We study the evolution of a closed hypersurface of the euclidean space by a flow whose speed is given by a power of the scalar curvature. We prove that, if the initial shape is convex and satisfies a suitable pinching condition, the solution shrinks to a point in finite time and converges to a sphere after rescaling. We also give an example of a nonconvex hypersurface which develops a neckpinch singularity.
@article{ASNSP_2010_5_9_3_541_0, author = {Alessandroni, Roberta and Sinestrari, Carlo}, title = {Evolution of hypersurfaces by powers of the scalar curvature}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {541--571}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {3}, year = {2010}, mrnumber = {2722655}, zbl = {1248.53047}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2010_5_9_3_541_0/} }
TY - JOUR AU - Alessandroni, Roberta AU - Sinestrari, Carlo TI - Evolution of hypersurfaces by powers of the scalar curvature JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 541 EP - 571 VL - 9 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2010_5_9_3_541_0/ LA - en ID - ASNSP_2010_5_9_3_541_0 ER -
%0 Journal Article %A Alessandroni, Roberta %A Sinestrari, Carlo %T Evolution of hypersurfaces by powers of the scalar curvature %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 541-571 %V 9 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2010_5_9_3_541_0/ %G en %F ASNSP_2010_5_9_3_541_0
Alessandroni, Roberta; Sinestrari, Carlo. Evolution of hypersurfaces by powers of the scalar curvature. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 3, pp. 541-571. http://archive.numdam.org/item/ASNSP_2010_5_9_3_541_0/
[1] “Evolution of Hypersurfaces by Curvature Functions”, PhD Thesis, Università di Roma “Tor Vergata”, 2008.
,[2] Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), 151–171. | MR | Zbl
,[3] Gauss curvature flow: the fate of rolling stones, Invent. Math. 138 (1999), 151–161. | MR | Zbl
,[4] Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 95 (2000), 1–36. | MR | Zbl
,[5] Fully nonlinear parabolic equations in two space variables, arXiv:math.AP/0402235 vl (2004).
,[6] Moving surfaces by non-concave curvature functions, Calc. Var. Partial Differential Equations, to appear. | MR | Zbl
,[7] Pinching estimates and motion of hypersurfaces by curvature functions, J. Reine Angew. Math. 608 (2007), 17–33. | MR | Zbl
,[8] Entire scalar curvature flow and hypersurfaces of constant scalar curvature in Minkowski space, Methods Appl. Anal. 16 (2009), 87–118. | MR | Zbl
,[9] Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 22 (1985), 117–138. | MR | Zbl
,[10] Deforming convex hypersurfaces by the square root of the scalar curvature, Invent. Math. 87 (1987), 63–82. | EuDML | MR | Zbl
,[11] Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1985), 1–22. | EuDML | MR
and ,[12] “Regularity Theory for Mean Curvature Flow”, Birkhäuser, Boston, 2004. | MR | Zbl
,[13] The scalar curvature flow in lorentzian manifolds, Adv. Calc. Var. 1 (2008), 323–343. | MR | Zbl
,[14] Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237–266. | MR | Zbl
,[15] Geometric evolution equation for hypersurfaces. In: “Calculus of Variations and Geometric Evolution Problems (CIME, Cetraro, 1996)”, S. Hildebrandt et al. (eds.), Lect. Notes Math., Vol. 1713, Springer, Berlin, 1996, 45–84. | MR | Zbl
and ,[16] Mean curvature flow singularities for mean convex surfaces, Calc. Var. Partial Differential Equations 8 (1999), 1–14. | MR | Zbl
and ,[17] Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), 45–70. | MR | Zbl
and ,[18] “Nonlinear Elliptic and Parabolic Equations of Second Order”, D. Reidel, Dordrecht, 1987.
,[19] “Second Order Parabolic Differential Equations”, World Scientific, River Edge, NJ, 1996. | MR | Zbl
,[20] Surfaces contracting with speed , J. Differential Geom. 71 (2005), 347–363. | MR | Zbl
,[21] Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z. 251 (2005), 721–733. | MR | Zbl
,[22] Convexity estimates for flows by powers of the mean curvature, with an appendix by O. C. Schnürer and F. Schulze, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 261–277. | EuDML | Numdam | MR
,[23] Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), 867–882. | MR | Zbl
,