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Twistorial maps between quaternionic manifolds
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Abstract. We introduce a natural notion of quaternionic map between almost
quaternionic manifolds and we prove the following, for maps of rank at least one:

• A map between quaternionic manifolds endowed with the integrable almost
twistorial structures is twistorial if and only if it is quaternionic.

• A map between quaternionic manifolds endowed with the nonintegrable almost
twistorial structures is twistorial if and only if it is quaternionic and totally-
geodesic.

As an application, we describe all the quaternionic maps between open sets of
quaternionic projective spaces.

Mathematics Subject Classification (2010): 53C28 (primary); 53C26 (second-
ary).

Introduction

An almost quaternionic structure on a manifold is a reduction of its frame bundle to
the group Sp(1) · GL(m,H). The integrability condition for an almost quaternionic
structure (that is, the condition that the corresponding reduction of the frame bundle
be given by the cocycle determined by an atlas) is very restrictive [15]; nevertheless
there exists only one more general notion of integrability, which amounts to the
existence of a compatible torsion free connection (see [21]). In dimension at least
eight, such a connection is called quaternionic whilst, in dimension four, a quater-
nionic connection is a Weyl connection whose Weyl curvature tensor is anti-self-
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dual. A quaternionic manifold is a manifold endowed with an almost quaternionic
structure and a (compatible) quaternionic connection.

It is a basic fact that the problem of the existence of a quaternionic connection
on a manifold, endowed with an almost quaternionic structure, admits a twistorial
interpretation (see Remark 2.10(2) below).

In this paper we introduce a natural notion of quaternionic map (Definition 2.4)
with respect to which the class of quaternionic manifolds becomes a category. Fur-
thermore, we show that the quaternionic maps, of rank at least one, are twistorial in
a natural way; that is, they are characterised by the existence of a holomorphic lift
between the corresponding twistor spaces (Theorem 3.5).

The paper is organised as follows. In Section 1 we review some facts about
quaternionic vector spaces (see [3]). In Section 2, after recalling the definition
of almost quaternionic structure, we introduce the notion of quaternionic map and
we prove its first properties (Proposition 2.6). Also, in Section 2 we recall the
two almost twistorial structures associated to a quaternionic manifold, one of which
(Example 2.9) is integrable, whilst the other one (Example 2.11) is noninte-
grable.

In Section 3 we study twistorial maps between quaternionic manifolds. Be-
sides the above mentioned relation between quaternionic and twistorial maps, with
respect to the (integrable) twistorial structures, we prove that a map, of rank at least
one, is twistorial, with respect to the nonintegrable almost twistorial structures, if
and only if it is quaternionic and totally geodesic (Theorem 3.7). Another result we
obtain is that any quaternionic map is real-analytic, at least, outside the frontier of
the zero set of its differential (Corollary 3.6).

Examples of quaternionic maps are given in Section 4. There we also apply
results of Section 3 to describe all the quaternionic maps between open sets of
quaternionic projective spaces (Theorem 4.5).

Finally, in the Appendix we discuss how the quaternionic maps are related to
other, more or less similar, notions. We conclude that the quaternionic maps are the
natural morphisms of Quaternionic Geometry.

ACKNOWLEDGEMENTS. We are grateful to the referee for very useful comments
and suggestions (in particular, for the alternative proof of Lemma 4.6).

1. Quaternionic vector spaces

In this section, we review some facts, from [3], on quaternionic vector spaces and
quaternionic linear maps. Unless otherwise stated, all the vector spaces and linear
maps are assumed real.

Definition 1.1. Let A and B be (real or complex, unital) associative algebras. Two
morphisms ρ, σ : A → B are called A-equivalent if there exists an automorphism
τ : A → A such that σ = ρ ◦ τ .
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Let H be the division algebra of quaternions. The group of automorphisms of
H is SO(3), acting trivially on 1 and canonically on ImH(= R3); note that all the
automorphisms of H are inner.

The following definition is due to [3].
Definition 1.2.

1. A linear hypercomplex structure on a vector space V is a morphism of associa-
tive algebras from H to End(V ). A vector space endowed with a linear hyper-
complex structure is called a hypercomplex vector space.

2. A linear quaternionic structure on a vector space V is an equivalence class of
H-equivalent morphisms of associative algebras from H to End(V ). Any repre-
sentative of the class defining a linear quaternionic structure is called an admis-
sible linear hypercomplex structure (of the given linear quaternionic structure).
A vector space endowed with a linear quaternionic structure is called a quater-
nionic vector space.

Obviously, a hypercomplex vector space is just a left H-module.
Example 1.3. The natural structure of left H-module on Hm gives the (natural) lin-
ear hypercomplex structure of Hm , (m ≥ 0). Moreover, any hypercomplex vector
space is H-linearly isomorphic to Hm , for some m ≥ 0.

The linear hypercomplex structure of Hm determines the (natural) linear
quaternionic structure of Hm .

A hypercomplex linear map f : V → W between hypercomplex vector spaces
is an H-linear map.

Let V be a quaternionic vector space and let ρ : H → End(V ) be an admissi-
ble linear hypercomplex structure. As SO(3) acting on H, preserves 1 and ImH, the
vector spaces QV = ρ(ImH) and Q̃V = ρ(H) depend only on the linear quater-
nionic structure induced by ρ on V . Furthermore, Q̃V ⊆ End(V ) is a division
algebra (noncanonically) isomorphic to H and QV is a three-dimensional oriented
Euclidean vector space for which any oriented orthonormal basis (I, J, K ) satisfies
the quaternionic identities (that is, I 2 = J 2 = K 2 = I J K = −IdV ). Similarly, the
unit sphere ZV = ρ

(
S2

)
is well-defined.

Definition 1.4 (cf. [3]). Let V and W be quaternionic vector spaces and let t : V →
W and T : ZV → ZW be maps.

We say that t is a quaternionic linear map, with respect to T , if t is linear and

t ◦ J = T (J ) ◦ t,

for any J ∈ ZV .

Proposition 1.5. Let V and W be quaternionic vector spaces and let t : V → W
be a nonzero linear map.

(i) If t is quaternionic linear, with respect to T1, T2 : ZV → ZW , then T1 = T2.
(ii) If t is quaternionic linear, with respect to some map T : ZV → ZW , then T

can be uniquely extended to an orientation preserving linear isometry from QV
to QW .
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Proof. Let J ∈ ZV . As t ◦ J = Tk(J ) ◦ t , (k = 1, 2), and t �= 0 we have that the
kernel of T1(J )−T2(J ) is nonzero. But T1(J )−T2(J ) is in Q̃W which is a division
algebra. Thus T1(J ) = T2(J ). This proves assertion (i).

To prove (ii) we, firstly, obtain, as above, that if (I, J, K ) satisfy the quater-
nionic identities then, also,

(
T (I ), T (J ), T (K )

)
satisfy the quaternionic identities.

Now, let (a, b, c) ∈ S2. Then t ◦ (aI + bJ + cK ) = T (aI + bJ + cK ) ◦ t .
On the other hand, we have

t ◦ (aI + bJ + cK ) = a t ◦ I + b t ◦ J + c t ◦ K = (
a T (I )+ b T (J )+ c T (K )

) ◦ t.

Thus T (aI + bJ + cK ) ◦ t = (
a T (I ) + b T (J ) + c T (K )

) ◦ t which, because
t �= 0, implies that T (aI + bJ + cK ) = a T (I ) + b T (J ) + c T (K ). The result
follows.

Next, we prove the following:

Proposition 1.6 ([3]).

(i) For any quaternionic vector space V there exists a quaternionic linear isomor-
phism from V to Hm (endowed with its natural linear quaternionic structure),
for some m ≥ 0.

(ii) Any quaternionic linear map t : Hm → Hn is given by t (X) = aX A, (X ∈
Hm), for some a ∈ H and an m × n matrix A, whose entries are quaternions.

Proof. Assertion (i) follows quickly from the fact that any hypercomplex vector
space is H-linearly isomorphic to Hm , for some m ≥ 0.

Let t : Hm → Hn be a quaternionic linear map, with respect to some map
T : S2(= ZHm ) → S2(= ZHn ).

If t = 0 then by taking, for example, a = 1 and A = 0 assertion (ii) is trivially
satisfied. If t �= 0 then, by Proposition 1.5(ii), there exists a ∈ Sp(1) such that
T (i) = aia−1, T (j) = aja−1, T (k) = aka−1 and one checks immediately that
t ′ = a−1t is H-linear.

Let A be the matrix of t ′ : Hm → Hm with respect to the canonical bases of the
free (left) H-modules Hm and Hm . Then t : Hm → Hn is given by t (X) = aX A,
(X ∈ Hm), and the proof is complete.

From Proposition 1.6 we obtain the following result.

Corollary 1.7 ([3]). The group of quaternionic linear automorphisms of Hm is
equal to Sp(1) · GL(m,H).

Let V be a quaternionic vector space and let ρ : H → End(V ) be an admissible
linear hypercomplex structure. Obviously, ρ ⊗ ρ : H⊗H → End(V ⊗ V ) is also a
morphism of associative algebras (the tensor products are taken over R). As SO(3)

acts on H by isometries, ρ ⊗ ρ maps the Euclidean structure

1 ⊗ 1 + i ⊗ i + j ⊗ j + k ⊗ k
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on the (real) dual of H onto an endomorphism β of V ⊗ V which depends only
of the linear quaternionic structure on V . Let b ∈ Hom(V ⊗ V, V 	 V ) be the
composition of β, on the left, with the projection V ⊗ V → V 	 V , where V 	 V
is the second symmetric power of V . Note that, b is also characterised by

b(X, Y ) = 1
2

3∑
i=0

(
Ei (X) ⊗ Ei (Y ) + Ei (Y ) ⊗ Ei (X)

)
, (1.1)

for any X, Y ∈ V , where E0 = ρ(1), E1 = ρ(i), E2 = ρ(j), E3 = ρ(k).

Proposition 1.8. Let V be a quaternionic vector space. For any J ∈ ZV we denote
by V 1,0;J and V 0,1;J the eigenspaces of J with respect to i and −i, respectively.

(i) The subspace b(V ⊗V ) of V 	V is equal to the space of Hermitian contravari-
ant symmetric 2-forms on V (that is, elements of V 	V invariant under J ⊗ J ,
for any J ∈ ZV ).

(ii) For any J ∈ ZV and α ∈ V ∗ we have ια
(
b(V 0,1;J , V 0,1;J )

) = 0.
(iii) Let J, K ∈ ZV be orthogonal to each other. Then for any X ∈ V 1,0:J , Y ∈

V 0,1:J and α ∈ V ∗ we have

ια
(
b(X, Y )

) = α(X)Y + α(Y )X + α(K X)K Y + α(K Y )K X.

Proof. Assertion (i) follows, for example, from relation (1.1).
To prove (ii), let α ∈ V ∗ and let I ∈ ZV be included in any admissible hyper-

complex basis (I, J, K ). Then

2 iα(b(X, Y )) = α(X)Y + α(Y )X + α(I X)I Y + α(I Y )I X

+ α(J X)JY + α(JY )J X + α(K X)K Y + α(K Y )K X.

If X, Y ∈ V 0,1;I (that is, I X = −iX , I Y = −iY ) we have

α(I X)I Y + α(I Y )I X = −(
α(X)Y + α(Y )X

)
,

α(K X)K Y + α(K Y )K X = α(I J X)I JY + α(I JY )I J X

= −(
α(J X)JY + α(JY )J X

)
.

The proof of (ii) follows.
Assertion (iii) can be proved similarly.

Remark 1.9. A result similar to Proposition 1.8 can be straightforwardly estab-
lished for β.
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2. Quaternionic manifolds and maps

In this section we review some basic facts on (almost) quaternionic manifolds (see
[3]) and we introduce the notion of quaternionic map.

Unless otherwise stated, all the manifolds and maps are assumed smooth.

Definition 2.1. A (fibre) bundle of associative algebras is a vector bundle whose
typical fibre is a (finite-dimensional) associative algebra A and whose structural
group is the group of automorphisms of A.

Let E and F be bundles of associative algebras. A morphism of vector bundles
ρ : E → F is called a morphism of bundles of associative algebras if ρ restricted
to each fibre is a morphism of associative algebras.

Next, we recall the definitions of almost quaternionic manifolds and almost
hypercomplex manifolds.

Definition 2.2 ([5]). An almost quaternionic structure on a manifold M is a pair
(E, ρ) where E is a bundle of associative algebras, over M , with typical fibre H
and ρ : E → End(T M) is a morphism of bundles of associative algebras. An
almost quaternionic manifold is a manifold endowed with an almost quaternionic
structure.

An almost hypercomplex structure on a manifold M is an almost quaternionic
structure (E, ρ) for which E = M × H. An almost hypercomplex manifold is a
manifold endowed with an almost hypercomplex structure.

It is well-known (see [3]) that there are other ways to define the almost quater-
nionic and hypercomplex manifolds.

Proposition 2.3. An almost quaternionic structure on a manifold M corresponds
to a reduction of the frame bundle of M to Sp(1) · GL(m,H) (equivalently, to an
Sp(1) · GL(m,H)-structure).

An almost hypercomplex structure on a manifold M corresponds to a reduction
of the frame bundle of M to GL(m,H).

Proof. Let M be a manifold endowed with an almost quaternionic structure (E, ρ).
At each x ∈ M , the morphism ρx : Ex → End(Tx M) determines a structure of
quaternionic vector space on Tx M .

Let U be an open set of M over which E is trivial. Then, by passing to an open
subset, if necessary, we can construct a local trivialization hU : U ×Hm → T M |U
of T M which induces quaternionic linear isomorphisms on each fibre.

If hU and hV are two such local trivializations, with U ∩ V �= ∅, then, by
Corollary 1.7, we have that

(
(hV )−1 ◦ hU

)
(x, q) = (x, a(x)q) for some map a :

U ∩ V → Sp(1) · GL(m,H), (x ∈ U ∩ V, q ∈ Hm).
Conversely, if the frame bundle of M admits a reduction to Sp(1) · GL(m,H)

then the morphism of Lie groups Sp(1) · GL(m,H) → SO(3), a · A → Ad a de-
termines an oriented Riemannian vector bundle Q of rank three and an injective
morphism of vector bundles Q ↪→ End(T M) with the property that any positive
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local orthonormal frame of Q satisfies the quaternionic identities. Let Q̃ be gener-
ated by Q and IdT M . Then Q̃ ↪→ End(T M) is a subbundle of associative algebras
and its typical fibre is H.

The proof for almost hypercomplex manifolds is similar.

Let M be a manifold endowed with an almost quaternionic structure (E, ρ).
Then, as each fibre of E is an associative algebra isomorphic to H, there exists an
oriented Riemannian vector subbundle of rank three Im E ⊆ E with the property
that any positive local orthonormal frame of it satisfies the quaternionic identities.
Let QM = ρ(Im E) and Q̃M = ρ(E). Then Q̃M ⊆ End(T M) is a subbundle of
associative algebras and its typical fibre is H. Also, QM is an oriented Riemannian
vector bundle of rank three with the property that any positive local orthonormal
frame of it satisfies the quaternionic identities; denote by Z M the sphere bundle of
QM .

Note that, any almost quaternionic manifold M , (dim M = 4m), is oriented;
at each x ∈ M , the orientation of Tx M is given by any J ∈ (Z M )x . Denote by L
the line bundle of M ; that is, the line bundle over M associated to the frame bundle
of positive frames through the morphism of Lie groups GL(4m,R)0 → (0, ∞),
a → (det a)1/(4m); see [14]. (Sometimes, (L∗)4m is called “the bundle of densities”
of M whilst L is called “the bundle of densities of weight 1” or, even, “the weight
bundle” of M .)

Also, as Sp(1) · GL(1,H) is equal to the connected component of the iden-
tity of CO(4), a four-dimensional almost quaternionic manifold is just an oriented
conformal manifold.

Definition 2.4. Let ϕ : M → N be a map between almost quaternionic manifolds
and let Φ : Z M → Z N be such that πN ◦ Φ = ϕ ◦ πM , where πM : Z M → M and
πN : Z N → N are the projections.

Then ϕ is a quaternionic map, with respect to Φ, if dϕπM (J ) ◦ J = Φ(J ) ◦
dϕπM (J ) for any J ∈ Z M .

A quaternionic immersion/submersion/diffeomorphism is a quaternionic map
which is an immersion/submersion/diffeomorphism.

An injective quaternionic immersion is called an almost quaternionic subman-
ifold.

Remark 2.5.

1. For immersions (and, in particular, diffeomorphisms) our definition of quater-
nionic map particularizes to give notions already in use (see, for example, [1]).

2. Let M , N and P be almost quaternionic manifolds, and let ϕ : M → N and
ψ : N → P be quaternionic maps, with respect to some maps Φ : Z M → Z N
and Ψ : Z N → Z P , respectively. Then, obviously, ψ ◦ ϕ is quaternionic, with
respect to Ψ ◦ Φ.

The following result follows quickly from Proposition 1.5.
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Proposition 2.6. Let M and N be almost quaternionic manifolds and let ϕ : M →
N be a map of rank at least one.

(i) If ϕ is quaternionic, with respect to Φ1, Φ2 : Z M → Z N , then Φ1 = Φ2.
(ii) If ϕ is quaternionic, with respect to Φ : Z M → Z N , then Φ induces an iso-

morphism of SO(3)-bundles QM = ϕ∗(QN ).

Let M be an almost quaternionic manifold, dim M = 4m. An almost quaternionic
connection on M is a connection ∇ which induces a connection on QM (that is, if
J is a section of QM and X is a vector field on M then ∇X J is a section of QM );
equivalently, ∇ induces a connection on the reduction to Sp(1) · GL(m,H) of the
frame bundle of M , corresponding to the almost quaternionic structure. If m ≥ 2, a
quaternionic connection on M is a torsion-free almost quaternionic connection. If
m = 1, a quaternionic connection on M is a Weyl connection whose Weyl curvature
tensor is anti-self-dual (it is well known that this condition depends only of the
underlying oriented conformal structure; see [14] and the references therein).

Definition 2.7 ([21]; cf. [16]). A quaternionic manifold is an almost quaternionic
manifold endowed with a quaternionic connection.

The set of quaternionic connections on a quaternionic manifold is well-under-
stood.

Proposition 2.8 ([17]; see [3]). Let M be a quaternionic manifold, dim M = 4m.
The set of quaternionic connections on M is an affine space, over the vector space
of 1-forms on M, isomorphic to the affine space of connections on L : if α is the dif-

ference between the connections induced on L
2m

m+1 by two quaternionic connections
∇2 and ∇1 on M then

∇2
X Y = ∇1

X Y + α(X)Y + α(Y )X − ια
(
b(X, Y )

)
,

for any vector fields X and Y on M.

Next, we recall the natural “almost twistorial structures” of a quaternionic man-
ifold (see [14] for the general notion of “almost twistorial structure”).

Example 2.9 ([21]). Let M be a quaternionic manifold. The quaternionic connec-
tion of M induces a connection H ⊆ T Z M on Z M . Let H 1,0 be the complex
subbundle of H C such that dπM

(
H 1,0

J

)
is the eigenspace corresponding to i of

J ∈ End(TπM (J )M), for any J ∈ Z M , where πM : Z M → M is the projection.
Let JM be the almost complex structure on Z M whose eigenbundle corre-

sponding to i is equal to H 1,0 ⊕ (ker dπM )1,0.
We have that JM is integrable (this can be proved by using [18, Theorem 1.1]).

Furthermore, JM does not depend of the quaternionic connection on M (this can
be proved by using Propositions 1.8(ii) and 2.8).

We call τM = (Z M , M, πM ,JM ) the twistorial structure of M .
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From the integrability of τM it follows that there exists a unique real-analytic
structure on M with respect to which the following conditions are satisfied:

a) The almost quaternionic structure of M is real-analytic;
b) Locally, there exist real-analytic quaternionic connections on M .

Note that, the given quaternionic connection on M is not necessarily real-analytic.

Remark 2.10 (cf. [4]). Let M be an almost quaternionic manifold and let ∇ be an
almost quaternionic connection on M . Then, similarly to Example 2.9, we construct
an almost complex structure J ∇ on Z M and an almost twistorial structure τ∇ =
(Z M , M, πM ,J ∇).

1. Let J be a (local) admissible almost complex structure on M and let s J be the
section of Z M corresponding to J . Then any two of the following assertions
imply the third:

(i) J is integrable;
(ii) s J : (M, J ) → (Z M ,J ∇) is holomorphic;

(iii) T ∇(
2(T 0,1;J M)

) ⊆ T 0,1;J M , where T ∇ is the torsion of ∇.

2. The almost twistorial structure τ∇ is integrable if and only if M admits a quater-
nionic connection and τ∇ = τM . Indeed, if J ∇ is integrable then, locally, there
exist many admissible almost complex structures J which satisfy assertion (ii),
above; moreover, J ∇ integrable implies that condition (iii) above is satisfied
(apply [18, Theorem 1.1]) and therefore any such J is integrable. We have
thus proved that if J ∇ is integrable then, locally, there exist many admissible
complex structures on M ; consequently, M admits a quaternionic connection (if
dim M = 4 this follows from [22] whilst, if dim M ≥ 8, this is a consequence
of [4, Theorem 2.4]). Also, we have that T 1,0;J ∇

Z M is, pointwisely, generated
by (ker dπ)1,0 and the holomorphic tangent bundles to the images of the local
sections of Z M corresponding to admissible local complex structures on M . As
this, also, holds for any quaternionic connection on M , we obtain J ∇ = JM .

Example 2.11 (cf. [7]). With the same notation as in Example 2.9, let J ′
M the al-

most complex structure on Z M whose eigenbundle corresponding to i is equal to
H 1,0 ⊕ (ker dπM )0,1.

We have that J ′
M is nonintegrable (that is, always not integrable). Furthermore,

from Propositions 1.8(iii) and 2.8 it follows that J ′
M determines the quaternionic

connection on M .
We call τ ′

M = (Z M , M, πM ,J ′
M ) the nonintegrable almost twistorial structure

of M .

We end this section with a well-known fact which will be used later on; for the
reader’s convenience we also supply a proof.

Proposition 2.12 (see [2]). Any almost quaternionic submanifold N of a quater-
nionic manifold M is totally-geodesic with respect to any quaternionic connection
∇ on M. Moreover, ∇ induces a quaternionic connection on N.
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Proof. We have J
(
TπM (J )N

) ⊆ TπM (J )N , for any J ∈ (QM )|N , where πM :
QM → M is the projection. Thus, the vector bundle (T M |N )/T N admits a unique
reduction to Sp(1)·GL(m−n,H) such that the projection π : T M → (T M |N )/T N
is quaternionic linear on each fibre, where dim N = 4n and dim M = 4m.

Let B be the “second fundamental form” of N ⊆ M with respect to ∇; that
is, B(X, Y ) = π(∇X Y ), for any vector fields X , Y on N . We have to prove that
B = 0.

Let J be a section of Z M over some open set U of M which intersects N . Then,
for any x ∈ U ∩ N and X ∈ Tx N , we have that ∇X J ∈ (QM )x and, consequently,
(∇X J )(Tx N ) ⊆ Tx N . Therefore, ∇X (JY ) − J (∇X Y ) is a vector field on U ∩ N ,
for any vector fields X , Y on U ∩ N .

Hence, for any J ∈ (Z M )|N and X, Y ∈ T N , we have B(X, JY ) = J B(X, Y );
as B is symmetric, this is equivalent to B(J X, JY ) = −B(X, Y ). By applying this
property to a positive orthonormal frame of QM the proof follows quickly.

Remark 2.13. Proposition 2.12 motivates the use of the term “quaternionic sub-
manifold”, instead of “almost quaternionic submanifold”, when dealing with an
ambient quaternionic manifold.

3. Twistorial maps between quaternionic manifolds

The following definition is a particular case of [14, Definition 4.1].

Definition 3.1. Let M and N be quaternionic manifolds and let ϕ : M → N be a
map. Suppose that there exists a map Φ : Z M → Z N such that πN ◦ Φ = ϕ ◦ πM .

Denote by τM = (Z M , M, πM ,JM ) and τN = (Z N , N , πN ,JN ) the twisto-
rial structures of M and N , respectively. Then ϕ : (M, τM ) → (N , τN ) is a
(J -)twistorial map, with respect to Φ, if Φ : (Z M ,JM ) → (Z N ,JN ) is holo-
morphic.

Similarly, ϕ : (M, τ ′
M ) → (N , τ ′

N ) is a J ′-twistorial map, with respect to Φ,
if Φ : (Z M ,J ′

M ) → (Z N ,J ′
N ) is holomorphic, where τ ′

M = (Z M , M, πM ,J ′
M )

and τ ′
N = (Z N , N , πN ,J ′

N ) are the nonintegrable almost twistorial structures of M
and N , respectively.

Let M be an almost quaternionic manifold and let J ∈ Z M . We denote
T 1,0;J M and T 0,1:J M the eigenspaces of J corresponding to i and −i, respectively.

Proposition 3.2. Let M and N be quaternionic manifolds; denote by ∇M and ∇N

the quaternionic connections of M and N, respectively.
Let ϕ : M → N be a quaternionic map with respect to some map Φ : Z M →

Z N ; suppose that ϕ is of rank at least one.
Then the following assertions are equivalent:

(i) ϕ : (M, τM ) → (N , τN ) is twistorial, with respect to Φ.
(ii) (∇dϕ)(T 0,1;J

πM (J )M, T 0,1;J
πM (J )M) ⊆ T 0,1;J

ϕ(πM (J ))N, for any J ∈ Z M
(= ϕ∗(Z N )

)
,

where ∇ is the connection, on Hom
(
T M, ϕ∗(T N )

)
, induced by ∇M and ∇N .
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(iii) A(J X)J = J ◦ (A(X)J ), for any J ∈ Z M and X ∈ TπM (J )M, where A is the
difference between the connections, on QM

(= ϕ∗(QN )
)
, induced by ∇M and

∇N .

Proof. To prove (i) ⇐⇒ (iii), note that it is sufficient to consider ϕ of constant
rank (there exists a dense open subset of M such that on each of its connected com-
ponents ϕ has constant rank). As then, locally, the image of ϕ is a quaternionic
submanifold of N , Proposition 2.12 implies that we can further assume ϕ submer-
sive.

Let J0 ∈ Z M and let x0 = πM (J0). Also, let S be (the image of) a local section
of ϕ, containing x0, such that Tx0 S is preserved by J0. Locally, we may extend J0

to a section J of Z M , over S. Then there exists a local section J̌ of Z N such that
J = ϕ∗( J̌ ) (equivalently, Φ ◦ J = J̌ ◦ ϕ); write J̌0 = J̌ϕ(x0).

Now, the differential of J at x0 is a complex linear map from
(
Tx0 S, J0|Tx0 S

)
to

(
TJ0 Z M , (JM )J0

)
if and only if ∇M

J0 X J = J0 ◦ ∇M
X J , for any X ∈ Tx0 S. Sim-

ilarly, the differential of J̌ at ϕ(x0) is a complex linear map from
(
Tϕ(x0)N , J̌0

)
to(

TJ̌0
Z N , (JN ) J̌0

)
if and only if ∇N

J̌0 X
J̌ = J̌0 ◦ ∇N

X J̌ , for any X ∈ Tϕ(x0)N .

It follows that dΦJ0 : (
TJ0 Z M , (JM )J0

) → (
TJ̌0

Z N , (JN ) J̌0

)
is complex lin-

ear if and only if A(J0 X)J0 = J0 ◦ (A(X)J0), for any X ∈ Tx0 M .
To prove (ii) ⇐⇒ (iii), firstly, note that, by considering dϕ as a section of

Hom
(
T M, ϕ∗(T N )

)
, we have dϕ ◦ J = J ◦ dϕ, for any J ∈ Z M . By taking the

covariant derivative of this equality we obtain

(∇X dϕ) ◦ J − J ◦ (∇X dϕ) = (A(X)J ) ◦ dϕ,

for any J ∈ Z M and X ∈ TπM (J )M . The proof follows.

Remark 3.3. The method of Proposition 3.2 can be applied in several other con-
texts. For example, let (Mm, c, D) be a Weyl space, dim M = m, and let 1 ≤ r ≤
1
2 m. If r < 1

2 m let π : P → M be the bundle of skew-adjoint f -structures on
(Mm, c) whose kernels have dimension m −2r (any F ∈ P is a skew-adjoint linear
map on

(
Tπ(F)M, cπ(F)

)
such that F3 + F = 0 and dim(kerF) = m − 2r ). If

r = 1
2 m, (m even), let P be the bundle of positive orthogonal complex structures

on (Mm, c).
Then D induces a connection H ⊆ T P on P . Define H 0 ⊆ H such that

dπ(H 0
F ) = T 0;F

π(F)M , where T 0;F
π(F)M is the eigenspace of F corresponding to 0,

(F ∈ P). Also, define H 0,1 ⊆ H C such that dπ(H 0,1
F ) = T 0,1;F

π(F) M , where

T 0,1;F
π(F) M is the eigenspace of F corresponding to −i, (F ∈ P).

Let F be the almost f -structure on P whose eigendistributions correspond-
ing to 0 and −i are H 0 and H 0,1 ⊕ (ker dπM )0,1, respectively. Then τm,r =
(P, M, π,F) is an almost twistorial structure on M ; see [18] for the characterisa-
tion of the integrability of τm,r .
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Now, let (M2n, cM , DM ) and (N 2n−1, cN , DN ) be Weyl spaces; denote by
τ M

2n,n = (PM , M, πM ,J ) and τ N
2n−1,n−1 = (PN , N , πN ,F) the corresponding al-

most twistorial structures.
Let ϕ : (M2n, cM ) → (N 2n−1, cN ) be a horizontally conformal submersion.

There exists a unique map Φ : PM → PN such that πN ◦ Φ = ϕ ◦ πM and

dϕ
(
T 0,1;J

πM (J )M
) = T 0;Φ(J )

πN (Φ(J ))N ⊕ T 0,1;Φ(J )
πN (Φ(J ))N ,

for any J ∈ PM .
The following assertions are equivalent:

(i) ϕ : (M2n, τ M
2n,n) → (N 2n−1, τ N

2n−1,n−1) is twistorial, with respect to Φ (that

is, Φ : (PM ,J ) → (PN ,F) is holomorphic; equivalently, dΦ(T 0,1 PM ) ⊆
T 0 PN ⊕ T 0,1 PN ).

(ii) (Ddϕ)(T 0,1;J
πM (J )M, T 0,1;J

πM (J )M) ⊆ dϕ(T 0,1;J
πM (J )M), for any J ∈ PM , where D is the

connection, on Hom
(
T M, ϕ∗(T N )

)
, induced by DM and DN .

In the particular case n = 2, from the above equivalence it follows quickly the
known (see [14] and the references therein) characterisation of twistorial maps from
four-dimensional conformal manifolds to three-dimensional Weyl spaces; also, re-
call that then, if (i) or (ii) holds, (M4, cM ) is anti-self-dual if and only if (N 3, cN ,
DN ) is Einstein-Weyl.

If n ≥ 3 and (i) or (ii) holds then (M2n, cM ) is flat if and only if DN is the
Levi-Civita connection of constant curvature local representatives of cN .

Similarly to Proposition 3.2, we obtain the following result.

Proposition 3.4. Let M and N be quaternionic manifolds; denote by ∇M and ∇N

the quaternionic connections of M and N, respectively.
Let ϕ : M → N be a quaternionic map with respect to some map Φ : Z M →

Z N ; suppose that ϕ is of rank at least one.
Then the following assertions are equivalent:

(i) ϕ : (M, τ ′
M ) → (N , τ ′

N ) is J ′-twistorial, with respect to Φ.

(ii) (∇dϕ)(T 1,0;J
πM (J )M, T 0,1;J

πM (J )M) ⊆ T 0,1;J
ϕ(πM (J ))N, for any J ∈ Z M

(= ϕ∗(Z N )
)
,

where ∇ is the connection, on Hom
(
T M, ϕ∗(T N )

)
, induced by ∇M and ∇N .

(iii) A(J X)J = −J ◦ (A(X)J ), for any J ∈ Z M and X ∈ TπM (J )M, where A is
the difference between the connections, on QM

(= ϕ∗(QN )
)
, induced by ∇M

and ∇N .

Next, we prove the following result.



TWISTORIAL MAPS BETWEEN QUATERNIONIC MANIFOLDS 59

Theorem 3.5. Let ϕ : M → N be a map between quaternionic manifolds and let
Φ : Z M → Z N be such that πN ◦ Φ = ϕ ◦ πM .

If the zero set of the differential of ϕ has empty interior then the following
assertions are equivalent:

(i) ϕ : (M, τM ) → (N , τN ) is twistorial, with respect to Φ.
(ii) ϕ : M → N is quaternionic, with respect to Φ.

Proof. Obviously, (i) =⇒ (ii). Thus, it is sufficient to prove (ii) =⇒ (i).
Let F ⊆ M be the zero set of the differential of ϕ. As M \ F is dense in M

and πM is open, we have π−1
M (M \ F) dense in Z M . Thus, we may suppose that, at

each point, ϕ has rank at least one.
By Proposition 3.2, it is sufficient to prove that if ϕ is quaternionic then

(∇dϕ)(T 0,1;J
πM (J )M, T 0,1;J

πM (J )M) ⊆ T 0,1;J
ϕ(πM (J ))N ,

for any J ∈ Z M
(= ϕ∗(Z N )

)
.

As in the proof of Proposition 3.2, we may suppose ϕ submersive. Denote
V = ker dϕ and let H be a distribution on M , complementary to V , and which
is preserved by Z M (for example, let H be the orthogonal complement of V with
respect to some Hermitian metric on M); as usual, we identify H = ϕ∗(T N ).

Let J be an admissible complex structure (locally) defined on M . As V and
H are invariant under J , we have decompositions V C = V 0,1;J ⊕ V 1,0;J and
H C = H 0,1;J ⊕ H 1,0;J .

Because ϕ is quaternionic, we have H 0,1;J = ϕ∗(T 0,1;J N ).
Let V and X be sections of V 0,1;J and T 0,1;J M , respectively. As the section

of Z M corresponding to J is a holomorphic map from (M, J ) to (Z M ,JM ), we
have that ∇M

V X is a section of T 0,1;J M . Hence, (∇dϕ)(V, X) = − dϕ(∇M
V X) is a

section of H 0,1;J .
From the fact that ∇M and ∇N are torsion-free it follows that there exists a

section α of H ∗ such that (∇dϕ)(X, Y ) = Sα(X, Y ), for any X, Y ∈ H (cf.
Proposition 2.8). Hence, by Proposition 1.8, (∇dϕ)(H 0,1;J , H 0,1;J ) ⊆ H 0,1;J .

The proof is complete.

From Theorem 3.5 we obtain the following result (which, also, holds for a
more general class of twistorial maps).

Corollary 3.6. Any quaternionic map between quaternionic manifolds is real-anal-
ytic, at least, outside the frontier of the zero set of its differential.

A condition equivalent to assertion (ii) of the following result is used in [11],
for maps between quaternionic Kähler manifolds.
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Theorem 3.7. Let ϕ : M → N be a map between quaternionic manifolds and let
Φ : Z M → Z N be such that πN ◦ Φ = ϕ ◦ πM .

If the zero set of the differential of ϕ has empty interior then the following
assertions are equivalent:

(i) ϕ : (M, τ ′
M ) → (N , τ ′

N ) is J ′-twistorial, with respect to Φ.
(ii) ϕ is quaternionic, with respect to Φ, and the connections on QM (= ϕ∗(QN )),

induced by the quaternionic connections of M and N, are equal.
(iii) ϕ is a totally geodesic map which is quaternionic, with respect to Φ.

Proof. This can be proved as follows. By Proposition 3.4, we have (ii) =⇒ (i) and
(iii) =⇒ (i). Thus, it remains to prove (i) =⇒ (ii),(iii).

If (i) holds then ϕ is quaternionic and, by Theorem 3.5, ϕ : (M, τM ) →
(N , τN ) is twistorial. Thus, assertion (iii) of Proposition 3.2 and assertion (iii)
of Proposition 3.4 are both satisfied. This shows that (i) =⇒ (ii).

Finally, from Proposition 3.4 it follows quickly that the (1,1)-component of
∇dϕ is zero. This implies ∇dϕ = 0 and the proof is complete.

Next, we explain why, in Theorems 3.5 and 3.7, the assumption on the zero set
of the differential of the map cannot be weakened.

Remark 3.8. Let M and N be quaternionic manifolds. Suppose that Z M = M ×S2

is the trivial bundle and let π : Z M → S2 be the projection.
Let y ∈ N and let T : S2 → (Z N )y be an orientation preserving isometry.

Then the constant map ϕ : M → N , x → y, (x ∈ M), is quaternionic, with respect
to Φ = T ◦ π .

On the other hand, ϕ is twistorial, with respect to Φ, if and only if M is hyper-
complex.

Note that Theorems 3.5 and 3.7 hold for any nonconstant real-analytic map
(without any assumption on the zero set of the differential of the map).

4. Examples and further results

Firstly, we mention that, as any quaternionic submanifold corresponds to an injec-
tive quaternionic immersion, in [25] can be found many examples of quaternionic
maps. For example, we have the following:

Example 4.1. Let Gr2(m +2,C) be the Grassmannian manifold of complex vector
subspaces, of dimension 2, of Cm+2, (m ≥ 1).

This is a quaternionic manifold of (real) dimension 4m. Its twistor space is
the flag manifold F1,m+1(m + 2,C) of pairs (l, p) with l and p complex vector
subspaces of Cm+2 of dimensions 1 and m + 1, respectively, such that l ⊆ p. The
projection π : F1,m+1(m +2,C) → Gr2(m +2,C) is defined by π(l, p) = l ⊕ p⊥,
for any (l, p) ∈ F1,m+1(m + 2,C), where p⊥ is the orthogonal complement of p
with respect to the canonical Hermitian product on Cm+2.
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Any injective complex linear map A : Cm+2 → Cn+2, (1 ≤ m ≤ n), induces,
canonically, a quaternionic map ϕA : Gr2(m +2,C) → Gr2(n +2,C), with respect
to the map Φ A : F1,m+1(m + 2,C) → F1,n+1(n + 2,C) defined by Φ A(l, p) =(

A(l), A(p) ⊕ q
)
, for any (l, p) ∈ F1,m+1(m + 2,C), where q ⊆ Cn+2 is a fixed

complement of imA in Cn+2. (Note that, if we choose another complement of
imA in Cn+2 then Φ A changes by a composition, to the left, with a holomorphic
diffeomorphism of F1,n+1(n + 2,C).)

The next example shows that, besides quaternionic immersions, there are many
other quaternionic maps.

Example 4.2. Let HPm be the left quaternionic projective space of (real) dimen-
sion 4m, (m ≥ 1). This is a quaternionic manifold (see [15]). Its twistor space is
CP2m+1, where the projection π : CP2m+1 → HPm is induced by the identifica-
tion Hm+1 = C2m+2, through the morphism of Lie groups C∗ → H∗.

Let A : Hm+1 → Hn+1 be a left H-linear map, (m, n ≥ 1). Then A induces
two maps ϕA : HPm \ PH(kerA) → HPn and Φ A : CP2m+1 \ PC(kerA) →
CP2n+1, where PH(kerA) and PC(kerA) are the quaternionic and complex projec-
tive spaces, respectively, determined by kerA.

Then ϕA is a quaternionic map, with respect to Φ A (just note, for example, that
Φ A is holomorphic).

Example 4.3. Let π : Hm+1 \ {0} → HPm be the Hopf fibration. Then π is a
quaternionic map, with respect to the canonical projection

� : 2(m + 1)O(1) \ 0 → P
(
2(m + 1)O(1)

) = CP2m+1,

where O(1) is the dual of the tautological line bundle over CP1.

The following example based on a construction of [24] (see [19]) is, essentially,
a generalization of Example 4.3.

Example 4.4. Let M be a quaternionic manifold of dimension 4m, (m ≥ 1), and let(
P, M, Sp(1)·GL(m,H)

)
be its bundle of quaternionic frames (that is, quaternionic

linear isomorphisms from Hm to Tx M , (x ∈ M)).
Define ρ : Sp(1) · GL(m,H) → H∗/{±1} by ρ(a · A) = ±a, for any a · A ∈

Sp(1) · GL(m,H), where H∗ = H \ {0}.
Denote H = ρ(P). Then

(
H, M,H∗/{±1}) is a principal bundle. Further-

more, the quaternionic connection of M induces a principal connection H ⊆ T H .
Let V = ker π , where π : H → M is the projection.

Let q ∈ S2 ⊆ ImH. The multiplication to the right by −q defines a negative
(linear) complex structure on H which, obviously, is invariant under the left action
of H∗ on H. Thus, q induces on V a structure of complex vector bundle J q,V .
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As Q̃M is a bundle associated to H , we have π∗(Q̃M ) = H ×H. Together with
the fact that H = π∗(T M) this induces a left action of H∗ on H . In particular, q
induces on H a structure of complex vector bundle J q,H .

Obviously, J q = J q,V ⊕ J q,H is an almost complex structure on H .
The morphism of Lie groups C∗ → H∗ given by a + bi → a + bq, (a, b ∈

R), induces a right action of C∗/{±1} on H . Furthermore, the quotient of H
through this action is Z M and the projection ψq : (H, J q) → (Z M ,J M ) is holo-
morphic.

From the fact that J M is integrable it follows that J q is integrable. Thus,
(J i, J j, J k) defines a hypercomplex structure on H . The complex structure JH of
its twistor space Z H (= H × S2) is characterised by the following: JH |{e}×S2 is
the canonical complex structure of S2 whilst JH |H×{q} = J q , for any e ∈ H and
q ∈ S2.

Note that, Z M = H ×χ S2, where χ : (
H∗/{±1}) × S2 → S2 is defined by

χ(±p, q) = pqp−1, for any ±p ∈ H∗/{±1} and q ∈ S2. Let � : Z H → Z M
be the projection. Alternatively, � can be defined by �(e, q) = ψq(e), for any
(e, q) ∈ Z H .

Then � : (Z H ,JH ) → (Z M ,JM ) is holomorphic and π : H → M is a
quaternionic submersion, with respect to �.

Next, we prove that Example 4.2 gives all the quaternionic maps between open
sets of quaternionic projective spaces.

Theorem 4.5. Let U be a connected open set of HPm and let ϕ : U → HPn be a
quaternionic map, (m, n ≥ 1).

Then there exists an H-linear map A : Hm+1 → Hn+1 such that ϕ = ϕA|U
and, in particular, U ∩ PH(kerA) = ∅.

To prove Theorem 4.5, we need two lemmas, the first of which is, most likely,
known but we do not have a reference for it.

Lemma 4.6. Let M be a quaternionic manifold and let τM = (Z M , M, πM ,JM )

be its twistorial structure.
Then a function f : M → C is constant if and only if f ◦πM : (Z M ,JM ) → C

is holomorphic.

Proof. If f ◦ πM : (Z M ,JM ) → C is holomorphic then f is holomorphic with
respect to any (local) admissible complex structure J on M ; equivalently, the dif-
ferential of f is zero on T 0,1;J M .

It follows that d f = 0 and the lemma is proved.
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Lemma 4.6 can be also proved by considering the real structure σ : J → −J ,
as F = f ◦ πM is holomorphic and F = F ◦ σ is anti-holomorphic. Then dF = 0
and, as πM is a submersion, d f = 0.

Lemma 4.7 (cf. [3]). Let A be a complex linear map from Hm+1 = C2m+2 to
Hn+1 = C2n+2, of complex rank at least 4, (m, n ≥ 1). Suppose that there ex-
ists an open set U ⊆ Hm+1 such that A maps the intersection of any quaternionic
line (through the origin) with U into a quaternionic line.

Then A is quaternionic linear.

Proof. The (germ unique) complexification of HPm is Gr2(2m + 2,C) (to show
this, use the fact that GL(m + 1,H) acts transitively on HPm).

Clearly, A determines a holomophic map ψ A : A → (HPn)C, where A is the
(open) subset of Gr2(2m + 2,C) formed of those two-dimensional complex vector
subspaces of C2m+2 whose intersection with kerA is {0}. Note that, ψ A has a pole
along (HPm)C \ A.

From the hypothesis, it follows that the restriction of ψ A to some open set
intertwines the conjugations Cm and Cn of (HPm)C and (HPn)C, respectively. By
analyticity, we obtain that ψ A and Cn ◦ ψ A ◦ Cm determine a holomorphic map on
A ∪ Cm(A). Consequently, Cm(A) = A (otherwise, ψ A could be holomorphically
extended over points of (HPm)C \ A) and Cn ◦ ψ A = ψ A ◦ Cm . Hence, A maps
any quaternionic line whose intersection with kerA is {0} onto a quaternionic line.

Note that, there are no quaternionic lines which intersect kerA along complex
vector spaces of dimension 1 (otherwise, the map Φ A from CP2m+1 \ PC(kerA) to
CP2n+1, determined by A, would induce a continuous extension of ψ A over points
of (HPm)C \ A).

Thus, A maps any quaternionic line into a quaternionic line and, by [3, Theo-
rem 1.1], the proof of the lemma is complete.

Remark 4.8. With the same notation as in Lemma 4.7 and its proof, let ϕA : HPm\
PH(kerA) → HPn be the quaternionic map determined by A. Then ψ A is the
complexification of ϕA.

Proof of Theorem 4.5. Let ϕ be a quaternionic map from a connected open set of
HPm to HPn .

We, firstly, assume the differential of ϕ nowhere zero.
Then, by Corollary 3.6, ϕ is real-analytic. Therefore, it is sufficient to find

an H-linear map A such that ϕ = ϕA on some open set. Moreover, similarly to
the proof of Proposition 3.2, we may assume ϕ submersive, surjective and with
connected fibres.

By Theorem 3.5, ϕ is twistorial, with respect to some holomorphic map Φ

between open sets U and V of CP2m+1 and CP2n+1, respectively. Also, U and
V contain families of projective lines (the twistor lines) which are mapped one onto
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another by Φ. Moreover, as the complexification of HPm contains many complex-
quaternionic submanifolds, the preimage through Φ of a hyperplane of CP2n+1

(not disjoint from V ) is an open subset of a hyperplane of CP2m+1.
An argument similar to the one used in [9, page 65] shows that the nonhomo-

geneous components of Φ divided by suitable linear functions are constant along
the twistor lines. Hence, by Lemma 4.6, these meromorphic functions are constant.

We have thus proved that Φ is induced by some complex linear map from
C2m+2 to C2n+2. Then the proof (under the assumption that the differential of ϕ is
nowhere zero) follows from Lemma 4.7.

Finally, note that, if an H-linear map A : Hm+1 → Hn+1 induces a noncon-
stant (quaternionic) map ϕA : HPm \ PH(kerA) → HPn then its real rank is, at
least, eight. Hence, at each point, the rank of the differential of ϕA is at least four. It
follows quickly that the differential of any nonconstant quaternionic map, between
connected open sets of quaternionic projective spaces, is nowhere zero. The proof
is complete.

Remark 4.9. Theorem 4.5 can be, also, proved by applying an inductive argument,
based on a result of [15], to show that in terms of non-homogeneous quaternionic
projective coordinates (xj ) j=1,...,m , and (yα)α=1,...,n , on HPm and HPn , respec-
tively, any quaternionic map ϕ : HPm → HPn is given by

yα = (xj a
j
0 + a0

0)−1(xj a
j
α + a0

α), (α = 1, . . . , n),

where the coefficients a j
α are constant quaternions (and the Einstein summation

convention is used).

We end this section with the following immediate consequence of Theorem 4.5.

Corollary 4.10. Any (globally defined) quaternionic map from HPm to HPn is
induced by an injective H-linear map Hm+1 → Hn+1; in particular, m ≤ n.

Appendix

A. Comparison with other notions of quaternionicity

Firstly, we mention the fairly standard notion of “hypercomplex (triholomorphic)
map” between almost hypercomplex manifolds. Obviously, any such map is quater-
nionic with respect to the induced almost quaternionic structures on its domain and
codomain.

Secondly, there have been studied maps, between quaternionic Kähler mani-
folds M and N , which pull-back Kähler forms of elements of Z N to (the space of)
Kähler forms of elements of Z M (see [13]). As the Kähler forms are nondegenerate,
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this condition applies only to immersions and to constant maps, and, therefore, it is
too restrictive (also, the presence of a Riemannian metric is required).

Thirdly, there exists the notion of “regular quaternionic function”, of one quater-
nionic variable, introduced in [8] (see [23] for a modern presentation and further
results) and later generalised to maps between hyper-Kähler manifolds (see [6, 10]
and the references therein):

Definition A.1. Let V and W be quaternionic vector spaces and let T : ZV → ZW
be an orientation preserving isometry.

We say that a map t : V → W is linear Fueter-quaternionic, with respect to T ,
if t is real linear and for some (and, consequently, any) positive orthonormal basis
(I, J, K ) of QV we have t = T (I ) ◦ t ◦ I + T (J ) ◦ t ◦ J + T (K ) ◦ t ◦ K .

With the same notation as in Definition A.1, let CT be the endomorphism de-
fined by CT (t) = T (I ) ◦ t ◦ I + T (J ) ◦ t ◦ J + T (K ) ◦ t ◦ K , (t ∈ HomR(V, W )),
where (I, J, K ) is a positive orthonormal basis of QV . A straightforward calcula-
tion shows that CT does not depend of the positive orthonormal basis (I, J, K ) and,
in particular, the notion of “Fueter-quaternionic map”, between almost quaternionic
manifolds, is well-defined.

Furthermore, CT satisfies the equation (CT )2+2 CT −3 = 0. Let FT and QT be
the eigenspaces of CT corresponding to 1 and −3, respectively. Then HomR(V,W )=
QT ⊕FT and FT is the space of linear Fueter-quaternionic maps, with respect to T ,
whilst QT is the space of linear quaternionic maps, with respect to T [10]. Appar-
ently, this would suggest that Fueter-quaternionic maps are “anti-quaternionic”. In
fact, by reformulating results mentioned in [6] and [10], the following proposition
can be easily obtained.

Proposition A.2. Let V and W be quaternionic vector spaces and let T be an ori-
entation preserving isometry from ZV to ZW .

Then, for any line through the origin d ⊆ QV , we have QT ◦Sd
⊆ FT , where

Sd is the symmetry in d. Moreover, FT is generated by
⋃

d QT ◦Sd
.

Finally, let U , V and W be quaternionic vector spaces and let T ′ : ZU → ZV
and T ′′ : ZV → ZW be orientation preserving isometries. Also, let d ⊆ QV be a
line through the origin. If t ′ : U → V and t ′′ : V → W are linear quaternionic
maps, with respect to Sd ◦ T ′ and T ′′ ◦ Sd , respectively, then, by Proposition A.2,
t ′ and t ′′ are Fueter-quaternionic, with respect to T ′ and T ′′, respectively. However,
t ′′ ◦ t ′ is Fueter-quaternionic, with respect to T ′′ ◦ T ′, if and only if t ′′ ◦ t ′ = 0.
Therefore the Fueter-quaternionic maps are not closed under composition.

Moreover, not all linear quaternionic maps are Feuter-quaternionic; see [12],
where, and also in [20], an algebraic approach to Hypercomplex Geometry is de-
veloped.
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Différentielle 9 (1967), 389–461.

[6] J. CHEN and J. LI, Quaternionic maps between hyperkähler manifolds, J. Differential
Geom. 55 (2000), 355–384.

[7] J. EELLS and S. SALAMON, Twistorial construction of harmonic maps of surfaces into
four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 589–640.

[8] R. FUETER, Die Funktionentheorie der Differentialgleichungen �u = 0 und ��u = 0 mit
vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307–330.

[9] P. GRIFFITHS and J. HARRIS, “Principles of Algebraic Geometry”, Wiley Classics Library,
John Wiley & Sons, Inc., New York, 1978.

[10] A. HAYDYS, Nonlinear Dirac operator and quaternionic analysis, Comm. Math. Phys. 281
(2008), 251–261.
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[15] S. MARCHIAFAVA, Sulle varietà a struttura quaternionale generalizzata, Rend. Mat. 3
(1970), 529–545.

[16] V. OPROIU, Almost quaternal structures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 23 (1977),
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