adherence

u = 0 on ∂� × (0, T ). (1.4)

If one assumes a linear dependence of the extra stress tensor S on the symmetric
part of the velocity gradient D = D(u) := 1

2 (∇u + ∇u	), then system (1.1)-
(1.2) is just the classical Navier–Stokes equations. However, there exists many
homogeneous, incompressible fluids that cannot be adequately described by such
a simple constitutive relation. Such fluids are usually called non-Newtonian fluids.
There are many ways in which a non–Newtonian behaviour can manifest itself and
we refer the reader to [4] and [26] for a general continuum mechanical background
and to [3, 6, 23, 44, 50], and [35] for a detailed discussion of non-Newtonian fluids.
There is a large class of non-Newtonian fluids for which the dominant departure
from a Newtonian behaviour is that in a simple shear flow the viscosity and the
shear rate are not proportional. Such fluids are called fluids with shear-dependent
viscosity or generalized Newtonian fluids and are often modeled by the constitutive
law

S = µ(DI I )D, (1.5)

where DI I = D : D is the second invariant2 of D and µ is the generalized viscosity
function. The model (1.5) includes all power-law and Carreau-type models, which
are quite popular among rheologists. Such models are used in many areas of en-
gineering sciences such as chemical engineering, colloidal mechanics, glaciology,
geology, and blood rheology (cf. [36] for a discussion of such models and further
references). Typical examples for the constitutive relation (1.5) are

S = µ0
(
δ + |D|)q−2D,

S = µ0
(
δ2 + |D|2) q−2

2 D,

(1.6)

with 1 < q < ∞, δ ≥ 0 and µ0 > 0.
Motivated by the above discussion we impose the following conditions on S.
We say that the extra stress tensor S possesses a q-structure if there exist

q ∈ (1, ∞) and δ ≥ 0, such that

(I) S : QT × Mn
sym → Mn

sym is a Carathéodory function3;

2 For two matrices A, B ∈ Rn2
by A : B we denote the sum

∑
i j Ai j Bi j .

3 Mn
sym is the vector space of all symmetric n × n matrices ξ = (ξi j )

n
i, j=1. We equip Mn

sym

with the scalar product ξ : η and the norm |ξ | := (ξ : ξ)1/2. By a · b we denote the usual scalar
product in Rn and by |a| we denote the Euclidean norm.
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Growth condition:

(II) |S(x, t, ξ)| ≤ c0 (δ + |ξ |)q−2 |ξ | + κ1(x, t) for all ξ ∈ Mn
sym, almost all

(x, t) ∈ QT (c0 > 0, κ1 ∈ Lq ′
(QT ), κ1 ≥ 0);

Coercivity:

(III) S(x, t, ξ) : ξ ≥ ν0(δ + |ξ |)q−2|ξ |2 − κ2(x, t) for all ξ ∈ Mn
sym, almost all

(x, t) ∈ QT (ν0 > 0, κ2 ∈ L1(QT ), κ2 ≥ 0);

Strict monotonicity:

(IV)

{
(S(x, t, ξ) − S(x, t, η)) : (ξ − η) > 0

∀ ξ , η ∈ Mn
sym (ξ = η), almost all (x, t) ∈ QT .

Before we introduce the notion of a weak solution of the system (1.1)-(1.4) let
us provide some notation and function spaces which will be used throughout the
paper. As usual let C∞

0 (�) denote the space of all smooth functions having compact
support in �. By W k,q(�), k ∈ N, 1 ≤ q ≤ ∞, we denote the usual Sobolev
spaces. We define W k, q

0 (�) as the closure of C∞
0 (�) in W k,q(�). We will not

distinguish between scalar-valued, vector-valued or tension-valued versions of these
function spaces. The Lebesgue measure in Rn+1 will be denoted by Ln+1(·). For
A ⊂ Rn+1 with 0 < Ln+1(A) < ∞ and g ∈ L1

loc(Rn+1) we denote by gA the mean
value of g over the set A, i.e.

vA :=
∫

A
v dX = 1

Ln+1(A)

∫
A

v dX.

Let (X, ‖ · ‖X ) be a normed space. By Lq(0, T ; X) we denote the space of all
Bochner measurable functions ϕ : (0, T ) → X , such that

‖ϕ‖Lq (0,T ;X) :=
( ∫ T

0
‖ϕ(t)‖q

X dt

) 1
q

< +∞ if 1 ≤ q < +∞,

‖ϕ‖L∞(0,T ;X) := ess sup
t∈(0,T )

‖ϕ(t)‖X < +∞ if q = +∞.

We set

Hq = Hq(�) := {ϕ ∈ C∞
0 (�) | div ϕ = 0}‖·‖Lq (�)

,

Vq = Vq(�) := {ϕ ∈ C∞
0 (�) | div ϕ = 0}‖·‖Vq

,

where

‖ϕ‖Vq := ‖D(ϕ)‖Lq (�).
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In the case that q = 2 we omit the subscript q and denote H := H2 and V := V2. It
immediately follows from our definition of W 1,q

0 (�) and [39, 18] that there exists a
positive constant γ0, such that the following Korn’s inequality holds

‖∇v‖Lq (�) ≤ γ0 ‖D(v)‖Lq (�) ∀ v ∈ W 1,q
0 (�). (1.7)

Definition 1.1. Assume that S satisfies (I) and (II) with q ∈ [ 2n
n+2 , ∞). Let F ∈

L1(QT ) and u0 ∈ H . A vector-valued function u ∈ Lq(0, T ; Vq) ∩ L∞(0, T ; H)

is called a weak solution to (1.1)-(1.4) if the following identity

−
∫

QT

u · ∂tϕ dx dt +
∫

QT

S(x, t, D(u)) : D(ϕ) dx dt

−
∫

QT

(u ⊗ u) : D(ϕ) dx dt

=
∫

QT

F : ∇ϕ dx dt +
∫

�

u0 · ϕ(0) dx

(1.8)

holds for all ϕ ∈ C∞(QT ) with div ϕ = 0 and supp(ϕ) ⊂⊂ � × [0, T )4.

Remark 1.2. By virtue of Sobolev’s embedding theorem and Hölder’s inequality
one easily verifies

Lq(0, T ; Vq) ∩ L∞(0, T ; H) ↪→ Lq n+2
n (QT ). (1.9)

The aim of the present paper is to prove the existence of a weak solution to the
system (1.1)-(1.4) for such q that div(u ⊗ u) merely belongs to the space L1(0, T ;
(W 1,∞

0 (�))∗). Our main result is the following:

Theorem 1.3 (Main theorem). Let � ⊂ Rn, n ≥ 2, be a bounded open set, and
0 < T < ∞. Assume that S satisfies (I), (II), (III), and (IV) for some q with

2n

n + 2
< q < ∞ (1.10)

and δ ≥ 0. Suppose that u0 ∈ H and F ∈ Lq ′
(QT ) are given. Then there exists a

weak solution u ∈ Lq(0, T ; Vq) ∩ Cw([0, T ]; H) to (1.1)-(1.4).

Remark 1.4.

1. The mathematical analysis of the the system (1.1)-(1.3) was initiated by La-
dyzhenskaya (cf. [25,27,28]). She proved the existence of weak solutions in the
case of Dirichlet boundary conditions (1.4) for q ≥ 1+ 2n

n+2 using the monotone
operator theory combined with compactness arguments. This weak solution is
unique if q ≥ n+2

2 and u0 ∈ H . The same results have been proved in [30] for
the extra stress tensor S depending on the full velocity gradient ∇u rather than
on D(u) only.

4 Here A ⊂⊂ B means A, B are open subsets of Rn , A is bounded and Ā ⊂ B.
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2. The special case q = 2, for which (1.1)-(1.2) are just the classical Navier-Stokes
equations, cannot be treated with the theory of monotone operators if n ≥ 3.
However, the existence of weak solutions in the case of Dirichlet boundary con-
ditions (1.4) is well known (cf. [29, 22]).

3. The existence of measure-valued solutions for the system(1.1)-(1.3) with Dirich-
let boundary conditions (1.4) was proved for q > 2n

n+2 in [41, 21] (cf. [33, 32])
using Ball’s theorem on Young measures. The existence of solutions satisfying a
variational inequality instead of (1.8) was proved for the system (1.1)-(1.3) with
Dirichlet boundary conditions (1.4) for q ≥ 2, n ≥ 2 in [8].

4. The lower bound for the existence of weak solutions of the system (1.1)-(1.3)
with space periodic boundary conditions was extended to q > 3n

n+2 by Nečas and
his collaborators (cf. [33, 5, 32]). The results have been obtained by using −�u
as a test function and deriving higher fractional differentiability in space. At the
same time this technique gives the existence of a more regular solution, namely
u ∈ L2(0, T ; W 2,2(�)) ∩ L∞(0, T ; Vq) ∩ Lq(0, T ; V qn

n−2
), ∂t u ∈ L2(QT ) for

q ≥ 1 + 2n
n+2 . This solution is unique in the class of weak solutions, provided

u0 ∈ V2. The question of the uniqueness of weak solutions for values of p
below 1 + 2n

n+2 is still an open problem, which is not adressed in the paper. Note
that the extra stress tensor S must satisfy slightly more restrictive assumptions
than (I)-(IV), namely instead of (IV) one needs that S is uniformly monotone,
i.e. ∂S(ξ)

∂ξ
: η⊗η ≥ c(1+|ξ |)q−2|η|2 holds for all ξ , η ∈ Mn

sym (cf. [45,46]). The
method was extended in [34] to Dirichlet boundary condition proving for 2 ≤
q < 3, n = 3, the existence of weak solutions and some additional regularity
properties for 9

4 ≤ q < 3, n = 3 (cf. [10, 11] for some improvements). The
special case q = 3, n = 2, 3, which corresponds to the Smagorinsky model in
turbulence, was treated in [42], proving the existence of a unique weak solution
which additionally satisfies ∂t u ∈ L2(0, T ; V2) ∩ L∞(0, T ; H), provided u0 ∈
H ∩W 2,2(�). The existence of local in time strong solutions of the system (1.1)-
(1.3) with space periodic boundary conditions was proved in [32] for q > 5

3 ,
n = 3. This result was improved in [14] to q > 7

5 , n = 3, also providing better
regularity properties of the solution. The case of Dirichlet boundary conditions
was considered in [7]. In that paper S is assumed to be uniformly monotone
with q ≥ 1. The case of small data and global in time strong solutions has been
treated in [2].

5. The lower bound for the existence of weak solutions of the system (1.1)-(1.3)
with space periodic boundary conditions was further extended to q >

2(n+1)
n+2

in [16] using L∞-test functions. The same result was obtained in [52] in the case
of Dirichlet boundary conditions using L∞-test functions and the local pressure
method.

6. The result in Theorem 1.3 is optimal in the following sense: For q < 2n
n+2 the

term ∫
QT

(u ⊗ u) : D(ϕ) dx dt, ϕ ∈ L∞(0, T ; W 1,∞
0 (�))
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is not well defined using the parabolic embedding (1.9) since q n+2
n < 2. Nev-

ertheless it is still possible to give sense to the above integral using the informa-
tion u ∈ L∞(0, T ; L2(�)) coming from the time derivative only. Moreover, for
q < 2n

n+2 the space W 1,q
0 (�) does not embed into L2(�). Thus we have that

Lq(0, T ; W 1,q
0 (�)) ↪→ Lq(0, T ; (W 1,q

0 (�)
)∗

). Consequently, there are prob-
lems to give sense to the distributional time derivative.

The paper is organized as follows. In Section 2 we use the local pressure method
to introduce the pressure for the problem (1.1), (1.2) and decompose it similar to
the procedure in [52]. However, here we use only standard results for the Stokes
system and the divergence equation. In Section 3 we establish the Lipschitz trunca-
tion method for unsteady problems. For that we use a Whitney type decomposition
to extend a function in which irregular regions have been cut off before. We also
prove that this extension belongs to the space L∞(0, T ; W 1,∞(�)) and that a cer-
tain partial integration formula with respect to time holds true. Similar results have
been proved in [24]. Here it is to the knowledge of the authors the first time that the
Lipschitz truncation method is used to prove an existence result for unsteady prob-
lems. For steady problems the Lipschitz truncation method was introduced in [1].
In Section 4 we approximate the problem (1.1), (1.2) appropriately. The approxi-
mate problem possesses weak solutions (cf. [52]) for which we justify the limiting
process using essentially the properties of the Lipschitz truncation established be-
fore. This gives a proof of the main Theorem 1.3. The steady version of the problem
(1.1), (1.2) was treated in [17, 13] with the help of the Lipschitz truncation method.

2. Pressure representation

The aim of this section is to introduce the pressure for the problem (1.1)-(1.2).
We decompose the pressure corresponding to the respective terms appearing in the
equation. This forms the basis for studying the local behaviour of the velocity and
the pressure.

Throughout this section let G ⊂ Rn be a bounded domain with ∂G ∈ C2.

Lemma 2.1. Let 1 < s < ∞. Let v∗ ∈ (W 1,s
0 (G))∗ with 〈v∗, v〉 = 0 for all

v ∈ Vs(G). Then there exists a unique p ∈ Ls(G) with pG = 0, such that

〈v∗, v〉 =
∫

G
p div v dx ∀ v ∈ W 1,s

0 (G).

Furthermore there holds

‖p‖Ls(G) ≤ c‖v∗‖
(W 1,s

0 (G))∗ . (2.1)

Proof. [19, Theorems III.3.1 and III.5.2].

Arguing similar as in [52] we will introduce the pressure.
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Theorem 2.2. Let u ∈ Cw([0, T ]; H(G)) and let Hi ∈ Lsi (0, T ; Lsi (G)),
1 < si < ∞, i = 1, 2. Suppose that

−
∫ T

0

∫
G

u · ∂tϕ dx dt =
∫ T

0

∫
G
(H1 + H2) : ∇ϕ dx dt (2.2)

holds for all ϕ ∈ C∞
0 (G ×(0, T )) with div ϕ = 0. Then there exist unique functions

pi ∈ Lsi (0, T ; Lsi (G)), i = 1, 2, and ph ∈ Cw([0, T ]; W 1,2(G)), such that

−
∫ T

0

∫
G

u · ∂tϕ dx dt =
∫ T

0

∫
G
(H1+H2) : ∇ϕ dx dt

+
∫ T

0

∫
G
(p1+ p2) div ϕ+

∫ T

0

∫
G

∇ ph · ∂tϕ dx dt

+
∫

G
u(0) · ϕ(0) dx

(2.3)

for all ϕ ∈ C∞(G × (0, T )) with supp(ϕ) ⊂⊂ G × [0, T ). In addition, we have
−�ph = 0, ph(0) = 0 and the apriori estimates

‖pi‖Lsi (G×(0,T )) ≤ ci ‖Hi‖Lsi (G×(0,T )), i = 1, 2, (2.4)

‖ph(t)‖W 1,2(G) ≤ ch ‖u(t) − u(0)‖L2(G), t ∈ [0, T ], (2.5)

with constants ci depending only on n, G, and si , i = 1, 2, and a constant ch
depending only on n and G.

Proof. Arguing as in the proof of [52, Theorem 2.6] one gets the existence of a
pressure p̃ ∈ Cw([0, T ]; L1(G)), such that∫

G
(u(t) − u(0))ψ dx =

∫
G
(H̃1(t) + H̃2(t)) : ∇ψ dx

+
∫

G
p̃(t) div ψ dx, ∀ ψ ∈ W 1,2

0 (G),

(2.6)

for all 0 ≤ t ≤ T , where

H̃i (t) =
∫ t

0
Hi (τ ) dτ, 0 < t < T, i = 1, 2.

Without loss of generality we may assume that p̃(t)G = 0 for all 0 ≤ t ≤ T . Note
that in this case the pressure p̃ is unique.

Next, let vi (t) ∈ Vsi (G), 0 ≤ t ≤ T , denote the unique solution to the Stokes
problem

−�vi (t) + ∇πi (t) = − div H̃i (t) in G,

div vi (t) = 0 in G,

vi (t) = 0 on ∂G,

(2.7)
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for i = 1, 2. According to Lemma 2.1 we have πi (t) ∈ Lsi (G) with (πi (t))G = 0.
Replacing in (2.7) t by t + h, 0 < h ≤ T − h, and taking the difference of both
equations we get in view of Lemma 2.1 the estimate

‖πi (t +h)−πi (t)‖Lsi (G) ≤c
(‖∇(vi (t +h)−vi (t))‖Lsi (G)+‖H̃i (t +h)−H̃i (t)‖Lsi (G)

)
.

From [20, Theorem 2.1], and [19, Theorem IV.6.1] we obtain

‖∇(vi (t + h) − vi (t))‖Lsi (G) ≤ c‖H̃i (t + h) − H̃i (t)‖Lsi (G),

which leads to

‖πi (t + h) − πi (t)‖si
Lsi (G)

≤ c

∥∥∥∥ ∫ t+h

t
Hi (τ ) dτ

∥∥∥∥si

Lsi (G)

.

Dividing both sides by hsi , integrating over the interval (0, T −h), applying Hölder’s
inequality and Fubini’s theorem yields∫ T −h

0

‖πi (t + h) − πi (t)‖si
Lsi (G)

hsi
dt ≤ c‖Hi‖si

Lsi (G×(0,T ))
.

This shows that πi ∈ W 1,si (0, T ; Lsi (G)). Set pi := ∂tπi . In the estimate above
passing to the limit as h → 0 implies (2.4)

Next, let vh(t) ∈ V2(G) ∩ W 2,2(G), 0 ≤ t ≤ T , denote the unique solution to
the Stokes problem

−�vh(t) + ∇ ph(t) = −u(t) + u(0) in G,

div vh(t) = 0, in G,

vh(t) = 0 on ∂G.

(2.8)

Appealing to [19, Theorem IV.6.1] one finds ph(t) ∈ W 1,2(G) with (ph(t))G = 0.
Moreover, we have

‖ph(t)‖W 1,2(G) ≤ c‖u(t) − u(0)‖L2(G).

Whence, (2.5).
Define v(t) := v1(t) + v2(t) + vh(t). From (2.6) follows

− div H̃2(t) − div H̃2(t) − u(t) + u(0) = ∇ p̃(t).

Thus, taking the sum of (2.7) and (2.8) leads to

−�v(t) + ∇(π1(t) + π2(t) + ph(t) − p̃(t)) = 0 in G,

div v(t) = 0, in G,

v(t) = 0 on ∂G,

(2.9)

which implies v = 0 and p̃(t) = π1(t) + π2(t) + ph(t). Thus, inserting ψ(·, t) =
∂tϕ(·, t), t ∈ (0, T ), into (2.6), integrating this identity over (0, T ), and applying
integration by parts yields (2.3).
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3. Parabolic Lipschitz truncation

In this section we will establish a Lipschitz truncation method for unsteady prob-
lems. The idea is to regularize a given function by cutting off regions of irregularity
and then to extend this restricted function by a Whitney type extension to the whole
domain again. In a different context this method has been used in [24]. The ba-
sis of this approach is a covering lemma of Whitney type, which is well-known
(cf. [48, Chapter 6], [12, Chapter1], [9, Theorem 3.2]). Here we use these general
results for the Euclidean space Rn+1 with an anisotropic parabolic metric. The typ-
ical points (x, t) and (y, s) of Rn+1 are shortly denoted by X and Y , respectively.
Given α > 0 we equip Rn+1 with the following anisotropic (scaled parabolic) met-
ric

dα(X, Y ) := max {|x − y|, |α−1(s − t)|1/2}, X, Y ∈ Rn+1.

For X0 ∈Rn+1 and r > 0 we define balls Qα
r (X0) := {X ∈ Rn+1 | dα(X, X0) < r},

which are equal to the cylindrical sets Br (x0) × (t0 − αr2, t0 + αr2). One easily
checks that for all X ∈ Rn+1, 0 < r < ∞ and α > 0 holds

Ln+1(Qα
r (X)) ≤ 2n+2 Ln+1(Qα

r
2
(X)).

This implies that (Rn+1, dα) satisfies the following homogeneity property:

There exists a number N̂ ∈ N, depending only on n, such that, each cylinder
Qr (X0) contains no more than N̂ points {Xi } with dα(Xi , X j ) ≥ r

4 for i = j .

Thus we have (cf. [48, Chapter 6], [12, Chapter 1], [9, 47, Theorem 3.2]) the fol-
lowing result:

Lemma 3.1 (Whitney type covering). Let E be a non-empty, open, bounded set
of Rn+1 equipped with the metric dα , α > 0. Then there exists a covering {Qα

i } =
{Qα

rα
i
(Xα

i )} of E, such that 5

(W1)
⋃

i
1
2 Qα

i = E,
(W2) for all i ∈ N we have 8Qα

i ⊂ E and 16Qα
i ∩ (Rn+1 \ E) = ∅,

(W3) if Qα
i ∩ Qα

j = ∅ then 1
2rα

j ≤ rα
i < 2 rα

j ,

(W4) each X ∈ E belongs to at most 120n+2 of the sets 4Qα
i .

We have denoted by γ Qα
i (γ > 0) the ball Qα

γ rα
i
(Xα

i ). Note that this scaling de-

pends on α.

For the readers convenience an elementary proof can be found in the Appendix
C of this paper.

5 By γ Qα
i (γ > 0) we denote the ball Qα

γ rα
i
(Xα

i ).
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Remark 3.2.

1. The covering {Qα
i } of E has the following additional properties:

(W5)
∑

j

Ln+1(4Qα
j ) ≤ 120n+2Ln+1(E).

Property (W4) of the above lemma can be written as
∑

i χQα
i

≤ 120n+2, which
implies ∑

j

Ln+1(4Qα
j ) =

∑
j

∫
E

χ4Qα
j

dX ≤ 120n+2Ln+1(E).

2. Define Ai := {
j ∈ N

∣∣ 2
3 Qα

j ∩ 2
3 Qα

i = ∅}
(i = 1, 2, . . .). Note that from

Lemma C.1 follows that #Ai ≤ 120n+2. Moreover, we have

(W6) Qα
j ⊂ 4Qα

i ⊂ E for all j ∈ Ai .

Indeed, if 2
3 Qα

j ∩ 2
3 Qα

i = ∅, then we have rα
j ≤ 2 rα

i due to (W3). For Y ∈ Qα
j

we estimate

dα(Xα
i , Y ) ≤ dα(Xα

i , X) + dα(X, Xα
j ) + dα(Xα

j , Y )

<
2

3
rα

i + 4

3
rα

i + 2rα
i = 4rα

i .

Consequently, Y ∈ 4Qα
i .

Next, let us introduce the notion of Lipschitz continuous functions with respect to
the metric dα .

Definition 3.3. For a given Lebesgue measurable set A ⊂ Rn+1 by C0,1
dα

(A) we
denote the space of all essentially bounded functions u : A → R, satisfying

Lipdα;A(u) < ∞,

where

Lipdα;A(u) := sup
X,Y∈A
X =Y

|u(X) − u(Y )|
dα(X, Y )

.

Partition of unity. Let E be a non-empty, bounded, open subset of Rn+1 equipped
with the metric dα . Let {Qα

i } denote a Whitney type covering of E from Lemma 3.1.
Let ηi ∈ C∞

0 (Rn+1) denote cut-off functions with 0 ≤ ηi ≤ 1 in Rn+1, ηi = 0 in
Rn+1 \ 2

3 Qα
i , ηi = 1 on 1

2 Qα
i , such that

Lipdα
(ηi ) + |α ∂tηi | 1

2 ≤ cn (rα
i )−1 in Rn+1 (i ∈ N). (3.1)
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Recalling the definition of Ai (cf. Remark 3.2) we have∑
j

η j =
∑
j∈Ai

η j in Qα
i ,

and
∑

j η j ∈ C∞(Rn+1). Next, we set

ψi (X) := ηi (X)∑
j

η j (X)
, X ∈ E (i ∈ N),

which is well defined, since by (W1) there holds
∑

j η j ≥ 1 in E . Clearly, we have

that ψi ∈ C∞(Rn+1) satisfy ψi ≡ 0 in Rn+1 \ 2
3 Qα

i . Moreover, we have∑
j

ψ j =
∑
j∈Ai

ψ j = 1 in Qα
i . (3.2)

Properties (W1), (W2), (W3), (W4), and (3.1) yield

|ψi (X) − ψi (Y )| ≤ |ηi (X) − ηi (Y )| +
∑
j∈Ai

|η j (X) − η j (Y )|

≤ cn

(
(rα

i )−1 +
∑
j∈Ai

(rα
j )−1

)
dα(X, Y ) (3.3)

≤ cn(1 + 2 · 120n+2)(rα
i )−1 dα(X, Y ).

Similarly, one proves that

|∂tψi | ≤ |∂tηi | +
∑
j∈Ai

|∂tη j | ≤ c2
n (1 + 4 · 120n+2) α−1 (rα

i )−2 in Rn+1.

Thus,

Lipdα
(ψi ) + |α ∂tψi | 1

2 ≤ cn(1 + 4 · 120n+2) (rα
i )−1 in Rn+1. (3.4)

Definition of the truncation operator. Let G ⊂ Rn be a non-empty, open, bounded
set and 0 < T < ∞. For a non-empty, open set E ⊂ G × (0, T ) let {Qα

i } be the
corresponding Whitney covering from Lemma 3.1 for the metric dα , and {ψi } the
associated partition of unity. For u ∈ L1

loc(G × (0, T )) we define

(T α
E u)(X) :=


u(X) if X ∈ (G × (0, T )) \ E,

∞∑
i=1

ψi (X) uQα
i

if X ∈ E .

From the construction of T α
E u it is clear that the restriction of T α

E u upon E is
smooth.

Next, we prove several properties of the operator T α
E u , which will be used in

what follows.
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Lemma 3.4. Let u ∈ L1
loc(G × (0, T )). Then there holds

|T α
E u| ≤ 10n+2 M∗(|u|) a.e. in G × (0, T ), (3.5)

where c = const > 0.

Proof. If X ∈ (G × (0, T )) \ E , then |T α
E u(X)| = |u(X)| ≤ M∗(|u|)(X) by the

properties of M∗ (cf. Appendix A). Now, let X ∈ E . Then by (W1) we have
X ∈ Qα

i for some i . By the definition of T α
E u and of the set Ai it follows that

(T α
E u)(X) =

∑
j∈Ai

uQα
j
ψ j (X).

Taking into account (W6) and (W3) implies

|T α
E u(X)| ≤

∑
j∈Ai

|uQα
j
|ψ j (X) ≤ 8n+2

∫
4Qα

i

|u| dY. (3.6)

Since 4Qα
i ⊂ Qα

5rα
i
(X) we obtain

|T α
E u(X)| ≤ 10n+2

∫
Qα

5rα
i

(X)

|u| dY ≤ 10n+2 M∗(|u|)(X).

The proof of the lemma is completed.

Lemma 3.5. For every 1 ≤ p ≤ ∞ there exists a constant c such that

‖T α
E u‖L p(G×(0,T )) ≤ c‖u‖L p(G×(0,T )) ∀ u ∈ L p(G × (0, T )), (3.7)

where c depends only n.

Proof. By the definition of T α
E and the properties (W1), (W6), and (W5) of the

Whitney covering we have∫
G×(0,T )

|(T α
E u)(X)| dX =

∫
G×(0,T )\E

|u(X)| dX +
∫

E
|(TE u)(X)| dX

≤ ‖u‖L1(G×(0,T )) +
∑

i

∫
Qα

i

|(TE u)(X)| dX

≤ ‖u‖L1(G×(0,T )) +
∑

i

∫
Qα

i

(∑
j∈Ai

∫
Q j

|u(Y )| dY

)
dX

≤ ‖u‖L1(G×(0,T )) + 2n+2
∑

i

∑
j∈Ai

∫
4Qα

i

|u(X)| dX

≤ (
1 + 240n+2) ‖u‖L1(G×(0,T )).



EXISTENCE OF WEAK SOLUTIONS 13

From the definition of T α
E follows

‖T α
E u‖L∞(G×(0,T )) ≤ ‖u‖L∞(G×(0,T )).

The assertion thus follows from interpolation also for 1 < p < ∞.

Lemma 3.6. Let u ∈ L1
loc(G × (0, T )). Then we have for all Y, Z ∈ Qα

i , i ∈ N

|T α
E u(Y ) − T α

E u(Z)| ≤ c (rα
i )−1 dα(Y, Z)

∫
4Qα

i

|u − u4Qα
i
| dX , (3.8)

where c depends only on n.

Proof. By the definition of T α
E one easily calculates for all Y, Z ∈ Qα

i

T α
E u(Y ) − T α

E u(Z) =
∑
j∈Ai

uQα
j
(ψ j (Y ) − ψ j (Z))

=
∑
j∈Ai

(uQα
j
− uQα

i
)(ψ j (Y ) − ψ j (Z)),

where we used (3.2). Using Jensen’s inequality along with property (W6) one gets

|uQα
j
− uQα

i
| ≤ 4n+2 · 2

∫
4Qα

i

|u − u4Qα
i
| dX ∀ j ∈ Ai . (3.9)

The last two estimates together with the Lipschitz bound (3.4) and the properties
(W3) and (W4) of the Whitney covering imply (3.8).

Lemma 3.7. Let u ∈ L1
loc(G × (0, T )). Then for all Y ∈ Qα

i , i ∈ N

|T α
E u(Y ) − u(Y )| ≤ c

∫
4Qα

i

|u(X) − u(Y )| dX, (3.10)

where c depends only on n.

Proof. Let Y ∈ Qα
i , i ∈ N. The definition of T α

E and (W6) yield

|T α
E u(Y ) − u(Y )| ≤

∑
j∈Ai

ψ j (Y )|uQα
j
− u(Y )| ≤ c

∫
4Qα

i

|u(X) − u(Y )| dX.

Whence (3.10).

Note that from Lemma 3.7 one obtains the following estimate for i ∈ N∫
Qα

i

|T α
E u − u| dY ≤ c

∫
4Qα

i

|u − u4Qα
i
| dY, (3.11)

where c depends only on n.
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Lemma 3.8. Let u ∈ L1
loc(G × (0, T )). Then for all Y ∈ Qα

i , i ∈ N

|∂tT α
E u(Y )| ≤ c α−1 (rα

i )−2
∫

4Qα
i

|u − u4Qα
i
| dX, (3.12)

where c depends only on n.

Proof. Let Y ∈ Qα
i , i ∈ N. By the definition of T α

E and (3.2) one gets

∂tT α
E u(Y ) =

∑
j∈Ai

∂t
(
ψ j (Y )(uQα

j
− uQα

i
)
) =

∑
j∈Ai

∂tψ j (Y )(uQα
j
− uQα

i
).

Using (3.4), (3.9), (W3) and (W6) one estimates

|∂tT α
E u(Y )| ≤ c α−1(rα

i )−2
∑
j∈Ai

|uQα
j
− uQα

i
| ≤ cα−1(rα

i )−2
∫

4Qα
i

|u − u4Qα
i
| dX.

This completes the proof of the lemma.

Now, we present the main result of this section, where we establish a formula
of integration by parts with respect to the time derivative. This result plays an
essential role in the proof of the main result given in Section 4.

Theorem 3.9. Let u ∈ L∞(0, T ; L2(G)) ∩ Lq(0, T ; W 1,q(G)) (1 < q < ∞) and
H ∈ Lσ (0, T ; Lσ (G)) (1 < σ < ∞) be such that

−
∫

G×(0,T )

u · ∂tϕ dX =
∫

G×(0,T )

H : ∇ϕ dX (3.13)

for all ϕ ∈ C∞
0 (G × (0, T )). We define

O� := {
X ∈ Rn+1

∣∣M∗(|∇u|)(X) + αM∗(|H|)(X) > �
}
, � > 0,

U1 := {
X ∈ Rn+1

∣∣M∗(|u|)(X) > 1
}
.

Let � > 0 and the open set E ⊂ Rn+1 with Ln+1(E) < ∞ be such that(
G × (0, T )

) ∩ (O� ∪ U1
) ⊂ E ⊂ G × (0, T ). (3.14)

Let K ⊂ G × (0, T ) be a compact set. Then we have:
(i) The Lipschitz truncation T α

E u belongs to C0,1
dα

(K ) with a norm depending on

n, K , �, α, ‖u‖L1(E), ‖u‖L1(K̃×(0,T ))
, where the K ⊂⊂ K̃ ⊂⊂ G. In particu-

lar, we have T α
E u, ∇T α

E u ∈ L∞(K ).



EXISTENCE OF WEAK SOLUTIONS 15

(ii) The Lipschitz truncation T α
E u satisfies the estimates

‖∇T α
E u‖L∞(K ) ≤ c

(
� + α−1 δ−n−3

α,K ‖u‖L1(E)

)
, (3.15)

‖T α
E u‖L∞(K ) ≤ c

(
1 + α−1 δ−n−2

α,K ‖u‖L1(E)

)
, (3.16)

where δα,K := dα(K , ∂(G × (0, T ))) and where the constants c depend only
on n.

(iii) The function (∂tT α
E u) · (T α

E u − u) belongs to L1(K ∩ E) and we have∥∥(∂tT α
E u) · (T α

E u − u)
∥∥

L1(K∩E)

≤ cα−1Ln+1(E)
(
� + α−1δ−n−3

α,K ‖u‖L1(E)

)2
,

(3.17)

where the constant c depends only on n.
(iv) For all ζ ∈ C∞

0 (G × (0, T )) holds the identity∫ T

0

〈
∂t u(t),(T α

E u(t))ζ(t)
〉

dt = 1

2

∫
G×(0,T )

(
|T α

E u|2−2u · T α
E u

)
∂tζ dX

+
∫

E
(∂tT α

E u) · (T α
E u − u)ζ dX,

(3.18)

where 〈·, ·〉 denotes the usual duality pairing with respect to G.

Remark 3.10.

1. We have extended the functions u and H in the previous theorem by zero out-
side of G × (0, T ).

2. If the open set E ⊂ Rn+1 with Ln+1(E) < ∞ satisfies for some � > 0(
G × (0, T )

) ∩ O� ⊂ E ⊂ G × (0, T ),

then all assertions of Theorem 3.9 remain valid with the exception of (3.16).

Before we prove Theorem 3.9 we need some preparatory results.

Lemma 3.11. Under the assumptions of Theorem 3.9 we have for all Qα
i belonging

to the Whitney covering of E such that Qα
i ∩ K = ∅∫

4Qα
i

|u − u4Qα
i
| dX ≤ c rα

i

(
� + α−1 δ−n−3

α,K ‖u‖L1(E)

)
, (3.19)

where the constant c depends only on n.

Proof. Let Qα
i ⊂ E belonging to the Whitney covering be such that Qα

i ∩ K = ∅.
From property (W2) of the Whitney covering and (3.14) follows that (i) 16Qα

i ∩(
(O�)c ∩ (U1)

c
) = ∅ or (ii) 16Qα

i ∩ (G × (0, T ))c = ∅, where the superscript c
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denotes the complement in Rn+1. In the case (i) we can use the Poincaré-type
inequality (B.2) (cf. Appendix B) to estimate∫

4Qα
i

|u − u4Qα
i
| dX ≤ crα

i

∫
4Qα

i

|∇u| + α|H| dX,

where we used that 4Qα
i ⊂ E ⊂ G × (0, T ). Since 16Qα

i ∩ (
(O�)c ∩ (U1)

c
) = ∅

there exists X̂ ∈ 16Qα
i ∩ (O�)c. Consequently, we have 4Qα

i ⊂ Q20rα
i
(X̂). From

the above inequality and the definition of the maximal operator M∗ and of the set
O� we obtain∫

4Qα
i

|u − u4Qα
i
| dX ≤ crα

i

∫
Q20rα

i
(X̂)

|∇u| + α|H| dx ≤ c rα
i �,

which proves the assertion in the case (i). Let us now consider the case (ii). Since
Qα

i ∩ K = ∅ there exists X̂ ∈ Qα
i ∩ K and thus we derive

δα,K ≤ dα(X̂ , (G × (0, T ))c)

≤ dα(X̂ , Xα
i ) + dα(Xα

i , (G × (0, T ))c)

≤ 17 rα
i .

(3.20)

This, property (W2) of the Whitney covering, and Ln+1(4Qα
i ) = ωn α (4rα

i )n+2,
where ωn is the surface measure of the (n − 1)-dimensional unit sphere, imply∫

4Qα
i

|u − u4Qα
i
| dX ≤ 2

∫
4Qα

i

|u| dX

≤ cα−1 (rα
i )−n−3 rα

i

∫
E

|u| dX

≤ cα−1 δ−n−3
α,K rα

i ‖u‖L1(E).

(3.21)

This proves the assertion in the case (ii), which finishes the proof.

Corollary 3.12. Under the assumptions of Theorem 3.9 we have for all Qα
i with

Qα
i ∩ K = ∅ that∫

Qα
i

|T α
E u − u| dX ≤ c rα

i

(
� + α−1 δ−n−3

α,K ‖u‖L1(E)

)
, (3.22)

where the constant c depends only on n.

Proof. This follows immediately from (3.11) and Lemma 3.11.
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Lemma 3.13. Let the assumptions of Theorem 3.9 be satisfied and let Qα
i belong-

ing to the Whitney covering of E be such that Qα
i ∩ K = ∅. Then we have for all

X ∈ Qα
i ∩ K

|T α
E u(X)| ≤ c

(
1 + α−1 δ−n−2

α,K ‖u‖L1(E)

)
, (3.23)

where the constant c depends only on n.

Proof. We proceed as in the proof of Lemma 3.11. Let Qα
i ∩ K = ∅. Again we

have that (i) 16Qα
i ∩ (

(O�)c ∩ (U1)
c
) = ∅ or (ii) 16Qα

i ∩ (G × (0, T ))c = ∅, where
the superscript c denotes the complement in Rn+1. In the case (i) we use that since
16Qα

i ∩ (
(O�)c ∩ (U1)

c
) = ∅ there exists X̂ ∈ 16Qα

i ∩ (U1)
c, and consequently

we have 4Qα
i ⊂ Qα

20rα
i
(X̂). From (3.6), the definition of the maximal operator M∗

and of the set U1 we obtain

|T α
E u(X)| ≤ 8n+2

∫
4Qα

i

|u| dX ≤ 40n+2
∫

Qα
20rα

i
(X̂)

|u| dX ≤ 40n+2,

which proves the assertion in the case (i). In the second case we obtain as in (3.21)

|T α
E u(X)| ≤ c

∫
4Qα

i

|u| dX

≤ cα−1 (rα
i )−n−2

∫
E

|u| dX

≤ cα−1 δ−n−2
α,K ‖u‖L1(E),

which proves the assertion in the case (ii). This finishes the proof.

For the next lemma we need a geometric property of an open set U ⊂ Rn+1.
One says that the set U is of type A with respect to the metric dα (cf. [43]), if there
exists a constant A > 0 such that for all 0 < r < diamα(U ) and all X ∈ U there
holds

Ln+1(Qα
r (X) ∩ U ) ≥ ALn+1(Qα

r (X)). (3.24)

In the next lemma we show that the set Qα
r0

(X0) is of type A with respect to dα with
a constant A = A(n).

Lemma 3.14. If for some X ∈ Rn+1, r > 0 and some Qα
i belonging to the Whitney

covering of E holds 2
3 Qα

i ∩ Qα
r (X) = ∅ and Qα

r (X) ⊂ Qα
i , then we have rα

i ≤ 6 r
and there is a constant c depending only on n such that

cLn+1(Qα
i ) ≤ Ln+1(Qα

i ∩ Qα
r (X)) ≤ Ln+1(Qα

i ).
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Proof. From the the assumptions follows that there exist X̂ ∈ 2
3 Qα

i ∩ Qα
r (X) and

Ŷ ∈ Qα
r (X) \ Qα

i . One easily sees that Qα
1
3 rα

i
(X̂) ⊂ Qα

i , which implies

rα
i

3
≤ dα(X̂ , Ŷ ) ≤ dα(X̂ , X) + dα(X, Ŷ ) ≤ 2 r,

which implies the first assertion. Moreover, we deduce from the fact that Qα
r (X) is

of type A with respect to dα and Qα
1
3 rα

i
(X̂) ⊂ Qα

i = Qα
rα

i
(Xα

i ) that

Ln+1(Qα
i ∩ Qα

r (X)) ≥ Ln+1
(
Qα

1
3 rα

i
(X̂) ∩ Qα

r (X)
)

≥ cLn+1
(
Qα

1
3 rα

i
(X̂)

)
≥ cLn+1(Qα

i ).

The upper bound is clear.

Now we are ready to prove Theorem 3.9.

Proof of Theorem 3.9.
Step 1 (Proof of (i)). We first prove assertion (i) for special compact sets K α

0 , where
K α

0 := Qα
r0

(X0) with r0 chosen such that Qα
105 r0

(X0) ⊂ G × (0, T ). Then we will
cover a general compact set K ⊂ G × (0, T ) by finitely many sets of that type
and obtain the general assertion. Note that the set K α

0 is of type A with respect
to the metric dα (cf. (3.24)). For open sets of type A the well-known theorem of
Da Prato (cf. [43, Theorem 3.1]) states that assertion (i) is equivalent to the state-

ment that T α
E u ∈ L

1,1+ 1
n+2

α (K α
0 ). Thus we have to estimate T α

E u in the norm of

L
1,1+ 1

n+2
α (K α

0 ), which is given by ‖ · ‖
L

1,1+ 1
n+2

α (K α
0 )

:= ‖ · ‖L1(K α
0 ) +| · |

L
1,1+ 1

n+2
α (K α

0 )

.

The seminorm | · |
L

1,1+ 1
n+2

α (K α
0 )

is defined through

|v|
L
1,1+ 1

n+2
α (K α

0 )

:= sup
X∈K α

0 ,r>0
Ln+1(K α

0 ∩Qα
r (X))−(1+ 1

n+2 )

∫
Qα

r (X)∩K α
0

|v−vQα
r (X)∩K α

0
| dX.

Fix some X ∈ K α
0 = Qα

r0
(X0). We have K α

0 ⊂ Qα
2r0

(X). Thus we obtain for
r ≥ 2r0

Ln+1(K α
0 ∩ Qα

r (X))−
n+3
n+2

∫
Qα

r (X)∩K α
0

|T α
E u − (T α

E u)Qα
r (X)∩K α

0
| dy

≤ 2Ln+1(K α
0 )−

n+3
n+2

∫
K α

0

|T α
E u| dX ≤ c(K α

0 , n)‖u‖L1(K α
0 ),
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where we used a version of Lemma 3.5 for p = 1 on the set K α
0 . In order to estimate

|T α
E u|

L
1, n+3

n+2
α (K α

0 )

it is thus sufficient to take the supremum over radii 0 < r < 2r0.

Let us abbreviate Qα
r := Qα

r (X) with X ∈ K α
0 . Then there exists either (a) some

i ∈ N such that Qα
r ⊂ Qα

i , with Qα
i belonging to the Whitney covering of E or (b)

for all i ∈ N we have Qα
r ⊂ Qα

i , i.e. Qα
r \ Qα

i = ∅. Let us first consider the case
(a). Since K α

0 is of type A with respect to dα (cf. (3.24)) we have∫
Qα

r ∩K α
0

|T α
E u − (T α

E u)Qα
r ∩K α

0
| dX ≤ c(n)

∫
Qα

r

|T α
E u − (T α

E u)Qα
r
| dX.

Using Qα
r ⊂ Qα

i , Lemma 3.6, and Lemma 3.11, which is possible since K α
0 ∩ Qα

i ⊃
K α

0 ∩ Qα
r = ∅, we obtain∫

Qα
r

|T α
E u − (T α

E u)Qα
r
| dY ≤

∫
Qα

r

∫
Qα

r

|T α
E u(Y ) − T α

E u(Z)| dY dZ .

≤ c (rα
i )−1 r

∫
4Qα

i

|u − u4Qα
i
| dY

≤ c r
(
� + α−1 δ−n−3

α,K α
0

‖u‖L1(E)

)
= c(α, n, K α

0 , �, ‖u‖L1(E)) r.

(3.25)

Thus it remains to treat the second case (b). First observe that in this situation we
have that

Qα
34r ∩ (

(G × (0, T )) \ E
) = ∅. (3.26)

If this would not be the case, then we would have Qα
34r = Qα

34r (X) ⊂ E . Con-
sequently there exists some i ∈ N such that X ∈ 1

2 Qα
i due to property (W1)

of the Whitney covering. Property (W2) and Qα
34r ⊂ E immediately imply that

34 r ≤ 17 rα
i , from which we deduce that for all Y ∈ Qα

r holds

dα(Y, Xα
i ) ≤ dα(Y, X) + dα(X, Xα

i ) < r + rα
i

2
≤ rα

i .

This means that Qα
r ⊂ Qα

i , which is a contradiction and (3.26) is proved.
We have∫

Qα
r ∩K α

0

|T α
E u − (T α

E u)Qα
r ∩K α

0
| dY

≤ 2
∫

Qα
r ∩K α

0

|T α
E u − u| dY +

∫
Qα

r ∩K α
0

|u − uQα
r ∩K α

0
| dY (3.27)

=: 2 I1 + I2.
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Since K α
0 is of type A with respect to dα we get

I2 ≤ c
∫

Qα
r

|u − uQα
r
| dY.

From (3.26) follows the existence of a point Z ∈ Qα
34r (X) ∩ (

(G × (0, T )) \ E
)
.

Thus Qα
r (X) ⊂ Qα

35r (Z), which yields Qα
35r (Z) ⊂ Qα

105r0
(X0) ⊂ G × (0, T ),

due to our assumptions on r0. The above inequality and the Poincaré-type inequality
(B.2) imply

I2 ≤ c
∫

Qα
35r (Z)

|u − uQα
35r (Z)| dY

≤ cr
∫

35Qα
r (Z)

|∇u| + α |H| dY (3.28)

≤ cr�,

where we also used that Z ∈ (G × (0, T )) \ E ⊂ (G × (0, T )) \ O�. In order to
estimate the term I1 we use that the { 2

3 Qα
i } cover E and Lemma 3.14 to obtain

I1 ≤ c
∫

Qα
r

∣∣T α
E u(Y ) − u(Y )

∣∣χEχK α
0

dY

≤ c
∑

i : 2
3 Qα

i ∩Qα
r =∅

1

Ln+1(Qα
r )

∫
Qα

r ∩ 2
3 Qα

i

∣∣T α
E u(Y ) − u(Y )

∣∣ χK α
0

dY

≤ c
∑

i : 2
3 Qα

i ∩Qα
r =∅

Ln+1(Qα
r ∩ Qα

i )

Ln+1(Qα
r )

∫
Qα

i

∣∣T α
E u(Y ) − u(Y )

∣∣ χK α
0

dY.

For each i ∈ N with 2
3 Qα

i ∩ Qα
r = ∅ we have using Corollary 3.12 together with

Lemma 3.14∫
Qα

i

∣∣T α
E u(Y ) − u(Y )

∣∣ χK α
0

dY ≤ c rα
i

(
� + α−1 δ−n−3

α,K α
0

‖u‖L1(E)

)
≤ 6 c r

(
� + α−1 δ−n−3

α,K α
0

‖u‖L1(E)

)
≤ c(α, n, K α

0 , �, ‖u‖L1(E)) r.

Property (W4) of the Whitney decomposition implies that
∑

i χQα
i
(Y ) ≤ 120n+2.

Thus we have∑
i : 2

3 Qα
i ∩Qα

r =∅

Ln+1(Qα
r ∩ Qα

i )

Ln+1(Qα
r )

= 1

Ln+1(Qα
r )

∫
Rn+1

χQα
r

∑
i : 2

3 Qα
i ∩Qα

r =∅
χQα

i
dY ≤120n+2.
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The last three estimates imply

I1 ≤ c(α, n, K α
0 , �, ‖u‖L1(E)) r,

which finishes the estimate of the seminorm |T α
E u|

L
1,1+ 1

n+2
α (K α

0 )

. Since T α
E u ∈

L1(K α
0 ) due to Lemma 3.5, we proved T α

E u ∈ C0,1
dα

(K α
0 ).

In particular we have due to the definition of the metric dα that for each i =
1,. . . ,n and |h|≤h0 < r0 the difference quotient in spatial directions h−1(T α

E u(x +
hei , t)−T α

E u(x,t)) is bounded in L∞(Kh0), where Kh0 ={X ∈ K α
0

∣∣diste(X,∂K α
0 )>

h0} with diste being the Euclidean distance in Rn+1. This implies that ∇T α
E u ∈

L∞(K α
0 ). That T α

E u belongs to L∞(K α
0 ) is obvious, since K α

0 is bounded and

T α
E u ∈ C0,1

dα
(K α

0 ).

Thus we proved assertion (i) for the special compact sets K α
0 .

In order to treat a general compact set K ⊂ G × (0, T ) we cover K by finitely
many sets K α

i := Qα
si
(Yi ), i = 1, . . . , N satisfying Qα

210si
(Yi ) ⊂ G × (0, T ). Let

s0 := min {si
∣∣i = 1, . . . , N }. If dα(X, Y ) < s0 and X ∈ K α

i for some i , then we
have Y ∈ Qα

2si
(Yi ). Since for Qα

2si
(Yi ) we have already proved assertion (i) we

obtain

|T α
E u(X) − T α

E u(Y )|
dα(X, Y )

≤ c(K , �, α, n, ‖u‖L1(E), ‖u‖L1(K̃×(0,T ))
) < ∞.

If dα(X, Y ) ≥ s0 we have

|T α
E u(X) − T α

E u(Y )| ≤ sup
K

T α
E u − inf

K
T α

E u ≤ c(K ) ≤ c(K , s0) dα(X, Y ),

since T α
E u is continuous on K . Thus we proved T α

E u ∈ C0,1
dα

(K ). That T α
E u and

∇T α
E u belong to L∞(K ) follows in the same way as for the special sets K α

0 .
This finishes the proof of assertion (i).

Step 2 (Proof of (3.15)). Since u ∈ Lq(0, T ; W 1,q(G)) and T α
E u, ∇T α

E u ∈ L∞(K )

we obtain from an obvious modification of [37, Corollary 1.1.43] that almost ev-
erywhere on K holds

∇T α
E u = χE ∇T α

E u + χ(G×(0,T ))\E ∇T α
E u

= χE ∇T α
E u + χ(G×(0,T ))\E ∇u.

(3.29)

From our assumption (3.14) on the set E and the properties of the maximal operator
M∗ we get for a.e. X ∈ K ∩ (

(G × (0, T )) \ E
) ⊂ K ∩ (

(G × (0, T )) \ O�

)
|∇u(X)| ≤ M∗(|∇u|)(X) ≤ �. (3.30)

On the other hand for each X ∈ K ∩ E there exists some i ∈ N, such that X ∈ Qα
i .

Using an obvious modification of [37, Theorem 1.1.41] we get that the weak deriva-
tive and the classical derivative of T α

E u in the x-directions coincide on Qα
i , and
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consequently we have, using the properties of the partition of unity ψ j , properties
(W6), (W3) and (W5) of the Whitney covering, |∇ψ j | ≤ c(rα

j )−1, and Lemma
3.11, that

∣∣∇T α
E u(X)

∣∣ =
∣∣∣∣∣∇

(∑
j∈Ai

ψ j (X) uQα
j

)∣∣∣∣∣
=

∣∣∣∣∣∇
(∑

j∈Ai

ψ j (X)
(
uQα

j
− uQα

i

))∣∣∣∣∣
=

∣∣∣∣∣∑
j∈Ai

(∇ψ j )(X)
(
uQα

j
− uQα

i

)∣∣∣∣∣
≤ c(n)

∑
j∈Ai

(rα
j )−1

∫
4Qα

i

∣∣u(Y ) − u4Qα
i

∣∣ dY

≤ c(n) (120)n+2 (rα
i )−1

∫
4Qα

i

∣∣u(Y ) − u4Qα
i

∣∣ dY

≤ c(n)
(
� + α−1 δ−n−3

α,K ‖u‖L1(E)

)
,

which together with (3.30) proves (3.15).
From our assumption on the set E and the properties of the maximal operator

M∗ we get for a.e. X ∈ K ∩ (
(G × (0, T )) \ E

) ⊂ K ∩ (
(G × (0, T )) \ U1

)
|T α

E u(X)| = |u(X)| ≤ M∗(|u|)(X) ≤ 1.

On the other hand for each X ∈ K ∩ E there exists some i ∈ N, such that X ∈ Qα
i .

Lemma 3.13 yields for all X ∈ K ∩ Qα
i

|T α
E u(X)| ≤ c

(
1 + α−1 δ−n−2

α,K ‖u‖L1(E)

)
.

The last two estimates prove (3.16).

Step 3 (Proof of (3.17)). Due to the definition of T α
E u we have T α

E u = u on
(G ×(0, T ))\ E and that the Lipschitz truncation T α

E u is smooth in E . In particular
the classical derivative ∂tT α

E u exists in E . Using the definition of TE u, Lemma
3.8, estimate (3.11), Lemma 3.11, and property (W5) of the Whitney covering one
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estimates∫
K∩E

∣∣∂tT α
E u(X) · (T α

E u(X) − u(X))
∣∣ dX

≤
∑

j :Qα
j ∩K =∅

∫
Qα

j

∣∣∂tT α
E u(X)

∣∣∣∣T α
E u(X) − u(X)

∣∣ dX

≤ c, α−1
∑

j :Qα
j ∩K =∅

(rα
j )−2

∫
4Qα

j

|u − u4Qα
j
| dY

∫
Qα

j

∣∣T α
E u(X) − u(X)

∣∣ dX

≤ cα−1
∑

j :Qα
j ∩K =∅

(rα
j )−2Ln+1(Qα

j )

(∫
4Qα

j

|u − u4Qα
j
| dY

)2

≤ cα−1
∑

j :Qα
j ∩K =∅

Ln+1(Qα
j )

(
� + α−1δ−n−3

α,K ‖u‖L1(E)

)2

≤ cα−1 Ln+1(E)
(
� + α−1 δ−n−3

α,K ‖u‖L1(E)

)2
.

This proves the estimate (3.17).

Step 4 (Proof of (3.18)). Let 0 < h < T . Given f ∈ L1(G × (0, T )) the Steklov
average fh of f is defined by

fh(x, t) := 1

h

∫ t+h

t
f (x, s) ds, (x, t) ∈ G × (0, T ), (3.31)

where f has been extended by zero outside of (0, T ). Then we have

∂t fh(x, t) = h−1( f (x, t + h) − f (x, t)
)
. (3.32)

From the assumptions on H and u follows that Hh ∈ W 1,σ (0, T ; Lσ (G)) and uh ∈
W 1,∞(0, T ; L2(G)) ∩ W 1,q(0, T ; W 1,q(G)). Let ζ ∈ C∞

0 (G × (0, T )) be fixed.
Then there exists a compact set K such that supp(ζ ) ⊂⊂ int K ⊂⊂ G × (0, T ).
Set

dα
0 := dα(supp(ζ ), ∂K ).

Let 0 < h < 1
2 min

{
dα

0 , α (dα
0 )2

}
. From (3.13) follows by density arguments

that the weak derivative ∂t u belongs to Lσ (0, T ; (W 1,σ ′
0 (G))∗). From assertion (i)

of Theorem 3.9 follows that
(
(T α

E u)h ζ
)
−h is an admissible test function for ∂t u.

Using the properties of the Steklov average, Lemma 3.5, and T α
E u ∈ L∞(K ) one
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easily justifies the following calculations∫ T

0

〈
∂t u(t),

(
(T α

E u)h(t)ζ(t)
)
−h

〉
dt

=
∫ T

0

〈
∂t uh(t), (T α

E u)h(t)ζ(t)
〉

dt

=
∫

G×(0,T )

∂t uh · uhζ dX +
∫

G×(0,T )

∂t uh · (T α
E u − u)hζ dX

= 1

2

∫
G×(0,T )

∂t |uh |2ζ dX − 1

2

∫
G×(0,T )

∂t |(T α
E u − u)h |2ζ dX

+
∫

G×(0,T )

∂t (T α
E u)h · (T α

E u − u)hζ dX

= −1

2

∫
G×(0,T )

(
|uh |2 − |(T α

E u − u)h |2
)
∂tζ dX

+
∫

E

(
∂t (T α

E u)hζ
)

−h
· (T α

E u − u) dX,

where we used as the last step that T α
E u = u in (G × (0, T )) \ E . Next, by the

well-known properties of the Steklov average one finds for h → 0

∂t uh → ∂t u in Lσ (0, T ; (W 1,σ ′
0 (G))∗),

(T α
E u)hζ → (T α

E u)ζ in Lσ ′
(0, T ; W 1,σ ′

0 (G)),

uh → u in L2(K ),

(T α
E u)h → (T α

E u) in L2(K ).

Therefore,∫ T

0

〈
∂t u(t), (T α

E u)(t)ζ(t)
〉

dt = −1

2

∫
G×(0,T )

(|u|2 − |T α
E u − u|2∂tζ dX

+ lim
h→0

∫
E

(
∂t (T α

E u)hζ
)

−h
· (T α

E u − u) dX.

Thus, it only remains to verify that

lim
h→0

∫
E

(
∂t (T α

E u)hζ
)

−h
· (T α

E u − u) dX =
∫

E
∂tT α

E u · (T α
E u − u)ζ dX. (3.33)

We define for almost all (x, t) ∈ E

θα
h (x, t) : =

(
∂t (T α

E u)hζ
)

−h
(x, t)

=
∫ 1

0

(T α
E u)(x, t+(1−τ)h)−(T α

E u)(x, t−τh)

h
ζ(x, t−τh) dτ

(3.34)
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and set

Aα :=
{

(x, t + s)
∣∣∣ (x, t) ∈ supp(ζ ), 0 ≤ s ≤ α

(dα
0 )2

2

}
. (3.35)

Since h < α
(dα

0 )2

2 we have supp(θα
h ) ⊂ Aα ⊂ K ⊂ G × (0, T ). Using these

notations and the property of the partition of unity {ψi } one gets∫
E

(
∂t (T α

E u)hζ
)

−h
· (T α

E u − u) dX =
∑

i

∫
E

ψi θα
h · (T α

E u − u) dX.

We split the sum on the right-hand side of this equation into two parts by defining
the following set of indices

Sα
h :=

{
i ∈ N

∣∣∣ rα
i ≤ 2 h1/2, Qα

i ∩ K = ∅
}
.

With this notation we have∫
E

(
∂t (T α

E u)hζ
)

−h
· (T α

E u − u) dX =
∑
i∈Sα

h

∫
E

ψiθ
α
h · (T α

E u − u) dX

+
∑

i∈(Sα
h )c

∫
E

ψiθ
α
h · (T α

E u − u) dX

= I α
h + I I α

h .

Due to the properties of ζ , (3.34), and T α
E u ∈ Lipdα (K ) we get a.e. in E

|θα
h | ≤ ch− 1

2 .

For i ∈ Sα
h we have due to (3.22) and rα

i ≤ 2h
1
2∫

Qα
i ∩K

ψi |T α
E u − u| dX ≤ crα

i Ln+1(Qα
i )

(
� + α−1 δ−n−3

α,K ‖u‖L1(E)

)
≤ ch

1
2Ln+1(Qα

i )
(
� + α−1δ−n−3

α,K ‖u‖L1(E)

)
.

The last two estimates yield

|I α
h | ≤ c

∑
i∈Sα

h

Ln+1
(
Qα

i

) ≤ cLn+1(E) < ∞,

where we also used property (W5) of the Whitney decomposition and Ln+1(E) <

∞. Since Sα
h → ∅ for h → 0 it follows

lim
h→0+ I α

h = 0. (3.36)
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Since T α
E u is smooth on E one immediately finds from (3.34) and the definition of

Sα
h , that∑

i∈(Sα
h )c

ψiθ
α
h · (T α

E u − u) → ∂tT α
E u · (T α

E u − u)ζ a. e. in E as h → 0.

For i ∈ (Sα
h )c we get due to (3.34) and 0 < h < α

(rα
i )2

2
that

|ψiθ
α
h | ≤ max

Y∈Qα
i ∩K

|(∂tT α
E u)(Y )|, (3.37)

from which follows by (3.12) together with (3.19)

|ψiθh | ≤ c (rα
i )−1 χQα

i
χK .

Thus, by the properties of the Whitney covering and Corollary 3.12 we get∫
K

∣∣∣ ∑
i∈(Sα

h )c

ψiθh · (T α
E u − u)

∣∣∣ dX ≤ c
∫

K

∑
i

(rα
i )−1 |T α

E u − u| χQα
i

dX

≤ c
∑

i

Ln+1(Qα
i )

≤ cLn+1(E) < ∞.

Now Lebesgue’s theorem of dominated convergence implies

lim
h→0+ I I α

h =
∫

E
∂tT α

E u · (T α
E u − u)ζ dX. (3.38)

This completes the proof of Theorem 3.9.

4. Proof of the main theorem

Since for q >
2(n+1)

n+2 the proof of Theorem 1.3 has already been carried out in [52]
it will be enough to prove the theorem for the case q < 2. Throughout this section
let 2n

n+2 < q < 2 be fixed. Recall QT = � × (0, T ).
Let � ∈ C∞([0, ∞)) be a non-increasing function, such that 0 ≤ � ≤ 1 in

[0, ∞), � ≡ 1 on [0, 1], � ≡ 0 in [2, ∞) and 0 ≤ −�′ ≤ 2. For m ∈ N we set

�m(τ ) := �(τ/m), τ ∈ [0, ∞).

Let u0 ∈ L2(�) and let F ∈ Lq ′
(QT ). In [52, Theorem 3.1]6, it has been proved

that there exists a unique weak solution um ∈ Lq(0, T ; Vq) ∩ C([0, T ]; H) to the

6 Since � is a bounded open set, one easily verifies that the assumptions (I)-(IV) on S here imply
the assumptions (I)-(IV) on S in [52].
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system

div um = 0 in QT , (4.1)

∂t um + div
(

um ⊗ um�m(|um |) − S(D(um)) + F
)

= −∇ pm in QT , (4.2)

um
∣∣
∂�×(0,T )

= 0, (4.3)

um(0) = u0 in �, (4.4)

i.e. the following identity

−
∫

QT

um · ∂tϕ dx dt +
∫

QT

(S(D(um)) − um ⊗ um�m(|um |)) : D(ϕ) dx dt

=
∫

QT

F : ∇ϕ dx dt +
∫

�

u0 · ϕ(0) dx
(4.5)

holds for every ϕ ∈ C∞(QT ) with div ϕ = 0 and supp(ϕ) ⊂⊂ � × [0, T ). Fur-
thermore, it has been proved there that for all 0 < t < T

1

2
‖um(t)‖2

H +
∫ t

0

∫
�

S(D(um)) : D(um) dx ds

= 1

2
‖u0‖2

H +
∫ t

0

∫
�

F : ∇um dx ds.

(4.6)

In what follows let c denote a positive constant, which may vary from line to line
but does not depend on the parameter m ∈ N. Observing the coercivity condition
(III) from (4.6) we deduce

‖um‖2
L∞(0,T ;H) + ‖D(um)‖q

Lq (QT ) ≤ c. (4.7)

By virtue Korn’s inequality and Sobolev’s embedding theorem we get

‖um‖Lq (0,T ;W 1,q (�)) + ‖um‖Lq (0,T ;Lq∗
(�)) ≤ c, (4.8)

where q∗ = nq
n−q is the embedding exponent. With help of Sobolev’s inequalities

along with the Hölder’s inequality taking into account (4.7) and (4.8) we estimate

‖um‖
Lq n+2

n (QT )
≤ c. (4.9)

From the growth condition (II) of S and (4.7) follows

‖S(D(um))‖Lq′
(QT )

≤ c. (4.10)

By means of reflexivity we can pass to a subsequence (which we denote for simplic-
ity of notation still by um and Sm) and functions u ∈ Lq(0, T ; Vq) ∩ L∞(0, T ; H),
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S̃ ∈ Lq ′
(QT ) and H̃ ∈ Lq n+2

2n (QT ) such that for m → ∞

D(um) → D(u) weakly in Lq(QT ),

um → u weakly in Lq n+2
n (QT ),

S(·, D(um)) → S̃ weakly in Lq ′
(QT ),

um ⊗ um�m(|um |) → H̃ weakly in Lq n+2
2n (QT ).

(4.11)

Passing to the limit m → ∞ in (4.5) thus gives

−
∫

QT

u · ∂tφ dx dt +
∫

QT

(S̃ − H̃) : D(φ) dx dt

=
∫

QT

F : ∇φ dx dt +
∫

�

u0 · φ(0) dx
(4.12)

for all φ ∈ C∞(QT ) with div φ = 0 and supp(φ) ⊂⊂ � × [0, T ). From this
identity one can show that u ∈ Cw([0, T ]; H) (cf. [52, Section 4]). In particular we
have u(0) = u0.

Next, let G ⊂⊂ � be a fixed but arbitrary open bounded set. Clearly we may
assume there exists an open bounded set G ′ ⊂⊂ � with G ⊂⊂ G ′ and ∂G ′ ∈
C2. Since q > 2n

n+2 we can find σ0 > 1 with q ≤ 2 σ0 < q n+2
n . Using (4.9),

(4.10), q < 2, and the properties of σ0 we get from (4.5) that the weak derivative
∂t um belong to Lσ0(0, T ; (Vσ ′

0
(G ′))∗). This, the compact embedding Vq(G ′) ↪→↪→

Hr (G ′), 1 ≤ r < q∗, the Aubin-Lions compactness lemma (cf. [30]) and a parabolic
interpolation result using (4.10), yield H̃ = u ⊗ u and for m → ∞ (cf. [52, Section
4] for a different reasoning)

um → u strongly in L2σ0(0, T ; L2σ0(G ′)), (4.13)

um ⊗ um�m(|um |) → u ⊗ u strongly in Lσ0(0, T ; Lσ0(G ′)). (4.14)

From (4.13) and (4.7) follows again by parabolic interpolation

um → u strongly in Lr (0, T ; L2(G ′)), 1 ≤ r < ∞. (4.15)

Moreover, combining (4.5) and (4.12) yields

−
∫

QT

(um − u) · ∂tϕ dx dt +
∫

QT

(S(D(um)) − S̃) : ∇ϕ dx dt

=
∫

QT

(
um ⊗ um�m(|um |) − u ⊗ u

) : ∇ϕ dx dt
(4.16)
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for all ϕ ∈ C∞(QT ) with div ϕ = 0 and supp(ϕ) ⊂⊂ � × [0, T ). From Theo-
rem 2.2 in Section 2 one gets unique functions

p1,m ∈ Lq ′
(0, T ; Lq ′

(G ′)),
p2,m ∈ Lσ0(0, T ; Lσ0(G ′)),
ph,m ∈ Cw

([0, T ]; W 1,2(G ′)
)

with �ph,m = 0 and ph,m(0) = 0 and

−
∫ T

0

∫
G ′

(um − u) · ∂tφ dx dt +
∫ T

0

∫
G ′

(
S(D(um)) − S̃

)
: ∇φ dx dt

=
∫ T

0

∫
G ′

(
um ⊗ um�m(|um |) − u ⊗ u

) : ∇φ dx dt

+
∫ T

0

∫
G ′

(p1,m + p2,m) div φ + ∇ ph,m · ∂tφ dx dt

(4.17)

for all φ ∈ C∞
0 (G ′ × (0, T )). Moreover, by (2.4), (2.5), and um(0) − u(0) = 0 we

have

‖p1,m‖Lq′
(G ′×(0,T ))

≤ c‖S(·, D(um)) − S̃‖Lq′
(G ′×(0,T ))

, (4.18)

‖p2,m‖Lσ0 (G ′×(0,T )) ≤ c
∥∥um ⊗ um�m(|um |) − u ⊗ u

∥∥
Lσ0 (G ′×(0,T ))

, (4.19)

‖ph,m(t)‖W 1,2(G ′) ≤ c‖um(t) − u(t)‖L2(G ′), t ∈ (0, T ). (4.20)

Since ph,m is harmonic in G ′, it follows by the well-known local regularity theory
(cf. [21, Theorem 8.24]) and (4.20) that for all t ∈ (0, T ) and all 1 ≤ r ≤ ∞

‖ph,m(t)‖W 2,r (G) ≤ c‖ph,m(t)‖L2(G ′)
≤ c‖um(t) − u(t)‖L2(G ′),

(4.21)

where the constant depends on n, G ′ and G. From (4.13) and (4.21) with r = 2σ0
it follows that

ph,m
∣∣
G×(0,T )

→ 0 strongly in L2σ0(0, T ; W 2,2σ0(G)) as m → ∞. (4.22)

Moreover, we know from (4.21) with r = ∞ and (4.7) that

‖ph,m‖L∞(0,T ;W 2,∞(G)) ≤ c. (4.23)

By interpolation it follows from (4.22) and (4.23) that for all r ∈ [1, ∞)

‖ph,m‖Lr (0,T ;W 2,r (G)) → 0 as m → ∞. (4.24)
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In order to use Theorem 3.9 we define

vm := (
um − u + ∇ ph,m

)
χG×(0,T ).

This definition together with (4.13) and (4.22) implies

vm → 0 strongly in L2σ0(G × (0, T )) as m → ∞. (4.25)

Moreover, the identity (4.17) can be written for every ϕ ∈ C∞
0 (G × (0, T )) as

−
∫ T

0

∫
G

vm · ∂tφ dx dt +
∫ T

0

∫
G

(
S(D(um)) − S̃

)
: ∇φ dx dt

=
∫ T

0

∫
G

(
um ⊗ um�m(|um |) − u ⊗ u

) : ∇φ dx dt

+
∫ T

0

∫
G
(p1,m + p2,m) div φ dx dt.

(4.26)

Using (4.11), um, u ∈ L2σ0(G × (0, T )), (4.14), (4.18), (4.19), and the proper-
ties of σ0 we get from (4.26) that the weak derivative ∂t vm belongs to the space

Lσ0(0, T ; (W
1,σ ′

0
0 (G))∗). Therefore setting

H1,m := S̃ − S(D(um)) + p1,mI,
H2,m := um ⊗ um�m(|um |) − u ⊗ u + p2,mI,

Hm := H1,m + H2,m

(4.27)

a.e. in G × (0, T ) and extending to Rn+1 by zero, the identity (4.26) can be written
both as

−
∫

G×(0,T )

vm · ∂tϕ dX =
∫

G×(0,T )

Hm : ∇ϕ dX (4.28)

for all ϕ ∈ C∞
0 (G × (0, T )) and as∫ T

0

〈
∂t vm, ϕ

〉
dt =

∫
G×(0,T )

Hm : ∇ϕ dX (4.29)

for all ϕ ∈ Lσ ′
0(0, T ; W

1,σ ′
0

0 (G)). Next, we set

gm := M∗(|∇vm |) +
(
M∗(|H1,m |)

) 1
q−1

,

where M∗ is defined in Appendix A. Due to (4.8), (4.10), (4.11), (4.18), and
(4.21) for r = q we know that ∇vm is uniformly bounded in Lq(Rn+1) and H1,m is
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uniformly bounded in Lq ′
(Rn+1). Now, by the boundedness of M∗ from Lq(Rn+1)

to Lq(Rn+1), respectively Lq ′
(Rn+1) to Lq ′

(Rn+1), (see Appendix A) we see that

‖gm‖Lq (Rn+1) ≤ c.

Thus we obtain for k ∈ N

cq ≥
∫ 22k+1

22k
λq−1Ln+1({|gm | > λ}) dλ

≥
∫ 22k+1

22k
λ−1 dλ inf

22k ≤γ≤22k+1
γ qLn+1({|gm | > γ })

= 2k ln(2) inf
22k ≤γ≤22k+1

γ qLn+1({|gm | > γ }).

Consequently there exists λk,m ∈
[
22k

, 22k+1
]
, such that

λ
q
k,mLn+1({|gm | > λk,m}) ≤ cq (ln 2)−1 2−k . (4.30)

We define for k, m ∈ N

Gk,m := {|gm | > λk,m
}
,

and
αk,m := λ

2−q
k,m .

Then by (4.30) we have

λ
q
k,mLn+1(Gk,m) ≤ c2−k, (4.31)

and obtain

Gk,m ⊃ {M∗(|∇vm |) > λk,m
} ∪ {(M∗(|H1,m |)) 1

q−1 > λk,m
}

= {M∗(|∇vm |) > λk,m
} ∪ {M∗(|H1,m |) > λ

q−1
k,m

}
= {M∗(|∇vm |) > λk,m

} ∪ {
αk,m M∗(|H1,m |) > λk,m

}
.

(4.32)

To treat the term with H2,m we define for k, m ∈ N

Fk,m := {(M∗(|H2,m |)) 1
q−1 > λk,m

}
.

Using the weak type estimate for M∗ (cf. (A.5)) and σ0 > 1 we get

Ln+1(Fk,m) = Ln+1
({M∗(|H2,m |) > λ

q−1
k,m

})
≤ cλ(1−q)σ0

k,m

∥∥M∗(|H2,m |)∥∥σ0
σ0

≤ cλ(1−q)σ0
k,m ‖H2,m‖σ0

σ0
.

(4.33)
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Since λk,m ≥ 22k
and H2,m converges to 0 in Lσ0(G × (0, T )) due to (4.14) and

(4.19), we obtain that for each k ∈ N there holds

lim sup
m→∞

Ln+1(Fk,m) = 0. (4.34)

Analogously to (4.32) we get

Fk,m = {
αk,m M∗(|H2,m |) > λk,m

}
. (4.35)

Finally we define for k, m ∈ N

Hk,m := {M∗(|vm |) > 1
}
.

Using the weak type estimate for M∗ (cf. (A.5)) and σ0 > 1 we get

Ln+1(Hk,m) = Ln+1
{M∗(|vm |) > 1

}
)

≤ c
∥∥M∗(|vm |)∥∥2σ0

2σ0

≤ c‖vm‖2σ0
2σ0

.

(4.36)

Since vm converges to 0 in Lσ0(G × (0, T )) due to (4.25), we obtain that for each
k ∈ N there holds

lim sup
m→∞

Ln+1(Hk,m) = 0. (4.37)

Since M∗ is subadditive and Hm = H1,m + H2,m , (4.35) and (4.32) imply

Gk,m ∪ Fk,m ⊃ {M∗(|∇vm |) > λk,m
} ∪ {

αk,m M∗(|Hm |) > 2 λk,m
}

⊃ {M∗(|∇vm |) + αk,m M∗(|Hm |) > 3 λk,m
}
.

(4.38)

Defining

Ek,m := (Gk,m ∪ Fk,m ∪ Hk,m) ∩ (G × (0, T )) (4.39)

we see that Ek,m satisfies the assumption (3.14) of Theorem 3.9 with � = 3 λk,m .
Let us fix a cut-off function ζ ∈ C∞

0 (G × (0, T )) with 0 ≤ ζ ≤ 1 in
G × (0, T ). In view of (4.28), (4.38) and (4.39) we are able to apply Theorem 3.9
with K := supp(ζ ), u = vm , H = Hm , E = Ek,m , and α = αk,m . We denote
Tk,m := T αk,m

Ek,m
. Hence, inserting the admissible test function ϕ = ζ Tk,mvm into
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(4.29), using (4.27) and taking into account (3.18) yields∫
G×(0,T )

(
S(D(um)) − S̃

)
: D(Tk,mvm) ζ dX

=
∫

G×(0,T )

(
S̃ − S(D(um))

)
: (Tk,mvm ⊗ ∇ζ ) dX

+
∫

G×(0,T )

(
u ⊗ u − um ⊗ um�m(|um |)) : ∇(

(Tk,mvm) ζ
)

dX

+
∫

G×(0,T )

p1,mTk,mvm · ∇ζ dX

+
∫

G×(0,T )

p1,m div(Tk,mvm) ζ dX

+
∫

G×(0,T )

p2,m div
(
(Tk,mvm) ζ

)
dX

+ 1

2

∫
G×(0,T )

(
2 vm · Tk,mvm − |Tk,mvm |2

)
∂tζ dX

+
∫

Ek,m

(∂tTk,mvm) · (vm − Tk,mvm) ζ dX

= I k
m + I I k

m + I I I k
m + I V k

m + V k
m + V I k

m + V I I k
m .

(4.40)

Next, for a fixed k ∈ N we will carry out the passage to the limit m → ∞ in all
integrals I k

m, . . . , V I I k
m separately.

(i) lim supm→∞(|I k
m | + |I I I k

m |) = 0.
Due to (4.10) and (4.11) we have that S(D(um)) and S̃ are uniformly bounded
in Lq ′

(G × (0, T )). Using this, Hölder’s inequality and (3.7) one obtains

|I k
m | ≤ c

(∫
G×(0,T )

∣∣∣(Tk,mvm) ⊗ ∇ζ

∣∣∣q
dX

) 1
q ≤ c‖vm‖Lq (G×(0,T )).

Thus lim supm→∞ |I k
m | = 0 follows with the aid of (4.25) and 2σ0 ≥ q.

Arguing similarly one verifies lim supm→∞ |I I I k
m | = 0 . Hereby, we use that

p1,m is uniformly bounded in Lq ′
(G × (0, T )) due to (4.18), (4.10) and (4.11).

(ii) lim supm→∞(|I I k
m | + |V k

m |) = 0.
We estimate

|I I k
m | ≤ c

∥∥u ⊗ u − um ⊗ um�m(|um |)∥∥L1(G×(0,T ))

∥∥∇(Tk,mvmζ )
∥∥

L∞(K )
.

It follows from (4.14), σ0 > 1, and G being bounded that

lim sup
m→∞

∥∥u ⊗ u − um ⊗ um�m(|um |)∥∥L1(G×(0,T ))
= 0. (4.41)
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Thus we need to show that for fixed k ∈ N the sequence ∇(Tk,mvm ζ ) is uni-
formly bounded in L∞(supp(ζ )) with respect to m. This and (4.41) then imply
lim supm→∞ |I I k

m | = 0. For fixed k the sequence λk,m lies in the interval

[22k
, 22k+1] and thus αk,m = λ

2−q
k,m is uniformly bounded from above. This

implies that for fixed k holds

inf
m∈N δαk,m ,K > 0. (4.42)

So according to (3.15) and (3.16) we get for fixed k ∈ N and all m ∈ N∥∥∇(Tk,mvm ζ )
∥∥

L∞(K )
≤ ∥∥∇Tk,mvm

∥∥
L∞(K )

+ c(∇ζ )
∥∥Tk,mvm

∥∥
L∞(K )

≤ c
(
λk,m + α−1

k,m δ−n−3
αk,m ,K ‖vm‖L1(E)

)
+ c

(
1 + α−1

k,m δ−n−2
αk,m ,K ‖vm‖L1(E)

)
.

The uniform boundedness of vm in L1(G × (0, T )) (cf. (4.25)), (4.42) and
λk,m ∈ [22k

, 22k+1] yield that for fixed k ∈ N the sequence ∇(Tk,mvm ζ )

is uniformly uniformly bounded in L∞(K ) with respect to m. This proves
lim supm→∞ |I I k

m | = 0.
Using (4.19) and (4.41) we can prove analogously lim supm→∞ |V k

m | = 0.
(iii) lim supm→∞ |V I k

m | = 0.
Using Cauchy-Schwarz’s inequality and (3.7) shows that

|V I k
m | ≤ c‖vm‖2

L2(G×(0,T ))
.

Since σ0 > 1, the assertion follows from (4.25).
(iv) lim supm→∞ |I V k

m | ≤ c2−k/q .
Since div um = div u = �ph,m = 0 on the set G ′ × (0, T ) we have div vm = 0
on this set. From this, the definition of Tk,m and (3.29) applied to Tk,m we
obtain that divTk,mvm = div vm = 0 holds on the set

(
G × (0, T )

) \ Ek,m .
Thus, we have

I V k
m =

∫
G×(0,T )

p1,m div(Tk,mvm) ζ dX =
∫

Ek,m∩K
p1,m div(Tk,mvm) ζ dX.

Hölder’s inequality implies

|I V k
m | ≤ ‖p1,m‖Lq′

(G×(0,T ))
‖∇(Tk,mvm)‖Lq (Ek,m∩K ).

From (4.18), (4.11) and (4.10) one finds

‖p1,m‖Lq′
(G×(0,T ))

≤ c‖S(D(um) − S̃‖Lq′
(G×(0,T ))

≤ c.
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Therefore we obtain with (3.15), (4.42), λk,m ∈ [22k
, 22k+1], σ0 > 1, and (4.25)

that

lim sup
m→∞

|I V k
m | ≤c lim sup

m→∞
‖∇(Tk,mvm)‖Lq (Ek,m∩K )

≤c lim sup
m→∞

(
Ln+1(Ek,m)1/q

(
λk,m + ‖vm‖L1(Ek,m)

αk,mδn+3
αk,m ,K

))

≤c lim sup
m→∞

(
Ln+1(Ek,m)1/q

(
λk,m + ‖vm‖L1(G×(0,T ))

αk,mδn+3
αk,m ,K

))
=c lim sup

m→∞

(
Ln+1(Ek,m)1/qλk,m

)
.

(4.43)

From the definition of Ek,m follows

Ln+1(Ek,m) ≤ Ln+1(Gk,m) + Ln+1(Fk,m) + Ln+1(Hk,m).

This, (4.31), (4.34) and (4.37) imply

lim sup
m→∞

(Ln+1(Ek,m)1/qλk,m
) ≤ c2−k/q . (4.44)

From (4.43) and (4.44) follows the claim.
(v) lim supm→∞ |V I I k

m | ≤ c2−k .
From the definition of αk,m , (3.17) and Ek,m ⊂ G × (0, T ) follows

|V I I k
m | ≤ cLn+1(Ek,m) λ

q−2
k,m

(
λk,m + ‖vm‖L1(G×(0,T ))

αk,m δn+3
αk,m ,K

)2

.

Using λk,m ∈ [22k
, 22k+1], (4.42), σ0 > 1, and (4.25) and (4.44) we get

lim sup
m→∞

|V I I k
m | ≤ c lim sup

m→∞
(Ln+1(Ek,m)λ

q
k,m

) ≤ c2−k,

which proves the claim.

Altogether, we proved in (i)-(v) that for each fixed k ∈ N

lim sup
m→∞

∣∣∣∣ ∫
G×(0,T )

(
S(D(um)) − S̃

)
: D(Tk,mvm) ζ dX

∣∣∣∣ ≤ c 2−k/q , (4.45)

where we used 1 < q.
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Arguing similarly as in (iv) one easily proves using (4.10), (4.11), (4.43) and
(4.44) that

lim sup
m→∞

∣∣∣∣ ∫
Ek,m

(
S(D(um)) − S̃

)
: D(Tk,mvm) ζ dX

∣∣∣∣
≤ lim sup

m→∞

(
‖S̃ − S(D(um)‖Lq′

(G×(0,T ))
‖∇(Tk,mvm)‖Lq (Ek,m)

)
≤ c lim sup

m→∞

(
λk,m Ln+1(Ek,m)1/q

)
≤ c 2−k/q .

(4.46)

Due to (3.29) on the set (G × (0, T )) \ Ek,m holds D(Tk,mvm) = D(vm). Thus we
obtain from (4.45) and (4.46)

lim sup
m→∞

∣∣∣∣ ∫
(G×(0,T ))\Ek,m

(
S(D(um)) − S̃

)
: D(vm) ζ dX

∣∣∣∣ ≤ c 2−k/q . (4.47)

Recall that vm = um − u − ∇ ph,m . Using (4.10), (4.11), (4.24) and q ≤ 2σ0 we
obtain

lim
m→∞

∫
(G×(0,T ))\Ek,m

(
S(D(um)) − S̃

)
: D(∇ ph,m) ζ dX = 0.

This and (4.47) yields for each fixed k ∈ N

lim sup
m→∞

∣∣∣∣ ∫
(G×(0,T ))\Ek,m

(S(D(um)) − S̃) : D(um − u) ζ dX

∣∣∣∣ ≤ c2−k/q . (4.48)

Due to (4.34), (4.37) and (4.48) we can find for each k ∈ N a number mk ∈ N, such
that ∣∣∣∣ ∫

(G×(0,T ))\Ek,mk

(
S(D(umk )) − S̃

)
: D(umk − u)ζ dX

∣∣∣∣ ≤ c2−k/q ,

Ln+1(Fk,mk ) ≤ c2−k,

Ln+1(Hk,mk ) ≤ c2−k .

(4.49)

Setting ζk := ζ χ(G×(0,T ))\Ek,mk
(k ∈ N) one gets

ζk → ζ a.e. in G × (0, T ) as k → ∞. (4.50)

Indeed, there holds

ζk(X) → ζ(X) ∀ X ∈
∞⋃

k=1

∞⋂
�=k

(
(G × (0, T )) \ E�,m�

)
as k → ∞.
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We have
⋃∞

k=1
⋂∞

�=k

(
(G × (0, T )) \ E�,m�

) = (
G × (0, T )

) \ ⋂∞
k=1

⋃∞
�=k E�,m�

.
Moreover, due to (4.31), λk,m ≥ 1 and (4.49) we get for all k ∈ N

Ln+1

( ∞⋃
�=k

E�,m�

)
≤

∞∑
�=k

(
Ln+1(G�,m�

)+Ln+1(F�,m�
)+Ln+1(H�,m�

)
)

≤ c 2−k,

which implies

Ln+1

( ∞⋂
k=1

∞⋃
�=k

E�,m�

)
= 0.

Whence, (4.50) holds.
From (4.50), (4.11) and the Lebesgue Theorem on dominated convergence we

get that S̃ζk converges to S̃ζ strongly in Lq ′
(G × (0, T )), and D(u)ζk converges to

D(u)ζ strongly in Lq(G × (0, T )). Thus from (4.49) and (4.11) we deduce

lim
k→∞

∫
G×(0,T )

S(D(umk )) : D(umk ) ζk dX =
∫

G×(0,T )

S̃ : D(u) ζ dX.

With help of the local Minty trick (cf. [52, Lemma A.2]) we obtain

S̃ζ = S(·, D(u)) ζ a.e. in G × (0, T ).

This concludes the proof of the theorem.

Appendix

A. Maximal operators

In this appendix we recall some results regarding maximal operators.
For g ∈ L1

loc(Rn+1) we define for (x, t) ∈ Rn+1

Mx (g)(x, t) := sup
0<r<∞

∫
Br (x)

|g(y, t)| dy,

Mt (g)(x, t) := sup
0<ρ<∞

∫
Iρ(t)

|g(x, s)| ds,

where Iρ(t) denotes the interval (t − ρ, t + ρ). Clearly, for g ∈ L p(Rn+1),
1 < p < ∞, there exists N ⊂ R with L1(N ) = 0, such that g(·, t) ∈ L p(Rn) for
all t ∈ R\ N . The properties of the maximal operator (cf. [48]) yield Mx (g)(·, t) ∈
L p(Rn), 1 < p < ∞, for all t ∈ R \ N and∫

Rn

(Mx (g)(x, t)
)p dx ≤ c

∫
Rn

|g(x, t)|p dx ∀ t ∈ R \ N .
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Hence, it follows that Mx (g) ∈ L p(Rn+1) and we have

‖Mx (g)‖L p(Rn+1) ≤ c‖g‖L p(Rn+1). (A.1)

By an analogous reasoning one obtains Mt (g) ∈ L p(Rn+1) and there holds

‖Mt (g)‖L p(Rn+1) ≤ c‖g‖L p(Rn+1). (A.2)

Next, we define

M∗(g) := Mt (Mx (g)), g ∈ L p(Rn+1). (A.3)

With help of (A.1) and (A.2) we verify the strong type estimate

‖M∗(g)‖L p(Rn+1) ≤ c‖g‖L p(Rn+1), (A.4)

which implies the weak type estimate

Ln+1
({M∗(g) > λ

}) ≤ cλ−p ‖g‖p
L p(Rn+1)

, (A.5)

Moreover, we have for all (x, t) ∈ Rn+1 and r, ρ > 0∫
Iρ(t)

∫
Br (x)

|g(y, s)| dy ds ≤ M∗(g)(x, t). (A.6)

Indeed, for (x, t) ∈ Rn+1 one estimates using the definition of Mx (Mt respec-
tively) ∫

Iρ(t)

∫
Br (x)

g(y, s) dy ds ≤
∫

Iρ(t)
Mx (g)(x, s) ds

≤ Mt (Mx (g))(x, t) = M∗(g)(x, t).

B. Poincaré-type inequality

For reader’s convenience we will present a short proof of the Poincaré-type inequal-
ity we have used in the sequel of the paper.

Theorem B.1. Let for some X0 ∈ Rn+1 and 0 < r < ∞ be u ∈ L1(Qα
r (X0)) with

∇u ∈ L1(Qα
r (X0)) and H ∈ L1(Qα

r (X0)) , where 0 < α < ∞, such that

−
∫

Qα
r (X0)

u · ∂tϕ dx dt =
∫

Qα
r (X0)

H : ∇ϕ dx dt ∀ ϕ ∈ C∞
0 (Qα

r (X0)). (B.1)

Then ∫
Qα

r (X0)

∣∣u − uQα
r

∣∣ dx dt ≤ c0 r
∫

Qα
r (X0)

|∇u| + α|H| dx dt, (B.2)

where c0 = const > 0 depends on n only.
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Proof. This theorem can be found in [51, Lemma B.3] and is based on [38] and [49].
For the convenience of the reader we sketch the proof here. First we prove the
assertion for X0 = 0, α = 1 and r = 1. For notational simplicity we write Q1
instead of Q1

1(0) and B1 instead of B1(0). For a given function ζ ∈ C∞
0 (B1) with

0 ≤ ζ ≤ 1 in B1 and ζ = 0 we define the functional F ∈ L1(B1)
∗ by means of

〈F, v〉 := 1∫
B1

ζ dx

∫
B1

ζv dx, v ∈ L1(B1).

As it is readily seen there holds

〈F, 1〉 = 1,

which implies 〈
F, v − 〈F, v〉

〉
= 0 ∀ v ∈ L1(B1(0)).

Thus (cf. [40, Theorem 7.1])

|||v||| := ‖∇v‖L1(B1)
+ |〈F, v〉|

defines an equivalent norm on W 1,1(B1). Thus there exists a constant cn , such that

‖v − 〈F, v〉‖L1(B1)
≤ cn‖∇v‖L1(B1)

∀ v ∈ W 1,1(B1). (B.3)

Now let u ∈ L1(Q1) fulfill the assunptions of the theorem. One easily calculates

u(x, t) − uQ1 = (
u(x, t) − 〈F, u(t)〉) + (〈F, u(t)〉 − uQ1

)
= (

u(x, t) − 〈F, u(t)〉) +
∫

Q1

(〈F, u(t)〉 − u(y, s)) dy ds

for almost all (x, t) ∈ Q1. Furthermore, one finds∫
Q1

(〈F, u(t)〉 − u(y, s)) dy ds

= 1∫
B1

ζ dy

∫
Q1

∫
B1

ζ(y′)
(
u(y′, t) − u(y, s)

)
dy′ dy ds

= 1

2

∫ 1

−1
〈F, u(t) − u(s)〉 ds

+ 1

2
∫

B1
ζ dy

∫ 1

−1

∫
B1

∫
B1

ζ(y′)(u(y′, s) − u(y, s)) dy′ dy ds.
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The last two equalities yield∣∣u(x, t) − uQ1

∣∣ ≤ ∣∣(u(x, t) − 〈F, u(t)〉)∣∣ + 1

2

∫ 1

−1

∣∣〈F, u(t) − u(s)〉∣∣ ds

+ 1

2
∫

B1
ζ dy

∫ 1

−1

∫
B1

∣∣u(y, s) − u(s)B1

∣∣ dy ds

for almost all (x, t) ∈ Q1. Integrating both sides of the last inequality over Q1,
estimating the first integral with the aid of (B.3), and estimating the last integral by
the usual Poincaré inequality implies∫

Q1

∣∣u(x, t) − uQ1

∣∣ dx dt

≤ c
∫

Q1

|∇u| dx dt + |B1|
2

∫ 1

−1

∫ 1

−1

∣∣〈F, u(t) − u(s)〉∣∣ ds dt.

(B.4)

Using in (B.1) the test function ϕ(x, t) = ζ (x) γ−h(t), where γ ∈ C∞
0 (−1, 1),

0 ≤ γ ≤ 1 and γh is the Steklov average (cf. (3.31)) we obtain∫
Q1

∂t uh · ζ dx dt =
∫

Q1

Hh : ∇ζ dx dt,

from which one derives by standard arguments that for almost all t ∈ (−1, 1) holds
for all ζ ∈ C∞

0 (B1) ∫
B1

∂t uh(t) · ζ dx =
∫

B1

Hh(t) : ∇ζ dx .

This and the definition of F implies for almost all t, s ∈ (−1, 1)∣∣〈F, uh(t) − uh(s)〉∣∣ =
∣∣∣∣ 1∫

B1
ζ dy

∫ t

s

∫
B1

∂t uh(x, τ ) · ζ (x) dx dτ

∣∣∣∣
=

∣∣∣∣ 1∫
B1

ζ dy

∫ t

s

∫
B1

Hh(x, τ ) : ∇ζ (x) dx dτ

∣∣∣∣.
The properties of the Steklov average imply for h → 0∣∣〈F, u(t) − u(s)〉∣∣ ≤ c

∫
Q1

|H| dx dt

for almost all s, t ∈ (−1, 1). This and (B.4) yield (B.2) in the special case, i.e.∫
Q1

∣∣u(x, t) − uQ1

∣∣ dx dt ≤ c
∫

Q1

|∇u| + |H| dx dt. (B.5)

The general case easily follows from this inequality by means of an appropriate
transformation of coordinates.
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C. Whitney covering

Lemma C.1 (covering lemma). Let E be a non-empty, open, bounded subset of
Rn+1 equipped with the metric dα . Then there exists a family of balls with respect
to the metric dα {Qα

rα
i
(Xα

i )}i∈N such that

(a) E = ⋃∞
i=1 Qα

rα
i
2

(Xα
i ) = ⋃∞

i=1 Qα
rα

i
(Xα

i );
(b) 8rα

i ≤ d(Xα
i , ∂ E) < 16rα

i ∀ i ∈ N with 0 < rα
i < 1;

(c) rα
j > 2rα

i =⇒ Qα
rα

j
(Xα

j ) ∩ Qα
rα

i
(Xα

i ) = ∅;
(d) Qα

rα
i
4

(Xα
i ) ∩ Qα

rα
j
4

(Xα
j ) = ∅ ∀ i, j ∈ N, i = j;

(e) #
{

j ∈ N
∣∣Qα

4rα
j
(Xα

j ) ∩ Qα
4rα

i
(Xα

i ) = ∅} ≤ (120)n+2 ∀ i ∈ N.

Proof. For notational simplicity we skip the subscripts and superscripts α. Since
E is bounded there exists a smallest number k0 ∈ Z such that the set {X ∈
E

∣∣ dα(X, ∂ E) ≥ 2−k0+4} is non-empty. For that number we define

Dk0 := {
X ∈ E

∣∣ dα(X, ∂ E) ≥ 2−k0+4}.
Clearly, there exists a mostly countable set of points {Xk0

j } j∈Jk0
⊂ Dk0 fulfilling

d(Xk0
i , Xk0

j ) ≥ 2−k0 ∀ i, j ∈ Jk0, (i = j),
⋃

j∈Jk0

Q2−k0 (Xk0
j ) ⊃ Dk0 .

We define
D̃k0 :=

⋃
j∈Jk0

Q2−k0 (Xk0
j ).

From the construction it is immediately clear that

Dk0 ⊂ D̃k0 ⊂ E .

Next, for k ∈ Z (k > k0) we define the Dk, {Xk
j }Jk and D̃k recursively. Assume

that D�, {X�
j }J�

and D̃� has already been defined for � = 1, . . . , k − 1. Then we set

Dk :=
{

X ∈ E \
k−1⋃
�=1

D̃�

∣∣∣ d(X, ∂ E) ≥ 2−k+4

}
.

There exists {Xk
j } j∈Jk ⊂ Dk such that

d(Xk
i , Xk

j ) ≥ 2−k ∀ i, j ∈ Jk (i = j),
⋃
j∈Jk

Q2−k (Xk
j ) ⊃ Dk . (C.1)
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Then we set
D̃k :=

⋃
j∈Jk

Q2−k (Xk
j ).

Obviously,
Dk ⊂ D̃k ⊂ E .

Now, we define
r�, j := 2−�+1 � ∈ N, j ∈ J�.

From the construction above it follows that

∞⋃
�=1

⋃
j∈J�

Q r�, j
2

(X�
j ) = E .

This proves the first part of (a).
Moreover, it is readily seen that

d(X�
j , ∂ E) ≥ 2−�+4 = 8r�, j ∀ � ∈ N, ∀ j ∈ J�. (C.2)

Furthermore, as X�
j /∈ D̃�−1 for � ∈ N (� > k0) we deduce

d(X�
j , ∂ E) < 2−�+5 = 16r�, j ∀ j ∈ J�. (C.3)

Hence, the property (b) follows from (C.2) and (C.3).
If rα

j > 2 rα
i then there exists j ∈ J� and i ∈ Jk with k ≥ � + 2. We claim

that
Qr�, j (X�

j ) ∩ Qrk,i (Xk
i ) = ∅. (C.4)

Indeed, assuming there exists X̃ ∈ Qr�, j (X�
j ) ∩ Qrk,i (Xk

i ), since Xk
i /∈ D�+1, we

have d(Xk
i , ∂ E) ≤ 2−�+3. Thus,

d(X̃ , ∂ E) ≤ d(X̃ , Xk
i ) + d(Xk

i , ∂ E) ≤ 2−k+1 + 2−�+3 ≤ 2−�−1 + 2−�+3.

On the other hand, we estimate

d(X̃ , ∂ E) ≥ d(X�
j , ∂ E) − d(X̃ , X�

j ) ≥ 2−�+4 − 2−�+1.

However, the latter inequality contradicts to the former by means of

2−�−1 + 2−�+3 < 2−�+4 − 2−�+1.

Whence, (c).
To prove (d) let � ∈ N and j ∈ J� be fixed. Assume for some k ∈ N and

i ∈ Jk there exists X̃ ∈ E with

X̃ ∈ Q r�, j
4

(X�
j ) ∩ Q rk,i

4
(Xk

i ).
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According to (c) this is only possible either for k = � − 1, k = � or k = � + 1. Let
us begin with the case k = �. By the triangular inequality

d(X�
j , X�

i ) <
r�, j

4
+ r�,i

4
= 2−�,

which can only be true if i = j due to (C.1). In case k = �+1 again using triangular
inequality one finds

d(X�
j , X�+1

i ) <
r�, j

4
+ r�+1,i

4
= 3

4
2−�.

But since X�+1
i /∈ D̃� we must have d(X�

j , X�+1
i ) ≥ 2−�, which is a contradic-

tion. By an analogous reasoning one gets a contradiction in the case k = � − 1.
Consequently, k = � and i = j . This completes the proof of (d).

In order to prove (e) let us denote for some fixed i, k ∈ N

Bk,i :=
{
( j, �) ∈ N2

∣∣ j ∈ J�, Q4r�, j (X�
j ) ∩ Q4rk,i (Xk

i ) = ∅
}
.

Due to property (d) we have for all ( j, �), (m, q) ∈ Bk,i with ( j, �) = (m, q) that
Q r�, j

4
(X�

j ) ∩ Q rm,q
4

(Xm
q ) = ∅. For all ( j, �) ∈ Bk,i we estimate using (b)

8rk,i ≤ dα(Xk
i , ∂ E) ≤ dα(Xk

i , X�
j ) + dα(X�

j , ∂ E)

≤ dα(Xk
i , X) + dα(X�

j , X) + 16r�, j ≤ 4rk,i + 20r�, j .

Hence, r�, j ≤ 5rk,i . From this follows that Q r�, j
4

(X�
j ) ⊂ Q30rk,i (Xk

i ). These two

properties and r�, j ≥ 1
2 rk,i imply

Ln+1(Q30rk,i (Xk
i )) ≥

∑
( j,�)∈Bk,i

Ln+1(Q r�, j
4

(X�
j ))

≥ 1

120n+2
#
(
Bk,i

)Ln+1(Q30rk,i (Xk
i ))

where we also used the properties of the Lebesgue measure and the metric dα . This
immediately yields (e).

An appropriate relabeling of the points Xk
i and the radii rk,i proves the lemma.
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[7] D. BOTHE and J. PRÜSS, L p-theory for a class of non-Newtonian fluids, SIAM J. Math.
Anal. 39 (2007), 379–421.

[8] D. CIORANESCU, Quelques exemples de fluides newtoniens generalisés, In: “Mathemat-
ical Topics in Fluid Mechanics” (Lisbon, 1991) (Harlow), Pitman Res. Notes Math. Ser.,
Vol. 274, Longman Sci. Tech., Harlow, 1992, 1–31.

[9] R. R. COIFMAN and G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull.
Amer. Math. Soc. 83 (1977), 569–645.
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matics Series, Vol. 291, Longman, 1993, 129–162.



46 LARS DIENING, MICHAEL RŮŽIČKA AND JÖRG WOLF
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