In the case of smooth manifolds, we use Forman’s discrete Morse theory to realize combinatorially any Thom-Smale complex coming from a smooth Morse function by a pair triangulation-discrete Morse function. As an application, we prove that any class of homologous vector fields on a smooth oriented closed 3-manifold can be realized by a perfect matching on the Hasse diagram of a triangulation of the manifold.
@article{ASNSP_2010_5_9_2_229_0, author = {Gallais, \'Etienne}, title = {Combinatorial realization of the {Thom-Smale} complex via discrete {Morse} theory}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {229--252}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {2}, year = {2010}, mrnumber = {2731156}, zbl = {1201.57026}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2010_5_9_2_229_0/} }
TY - JOUR AU - Gallais, Étienne TI - Combinatorial realization of the Thom-Smale complex via discrete Morse theory JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 229 EP - 252 VL - 9 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2010_5_9_2_229_0/ LA - en ID - ASNSP_2010_5_9_2_229_0 ER -
%0 Journal Article %A Gallais, Étienne %T Combinatorial realization of the Thom-Smale complex via discrete Morse theory %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 229-252 %V 9 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2010_5_9_2_229_0/ %G en %F ASNSP_2010_5_9_2_229_0
Gallais, Étienne. Combinatorial realization of the Thom-Smale complex via discrete Morse theory. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 2, pp. 229-252. http://archive.numdam.org/item/ASNSP_2010_5_9_2_229_0/
[1] Fast Khovanov homology computations, J. Knot Theory Ramifications 16 (2007), 243–255. | MR | Zbl
,[2] On discrete Morse functions and combinatorial decompositions, Formal power series and algebraic combinatorics (Vienna, 1997), Discrete Math. 217 (2000), 101–113. | MR | Zbl
,[3] Discrete Morse theory and graph braid groups, Algebr. Geom. Topol. 5 (2005), 1075–1109. | EuDML | MR | Zbl
and ,[4] Combinatorial vector fields and dynamical systems, Math. Z. 228 (1998), 629–681. | MR | Zbl
,[5] Morse theory for cell complexes, Adv. Math. 134 (1998), 90–145. | MR | Zbl
,[6] Witten-Morse theory for cell complexes, Topology 37 (1998), 945–979. | MR | Zbl
,[7] “-Manifolds and Kirby Calculus”, Graduate Studies in Mathematics, Vol. 20, American Mathematical Society, Providence, RI, 1999. | MR | Zbl
and ,[8] Computing optimal Morse matchings, SIAM J. Discrete Math. 20 (2006), 11–25. | MR | Zbl
and ,[9] Optimal discrete Morse functions for 2-manifolds, Comput. Geom. 26 (2003), 221–233. | MR | Zbl
, and ,[10] Applications of Forman’s discrete Morse theory to topology visualization and mesh compression, Transactions on Visualization and Computer Graphics 10 (2004), 499–508.
, and ,[11] “The Topology of Complexes”, Van Nostrand Reinhold Co., New York, 1969. | Zbl
and ,[12] “Morse Theory”, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. | MR
,[13] “Lectures on the -Cobordism Theorem”, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. | MR
,[14] Holomorphic disks and knot invariants, Adv. Math 1 (2004), 58–116. | MR | Zbl
and ,[15] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027–1158. | MR | Zbl
and ,[16] On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), 297–338. | EuDML | Numdam | MR
,[17] “Introduction to Piecewise-Linear Topology”, Springer-Verlag, New York, 1972. | MR | Zbl
and ,[18] Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007), 1733–1766. | MR | Zbl
and ,[19] Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc. 358 (2006), 115–129 (electronic). | MR | Zbl
,[20] Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 607–643, 672. | MR
,[21] On -complexes, Ann. of Math. (2) 41 (1940), 809–824. | JFM | MR
,[22] “Geometric Integration Theory”, Princeton University Press, Princeton, New Jersey, 1957. | MR | Zbl
,