Twistorial maps between quaternionic manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 1, pp. 47-67.

We introduce a natural notion of quaternionic map between almost quaternionic manifolds and we prove the following, for maps of rank at least one: - A map between quaternionic manifolds endowed with the integrable almost twistorial structures is twistorial if and only if it is quaternionic. - A map between quaternionic manifolds endowed with the nonintegrable almost twistorial structures is twistorial if and only if it is quaternionic and totally-geodesic. As an application, we describe all the quaternionic maps between open sets of quaternionic projective spaces.

Classification: 53C28, 53C26
Ianuş, Stere 1; Marchiafava, Stefano 2; Ornea, Liviu 1, 3; Pantilie, Radu 3

1 Universitatea din Bucureşti, Facultatea de Matematică, Str. Academiei n. 14, 70109, Bucureşti, România
2 Dipartimento di Matematica, Istituto “Guido Castelnuovo”, Sapienza Università di Roma, Piazzale Aldo Moro, 2, I 00185 Roma, Italia
3 Institutul de Matematică “Simion Stoilow”, al Academiei Române, C.P. 1-764, 014700, Bucureşti, România
@article{ASNSP_2010_5_9_1_47_0,
     author = {Ianu\c{s}, Stere and Marchiafava, Stefano and Ornea, Liviu and Pantilie, Radu},
     title = {Twistorial maps between quaternionic manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {47--67},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {1},
     year = {2010},
     mrnumber = {2668873},
     zbl = {1193.53121},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2010_5_9_1_47_0/}
}
TY  - JOUR
AU  - Ianuş, Stere
AU  - Marchiafava, Stefano
AU  - Ornea, Liviu
AU  - Pantilie, Radu
TI  - Twistorial maps between quaternionic manifolds
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 47
EP  - 67
VL  - 9
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2010_5_9_1_47_0/
LA  - en
ID  - ASNSP_2010_5_9_1_47_0
ER  - 
%0 Journal Article
%A Ianuş, Stere
%A Marchiafava, Stefano
%A Ornea, Liviu
%A Pantilie, Radu
%T Twistorial maps between quaternionic manifolds
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 47-67
%V 9
%N 1
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2010_5_9_1_47_0/
%G en
%F ASNSP_2010_5_9_1_47_0
Ianuş, Stere; Marchiafava, Stefano; Ornea, Liviu; Pantilie, Radu. Twistorial maps between quaternionic manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 1, pp. 47-67. http://archive.numdam.org/item/ASNSP_2010_5_9_1_47_0/

[1] D. V. Alekseevsky and S. Marchiafava, Quaternionic-like structures on a manifold: Note 2. Automorphism groups and their interrelations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 4 (1993), 53–61. | EuDML | MR

[2] D. V. Alekseevsky and S. Marchiafava, A report on quaternionic-like structures on a manifold, In: “Proceedings of the International Workshop on Differential Geometry and its Applications” (Bucharest, 1993), Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 55 (1993), 9–34. | MR | Zbl

[3] D. V. Alekseevsky and S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. 171 (1996), 205–273. | MR | Zbl

[4] D. V. Alekseevsky, S. Marchiafava and M. Pontecorvo, Compatible complex structures on almost quaternionic manifolds, Trans. Amer. Math. Soc. 351 (1999), 997–1014. | MR | Zbl

[5] E. Bonan, Sur les G-structures de type quaternionien, Cahiers Topologie Géom. Différentielle 9 (1967), 389–461. | EuDML | Numdam | MR | Zbl

[6] J. Chen and J. Li, Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000), 355–384. | MR | Zbl

[7] J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 589–640. | EuDML | Numdam | MR | Zbl

[8] R. Fueter, Die Funktionentheorie der Differentialgleichungen Δu=0 und ΔΔu=0 mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307–330. | EuDML | MR | Zbl

[9] P. Griffiths and J. Harris, “Principles of Algebraic Geometry”, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1978. | MR | Zbl

[10] A. Haydys, Nonlinear Dirac operator and quaternionic analysis, Comm. Math. Phys. 281 (2008), 251–261. | MR | Zbl

[11] S. Ianuş, R. Mazzocco and G. E. Vîlcu, Harmonic maps between quaternionic Kähler manifolds, J. Nonlinear Math. Phys. 15 (2008), 1–8. | MR | Zbl

[12] D. Joyce, Hypercomplex algebraic geometry, Quart. J. Math. Oxford Ser. (2) 49 (1998), 129–162. | MR | Zbl

[13] J. Li and X. Zhang, Quaternionic maps between quaternionic Kähler manifolds, Math. Z. 250 (2005), 523–537. | MR | Zbl

[14] E. Loubeau and R. Pantilie, Harmonic morphisms between Weyl spaces and twistorial maps II, Ann. Inst. Fourier (Grenoble), to appear. | EuDML | Numdam | MR | Zbl

[15] S. Marchiafava, Sulle varietà a struttura quaternionale generalizzata, Rend. Mat. 3 (1970), 529–545. | MR | Zbl

[16] V. Oproiu, Almost quaternal structures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 23 (1977), 287–298. | MR | Zbl

[17] V. Oproiu, Integrability of almost quaternal structures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 30 (1984), 75–84. | MR | Zbl

[18] R. Pantilie, On a class of twistorial maps, Differential Geom. Appl. 26 (2008), 366–376. | MR | Zbl

[19] H. Pedersen, Y. S. Poon and A. F. Swann, Hypercomplex structures associated to quaternionic manifolds, Differential Geom. Appl. 9 (1998), 273–292. | MR | Zbl

[20] D. Quillen, Quaternionic algebra and sheaves on the Riemann sphere, Quart. J. Math. Oxford Ser. (2) 49 (1998), 163–198. | MR | Zbl

[21] S. Salamon, Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. 19 (1986), 31–55. | EuDML | Numdam | MR | Zbl

[22] S. Salamon, Special structures on four-manifolds, Riv. Mat. Univ. Parma 17* (1991), 109–123. | MR | Zbl

[23] A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–224. | MR | Zbl

[24] A. Swann, HyperKähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421–450. | EuDML | MR | Zbl

[25] H. Tasaki, Quaternionic submanifolds in quaternionic symmetric spaces, Tohoku Math. J. 38 (1986), 513–538. | MR | Zbl