In this article we consider Wasserstein spaces (with quadratic transportation cost) as intrinsic metric spaces. We are interested in usual geometric properties: curvature, rank and isometry group, mostly in the case of Euclidean spaces. Our most striking result is that the Wasserstein space of the line admits “exotic” isometries, which do not preserve the shape of measures.
@article{ASNSP_2010_5_9_2_297_0, author = {Kloeckner, Beno{\^\i}t}, title = {A geometric study of {Wasserstein} spaces: {Euclidean} spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {297--323}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {2}, year = {2010}, mrnumber = {2731158}, zbl = {1218.53079}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2010_5_9_2_297_0/} }
TY - JOUR AU - Kloeckner, Benoît TI - A geometric study of Wasserstein spaces: Euclidean spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 297 EP - 323 VL - 9 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2010_5_9_2_297_0/ LA - en ID - ASNSP_2010_5_9_2_297_0 ER -
%0 Journal Article %A Kloeckner, Benoît %T A geometric study of Wasserstein spaces: Euclidean spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 297-323 %V 9 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2010_5_9_2_297_0/ %G en %F ASNSP_2010_5_9_2_297_0
Kloeckner, Benoît. A geometric study of Wasserstein spaces: Euclidean spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 2, pp. 297-323. http://archive.numdam.org/item/ASNSP_2010_5_9_2_297_0/
[1] Construction of the parallel transport in the Wasserstein space, Methods Appl. Anal. 15 (2008), 1–30. | MR | Zbl
and ,[2] “Gradient Flows in Metric Spaces and in the Space of Probability Measures”, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. | MR | Zbl
, and ,[3] Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805–808. | MR | Zbl
,[4] Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375–417. | MR | Zbl
,[5] “Metric Spaces of Non-positive Curvature”, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 319, Springer-Verlag, Berlin, 1999. | MR | Zbl
and ,[6] “A Course in Metric Geometry”, Graduate Studies in Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 2001. | MR | Zbl
, and ,[7] Braids and signatures, Bull. Soc. Math. France 133 (2005), 541–579. | EuDML | Numdam | MR | Zbl
and ,[8] “The Radon Transform”, Progress in Mathematics, Vol. 5, Birkhäuser, Boston, Mass., 1980. | MR | Zbl
,[9] “Nonpositive Curvature: Geometric and Analytic Aspects”, Lectures in Mathematics ETH Zürich, Birkhäuser, Verlag, Basel, 1997. | MR | Zbl
,[10] Optimal transport and geometric analysis in Heisenberg groups, Université Grenoble 1 et Rheinische Friedrich-Wilhelms-Universität Bonn, December 2008. | Zbl
,[11] On the optimal mapping of distributions, J. Optim. Theory Appl. 43 (1984), 39–49. | MR | Zbl
and ,[12] Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), 903–991. | MR | Zbl
and ,[13] Some geometric calculations on Wasserstein space, Comm. Math. Phys. 277 (2008), 423–437. | MR | Zbl
,[14] Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig 69 (1917), 262–277. English translation: Determination of a function from the values of its integrals along certain manifolds, In: “Computed Tomography” (Cincinnati, Ohio, 1982), Proc. Sympos. Appl. Math., Vol. 27, Amer. Math. Soc., Providence, R.I., 1982, 71–86. | JFM
,[15] Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 923–940. | MR | Zbl
and ,[16] Note on the optimal transportation of distributions, J. Optim. Theory Appl. 52 (1987), 323–329. | MR | Zbl
and ,[17] On the geometry of metric measure spaces, I, II, Acta Math. 196 (2006), 65–131, 133–177. | MR | Zbl
,[18] On Wasserstein geometry of the space of Gaussian measures, arXiv: 0801.2250, 2008. | MR
,[19] Cone structure of -Wasserstein spaces, arXiv:0812.2752. | MR | Zbl
and ,[20] “Topics in Optimal Transportation”, Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, Providence, RI, 2003. | MR | Zbl
,[21] “Optimal Transport Old and New”, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 338, Springer-Verlag, Berlin, 2009. | MR | Zbl
,