We study the semistability of , the universal quotient bundle on (1,3) restricted to any smooth surface (called congruence). Specifically, we deduce geometric conditions for a congruence , depending on the slope of a saturated linear subsheaf of . Moreover, we check that the Dolgachev-Reider Conjecture (i.e. the semistability of for nondegenerate congruences ) is true for all the congruences of degree less than or equal to 10. Also, when the degree of a congruence is less than or equal to 9, we compute the highest slope reached by the linear subsheaves of .
@article{ASNSP_2010_5_9_3_503_0, author = {Arrondo, Enrique and Cobo, Sof{\'\i}a}, title = {On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {503--522}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {3}, year = {2010}, mrnumber = {2722653}, zbl = {1202.14038}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2010_5_9_3_503_0/} }
TY - JOUR AU - Arrondo, Enrique AU - Cobo, Sofía TI - On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 503 EP - 522 VL - 9 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2010_5_9_3_503_0/ LA - en ID - ASNSP_2010_5_9_3_503_0 ER -
%0 Journal Article %A Arrondo, Enrique %A Cobo, Sofía %T On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 503-522 %V 9 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2010_5_9_3_503_0/ %G en %F ASNSP_2010_5_9_3_503_0
Arrondo, Enrique; Cobo, Sofía. On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 3, pp. 503-522. http://archive.numdam.org/item/ASNSP_2010_5_9_3_503_0/
[1] A focus on focal surfaces, Asian J. Math. 3 (2001), 535–560. | MR | Zbl
, and ,[2] On smooth surfaces in with a fundamental curve, Manuscripta Math. 79 (1993), 283–298. | EuDML | Zbl
and ,[3] “On Congruences of Lines in the Projective Space”, Mém. Soc. Math. France, Vol. 50, 1992. | Numdam | MR | Zbl
and ,[4] Simplicity of the universal quotient bundle restricted to congruences of lines in , Adv. Geom. 6 (2006), 467–473. | MR | Zbl
,[5] “Estabilidad del Fibrado Universal Restringido a Congruencias”, PhD Thesis, Universidad Complutense de Madrid, 2008.
,[6] “Groupes de Monodromie en Géométrie Algébrique”, SGA7II, Springer LNM 340, 1973. | MR
and ,[7] On rank 2 vector bundles with and on Enriques surfaces, In: “Algebraic Geometry” (Chicago, IL), Lecture notes in Mahtematics, Springer-Verlag, Vol. 1479, 1991. | Zbl
and ,[8] The distribution of bidegrees of smooth surfaces in , Math. Ann. 292 (1992), 127–147. | EuDML | MR | Zbl
,[9] Surfaces of degree in the Grassmannian of lines in -space, J. Reine Angew. Math. 436 (1993), 87–127. | EuDML | MR | Zbl
,[10] “Algebraic Geometry”, Springer, 1997. | MR | Zbl
,[11] On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970), 191–196. | MR | Zbl
,