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Regularity for the CR vector bundle problem II

XIANGHONG GONG AND SIDNEY M. WEBSTER

Abstract. We derive a Ck+ 1
2 Hölder estimate for P', where P is either of the

two solution operators in Henkin’s local homotopy formula for @b on a strongly
pseudoconvex real hypersurface M in Cn , ' is a (0, q)-form of class Ck on M ,
and k � 0 is an integer. We also derive a Ca estimate for P', when ' is of class
Ca and a � 0 is a real number. These estimates require that M be of class Ck+ 5

2 ,
or Ca+2, respectively. The explicit bounds for the constants occurring in these
estimates also considerably improve previously known such results.

These estimates are then applied to the integrability problem for CR vector
bundles to gain improved regularity. They also constitute a major ingredient in a
forthcoming work of the authors on the local CR embedding problem.

Mathematics Subject Classification (2010): 32V05 (primary); 32A26, 32T15
(secondary).

1. Introduction

In this paper we will prove the following.

Theorem 1.1. Let n � 4. Let M be a strongly pseudoconvex real hypersurface in
Cn of class C2. Let ! be an r ⇥ r matrix of continuous (0, 1)-forms on M . Assume
that @M! = ! ^ !. Near each point of M , there exists a non-singular matrix A of
Hölder class C1/2 satisfying @M A = �A! and

a) A 2 Ca(M), if ! 2 Ca(M), M 2 Ca+2 and a > 0 is a real number;
b) A 2 Ck+ 1

2 (M), if ! 2 Ck(M), M 2 Ck+ 5
2 and k > 0 is an integer.

If ! and A are of class C0, the identities @M! = ! ^ ! and @M A = �A! are in
the sense of currents; see Section 3. This work is a continuation of [5]. For earlier
results see [23] and Ma-Michel [15].

We now describe the above result in terms of an integrability problem for CR
vector bundles ( [23]). Let E be a complex vector bundle of rank r over M with
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a connection D. For a local frame e = (e1, . . . , er ), Dei = !
j
i e j , where ! =

(!
j
i ) are connection 1-forms on M; by a frame change ẽ = Ae, Dẽ = !̃ẽ with

!̃ = (d A + A!)A�1. The integrability problem is to find an A such that the new
connection forms !̃ = (!̃

j
i ) belong to the ideal J (M) generated by (1, 0)-forms

on M . The integrability condition is that the curvature 2-forms d!� ! ^ ! belong
to J (M).

We want to mention a few ingredients in the proof. The integrability problem
is local. As in [5, 20], we will use the Henkin local homotopy formula. Let M ⇢

Cn be a graph over a domain D ⇢ R2n�1, given by yn = |z0|2 + r̂(z0, xn) with
r̂(0) = @r̂(0) = 0, where z = (z0, zn) are standard coordinates. Set M⇢ = M \

{(xn)2 + yn < ⇢2} and D⇢ = ⇡(M⇢). Suppose that D⇢0 ⇢ D and the C2-norm
kr̂k⇢0,2 of r̂ on D⇢0 is sufficiently small. For 0 < ⇢  ⇢0 and n � 4, we have the
Henkin homotopy formula

' = @M P' + Q@M' (1.1)

for (0, q)-forms ' on M⇢ with 0 < q < n � 2. We will prove the following
estimates.

(i) Let a � 0 be a real number. Then

kP'k(1�� )⇢,a  Ca⇢�s⇤��s�
k'k⇢,a + kr̂k⇢,a+2k'k⇢,0

�
.

(ii) Let k � 0 be an integer. Then

kP'k(1�� )⇢,k+ 1
2

 Ck⇢�s⇤��s�(1+ kr̂k⇢, 52
)k'k⇢,k + kr̂k⇢,k+ 5

2
k'k⇢,0

�
;

kP'k(1�� )⇢,1/2  C⇢�1� 1�2nk'k⇢,0, k = 0, q = 1.

(See (10.16) for s, s⇤.) We emphasize that the estimates hold for all 0 < ⇢  ⇢0  3
and 0 < � < 1. Under the coordinates (z0, xn) of M , k · k⇢,a denotes the standard
Ca-norm on the domain D⇢ ⇢ R2n�1. The same estimates hold for Q; however,
the second estimate in (ii), based on a special property of the kernels for (0, 1)
forms, is not applicable to Q when it operates on (0, q + 1) form with q > 0. See
Romero [17] for estimates in Hölder norms for the Heisenberg group case and an
example showing necessity of blow-up constants.

The estimate (i) is proved in Proposition 10.1 and (ii) is in Proposition 11.1.
The above theorem and two estimates are our main results. With the estimates, we
will prove Theorem 1.1 by using a KAM rapid iteration argument as in [5], which
avoids the Nash-Moser smoothing techniques.

We now describe some ideas to derive the estimates. The integral operators
P, Q are estimated in the same way. Let us focus on P = P0 + P1, where P1
is an integral operator over @M⇢ and P0 is over M⇢ . Since we need estimates
only on shrinking domains, the boundary integral P1 can be treated easily. For the
interior integral P0, via cutoff, the difficulties lie in the case where the (0, q)-form
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' =

P
'J dz J has compact support. We will see that coefficients of (0, q�1)-form

P0' are sums ofK f (z) =

R
M⇢ f (⇣ )k(⇣, z) dV (⇣ ), where f (⇣ ) = 'J (⇣ )UJ (⇣ ) and

UJ depend on derivatives of |⇣
0
|
2
+ r̂(⇣ 0, ⇠n) of order at most two, and

k(⇣, z) =

r⇣ j � rz j
(r⇣ · (⇣ � z))a(rz · (⇣ � z))b

, a = n � q, b = q

for r(z) = �yn + |z0|2 + r̂(z0, xn); see Section 3 for details.
To deal with the singularity of the kernel along ⇣ = z, we fix z 2 M and apply

the approximate Heisenberg transformation ⇣ ! ⇣⇤ defined by

 z : ⇣
0

⇤
= ⇣ 0

� z0, ⇣ n
⇤

= �2irz · (⇣ � z).

We will show that ⇣ 0

⇤
, ⇠n

⇤
= 2 Im(rz · (⇣ � z)) form coordinates of  z(M), and under

this coordinate system the integral becomes

K f (z) =

Z
⇡( z(M⇢))

f ( �1
z (⇣⇤))k⇤(⇣ 0

⇤
, ⇠n

⇤
, z0, xn) dV (⇣ 0

⇤
, ⇠n

⇤
).

Here

k⇤(⇣ 0

⇤
, ⇠n

⇤
, z0, xn) =

X
|I |=1

EI (⇣ 0

⇤
, ⇠n

⇤
, z0, xn)k̂ Iab(⇣

0

⇤
, ⇠n

⇤
),

k̂ Iab(⇣
0

⇤
, ⇠n

⇤
) =

(⇣ 0

⇤
, ⇣ 0

⇤
, ⇠n

⇤
)I

(|⇣ 0

⇤
|
2
+ i⇠n

⇤
)a(|⇣ 0

⇤
|
2
� i⇠n

⇤
)b

, a + b = n,

where I = (i1, . . . , i2n�1) and we use standard multi-index notation. The coeffi-
cients EI (⇣ 0

⇤
, ⇠n

⇤
, ·) are of class Ca if (⇣ 0

⇤
, ⇠n

⇤
)(6= 0) is fixed and r̂ 2 Ca+2. Since

f has compact support, one can take derivatives of K f directly onto f and onto
EI without disturbing the kernels k̂ Iab. The transformation  z has been used by
other people. See Bruna-Burgués [1] and Ma-Michel [13]. To obtain estimate
(ii), we need to return to the original coordinates after differentiation. This will
give us another formula for the derivatives of K f , which allows us to reduce the
Ck+ 1

2 -estimates to the Hölder 12 -estimate for new kernels of the same type.
We would like to mention some methods to derive the fundamental 12 -estimate.

Kerzman [11] obtained Hölder ↵-estimates for all ↵ < 1
2 for @-solutions, by esti-

mating a Cauchy-Fantappiè form. Folland-Stein [3] used non-isotropic balls and
piecewise smooth curves in complex tangential directions to obtain estimates in
their spaces on the real hyperquadric. Henkin-Romanov [8] obtained the 12 -estimate
for @-equations on strongly pseudoconvex domains via a type of Hardy-Littlewood
lemma (see also Henkin [7] for @b on strictly convex boundaries). Our estimate,
like the classical Hölder estimate for the Newtonian potential, is still based on a
decomposition of domain. However, we delete a cylinder about the pole, instead of
a (non-isotropic) ball. The radius of the cylinder is optimized for the 1

2 -exponent
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and is yet so large that, when estimating the Hölder 12 -ratio at two points, we can
ignore their non-isotropic distance and connect them with a line segment.

In the 5 dimensional case there is an extra term added to the right-hand side of
(1.1). As of this writing, it remains unclear whether such a more general homotopy
formula can be used. See [21] and Nagel-Rosay [16].

The 12 -estimate for a solution to @-equations for (0, 1)-forms on strictly pseu-
doconvex domains with C2 boundary is obtained by Henkin-Romanov [8]. For
Ck+ 1

2 -estimates for solutions of @-equations of degree (0, 1) on strictly pseudocon-
vex domains with Cm boundary (m � k+4), see Siu [19]; for @-equations in higher
degree, see Lieb-Range [12]. The C0-estimate for a solution to @b-equations on M⇢ ,
without shrinking M⇢ , is given by Henkin [7]. For Ck-estimates for the homotopy
formula for @b operator on shrinking domains, see [21]. Michel-Ma [13] also ob-
tain Ck-estimates for a modified homotopy formula without shrinking domains, by
introducing an extra derivative via @b.

We want to mention that in estimating (i) and (ii) we need some Hölder in-
equalities. For the convenience of the reader, we present these inequalities in Ap-
pendix A, following the formulation and proofs of Hörmander [9].

The estimates (i) and (ii) will be used to improve regularity in the local CR
embedding problem in [6]. To limit the scope of this paper, we leave the estimates
in Folland-Stein spaces for future work.

2. Notation and counting derivatives

To simplify notation, set z0 = (z1, . . . , zn�1), z = (z0, zn), and

x = (Re z, Im z0) = ⇡(z).

Analogously, ⇠=(Re ⇣, Im ⇣ 0). Denote by |·| the Euclidean norms onCn�1, Cn�1
⇥

R=R2n�1 andCn . Our real hypersurface M ⇢ Cn is always a graph over a domain
in Cn�1

⇥ R. Let M⇢ = M \ {(xn)2 + yn < ⇢2} and D⇢ = ⇡(M⇢). For the real
hyperquadric M : yn = |z0|2, ⇡(M⇢) is exactly the ball B⇢ = {x 2 R2n�1 : |x | <

⇢}. On R2n�1, we will use the volume-form dV = d⇠1^ d⌘1^ · · ·^ d⌘n�1^ d⇠n .
On @D⇢ , we will need (2n � 2)-forms dV s

= d⇠1 ^ · · · ^ d ⇠̂ s ^ · · · ^ d⇠2n�1.
Let k � 0 be an integer. Denote by @ I u a derivative of u of order |I |, where I

is a standard multi-index. Let @ku denote the set of the k-th order derivatives of u.
For a function u on D ⇢ R2n�1, define

k@kukD,0 = sup
x2D,|I |=k

|@ I u(x)|, kukD,k = max
0 jk

k@ j ukD,0,

|u|D,↵ = sup
x,y2D

|u(x) � u(y)|
|x � y|↵

, 0 < ↵ < 1,

kukD,k+↵ = max
�
kukD,k, |@

I u|D,↵ : |I | = k
 
, 0 < ↵ < 1.
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If A = (a ji ) is a matrix of Ck functions on D, we define kAkD,k = maxi, j {ka ji kD,k}.
Define kAkD,k+↵ analogously.

To avoid confusion and in the essence of estimates (i)-(ii) in the introduction,
the Ca-norm of a function on M⇢ is its Ca-norm on D⇢ ⇢ R2n�1, defined above.
The Ca(M⇢) norm of a (0, q)-form ' =

P
'I dz0

I is the maximum of Ca-norms of
'I . The Ca-norm on M⇢ will be denoted by k · kCa(M⇢) = k · kD⇢ ,a , or simply by
k · k⇢,a when there is no confusion about M .

Throughout the paper, Ck denotes a constant dependent of k and this depen-
dence will not be expressed sometimes. Constants, such as C,C1,Ck, might have
different values when they reoccur. All constants are independent of M, r̂, ⇢, ⇢0.

Let M be defined by

r(z) def
== �yn + |z0|2 + r̂(x) = 0, x 2 D, (2.1)

where r̂ 2 C2(D). Throughout the paper, we make the basic assumption

D⇢0 ⇢ D, r̂(0) = r̂z(0) = 0, ✏ = kr̂k⇢0,2 < C�1
0 . (2.2)

We emphasize that C0 is a large constant to be adjusted several times. However, it
will not depend on any quantity other than n.

Counting derivatives. We need to count derivatives efficiently and use the count
to estimate norms. Such a counting scheme is essentially in [9] and we specialize
it for two reasons. First, the homotopy formula involves two extra derivatives of the
defining function r of M; second, for each consecutive x-derivative on 'J �  �1

z ,
the x-derivative which falls on 'J yields an extra factor @

2r(z) via the chain rule
and  z(⇣ ) = (⇣ 0

� z0,�i2rz · (⇣ � z)). We illustrate below how to use the scheme
to cope with the two extra derivatives on r and the consecutive derivatives.

Recall that for l � 1, @lr(z) = @lr(x) is the set of the l-th order derivatives of
r . Define

@1
⇤
r(⇠, x) = p

⇣
⇠, x, (1+ r̂xn r̂⇠n )�1, r�1

zn , @r̂(⇠), @r̂(x)
⌘

,

@2
⇤
r(⇠, x) = p

⇣
⇠, x, (1+ r̂xn r̂⇠n )�1, r�1

zn , @r̂(⇠), @2r̂(⇠), @r̂(x), @2r̂(x)
⌘

. (2.3)

Here and in what follows, p is a polynomial with constant coefficients. Its coeffi-
cients and degree are bounded in absolute values by a constant depending only on
fixed quantities, say k, n. Also, p might be different when it reoccurs. In general,
define

@2+k
⇤

r(⇠, x) =

X
@2
⇤
r(⇠, x)@ I1r(⇠) · · · @ I j r(⇠)@ J1r(x) · · · @ Jl r(x),

where the sum is over finitely many multi-indices Ii , Ji satisfying

jX
i=1

(|Ii | � 2) +

lX
i=1

(|Ji | � 2)  k, |Ii | � 2, |Ji | � 2.
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We will write @2+k
⇤

r(⇠, x) = @2+k
⇤

r(x) when it depends only on x . With this abbre-
viation, we have simple relations

@2+k
⇤

r@2+ j
⇤

r = @
2+k+ j
⇤

r, @ J@2+k
⇤

r = @
2+k+|J |
⇤

r. (2.4)

From [9, Corollary A.6] (see Proposition A.5 in Appendix A), we know that with
D2⇢ = D⇢ ⇥ D⇢ ,

mY
j=1

k f jkD2⇢ ,k j+b j  C|a|+|c|+m⇢
�b1�···�bm

⇣ mY
j=1

k f jkD2⇢ ,k j+a j +

mY
j=1

k f jkD2⇢ ,k j+c j
⌘

for any non-negative integers k j and non-negative real numbers a j , c j such that
(b1, . . . , bm) is in the convex hull of (a1, . . . , am), (c1, . . . , cm). With the above
abbreviation, basic assumption (2.2), and 0 < ⇢  ⇢0  3, one obtains

k@2+k
⇤

rk⇢,a  Ca+k⇢�a�k
krk⇢,2+k+a, krk⇢,2+k+a

def
== 1+ kr̂k⇢,2+k+a (2.5)

for all real numbers a � 0 and integers k � 0.
We will also need a chain rule. Recall that z : ⇣ 0

⇤
= ⇣ 0

�z0, ⇣ n
⇤

= �2irz ·(⇣�z)
and define

9(⇠, x) = (⇡ z(⇣ ), x), z = ⇡ |
�1
M (x), ⇣ = ⇡ |

�1
M (⇠).

Let 0 < ⇢  ⇢0  3. We will show that B⇢/2 ⇢ D⇢ ⇢ B2⇢ and

W⇢ = 9(D⇢ ⇥ D⇢) ⇢ B9⇢ ⇥ D⇢ .

(See Lemmas 5.1-5.2.) The Jacobean matrix of 9 depends only on derivatives of
r of order  2 and has determinant 1+ r̂xn r̂⇠n (by (6.2)). Then the chain rule takes
simple forms. Let (9�1) j be the j-th component of 9�1. Then

@ I {(9�1) j } = @2
⇤
r �9�1, |I | = 1;

@K ( f �9�1) =

X
|L||K |

(@L f @2+|K |�|L|

⇤
r) �9�1. (2.6)

We will show that the Lipschitz constant of 9�1 on W⇢ is bounded by C (see
Lemma 5.2). Then taking Hölder ratio in (2.6) with k = [a] gives us

k f �9�1
kW⇢ ,a  Ck⇢�a(k f kD⇢⇥D⇢ ,a + k f kD⇢⇥D⇢ ,0krk⇢,2+a). (2.7)

Note that the above mentioned 'J �  �1
z is a special case.

The above counting scheme via (2.4)-(2.7) and its variants will be used sys-
tematically.
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3. The Henkin homotopy formula

In this section we recall the homotopy formula by following the formulation in [21].
We discuss the formula for differential forms of low regularity.

Let M ⇢ Cn
: r = 0 be given by (2.1)-(2.2). We first recall a representative

@M for the @b-operator. By definition, a (p, q)-form ' of class Ca on M is the
restriction of some (p, q)-form '̃ of class Ca in a neighborhood of M . If a � 1, we
define @b' to be the restriction of @'̃ to M . Notice that on M , ✓ = �2i@r = ✓ and
that @b' is well-defined modulo @r when 0  p < n, and it is actually well-defined
when p = n. By a tangential (0, q)-form ', we mean a form ' =

P
|I |=q 'I dz0

I

with dz0 = (dz1, . . . , dzn�1). A continuous (0, q)-form ' can be written uniquely
as '0

+ '00
^ ✓ for some tangential forms '0,'00. Define

X↵ = @z↵ �

rz↵
rzn
@zn , @M' = @M'

0

=

X
|I |=q

X
1↵<n

X↵'0

I dz
↵

^ dz0 I .

Then a straightforward computation shows that

@b' = @M' mod ✓ .

Each (n, q)-form on M can be written as '00
^ dz1 ^ · · · ^ dzn�1 ^ ✓ where '00 is

tangential. If '00
2 C1, then

@b('
00

^ dz1 ^ · · · ^ dzn�1 ^ ✓) = @M'
00

^ dz1 ^ · · · ^ dzn�1 ^ ✓ . (3.1)

Let ' be a continuous (0, q)-form on a domain U ⇢ M , and � be a continuous
(0, q � 1)-form. Suppose that q � 1. We say that @b� = ' mod ✓ holds on U as
currents, if

R
M � ^ @b = (�1)q

R
M ' ^ for all C1-smooth (n, n� q � 1)-forms

 with compact support in U .
Write rz = rz(z) and r⇣ = r⇣ (⇣ ). Set N0(⇣, z) = r⇣ · (⇣ � z), S0(⇣, z) =

rz · (⇣ � z) and

�+�

0,q�1(⇣, z) =

@⇣ r ^ (rz · d⇣ ) ^ (@⇣ @⇣ r)
n�1�q

^ (@zrz ^ d⇣ )q�1

Nn�q
0 (⇣, z)Sq0 (⇣, z)

, (3.2)

�0+�

0,q�1(⇣, z) =

d⇣ n ^ @⇣ r ^ (rz · d⇣ ) ^ (@⇣ @⇣ r)
n�2�q

^ (@zrz ^ d⇣ )q�1

(⇣ n � zn)Nn�q�1
0 (⇣, z)Sq0 (⇣, z)

. (3.3)

Note that ✓(⇣ ) annihilates �+�

0,q�1(⇣, z) and �
0+�

0,q�1(⇣, z). Let n � 4 and 0 < q <

n � 2. For a tangential (0, q)-form ' on M⇢ , we have the homotopy formula

' = @M(P 0

0 + P 0

1)' + (Q0

0 + Q0

1)@M', z 2 M⇢ . (3.4)
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Here P 0

0, P
0

1, Q
0

0, Q
0

1 are tangential parts of

P0'(z) = c1
R
M⇢ ' ^�+�

0,q�1(⇣, z), P1'(z) = c2
R
@M⇢ ' ^�0+�

0,q�1(⇣, z),

Q0 (z) = c3
R
M⇢  ^�+�

0,q (⇣, z), Q1 (z) = c4
R
@M⇢  ^�0+�

0,q (⇣, z).
(3.5)

From now on, all (0, q)-forms ' on M are tangential. By k'k⇢,a , we mean the
norm k'0

k⇢,a as defined in Section 2, where '0
= ' mod ✓ and '0 is tangential.

By kP'k⇢,a as used in the introduction, where P is either of solution operators in
the homotopy formula, we mean kP 0'k⇢,a . By an abuse of notation, ' stands for
forms on M⇢ and D⇢ = ⇡(M⇢).

Next, we describe kernels of P 0

j , Q
0

j on domain D⇢ via coordinates x . We have

r⇣ · d⇣ ^ rz · d⇣ =

X
1 j,ln

r⇣ l (r⇣ j � rz j )d⇣ j ^ d⇣ l , (3.6)

r⇣ · d⇣ ^ rz · d⇣ ^ d⇣ n =

X
1↵,�<n

r⇣� (r⇣↵ � rz↵ )d⇣↵ ^ d⇣� ^ d⇣ n. (3.7)

Assume now that ⇣, z 2 M⇢ . We compute d⇣ n and dzn in different ways. We keep
the latter a (0, 1)-form and find its tangential part. We have

dzn = �

rz0
rzn

· dz0 mod ✓(z), (3.8)

d⇣ n = (1+ i r̂⇠n )d⇠n + i2Re{r⇣ 0 · d⇣ 0

} = 2ir⇣ n d⇠
n

+ i2Re{r⇣ 0 · d⇣ 0

}. (3.9)

Note that in (3.9), we have used r(⇣ ) = �⌘n + |⇣ 0
|
2
+ r̂(⇠) = 0. In (3.6)-(3.7) and

@ zrz ^ d⇣ , we use (3.8)-(3.9) to rewrite dzn and d⇣ n , respectively. In @⇣ @⇣ r , we use
(3.9) to rewrite d⇣ n, d⇣ n . From (3.2)-(3.3), we obtain on M⇢

P 0

0'(x)=
X

|I |=q�1

X
|J |=q

X
1 jn

dz0 I
Z
D⇢

A j J
I (⇠, x)

'J (⇠)(r⇣ j � rz j )

(Nn�q
0 Sq0 )(⇣, z)

dV (⇠), (3.10)

P 0

1'(x)=
X

|I |=q�1

X
|J |=q

n�1X
↵,�=1

2n�1X
s=1

dz0 I
Z
@D⇢

B↵� JI s (⇠, x)'J (⇠)(r⇣↵�rz↵ )r⇣�

(⇣ n� zn)(Nn�q�1
0 Sq0 )(⇣, z)

dV s(⇠).

(3.11)

Here A j J
I and B↵� JI s are polynomials in (r⇣ , r⇣ , r⇣⇣ , rz0, 1/rzn , rzz). We make a

remark for the case q = 1. In this case we need to remove
P

|I |=0 in (3.10)-(3.11).

Also, A j J def
== A j J

I and B↵� Js
def
== B↵� JI s are independent of z. This observation will

play a role in the 12 -estimate of P
0' when ' is a (0, 1)-form.

See also Chen-Shaw [2] for homotopy formulae. In this paper we replace the
strict convexity of defining function r in [2] by the condition (2.2) with 0 < ⇢0  3;
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see Appendix B for details. We remark that the homotopy formula (3.4) holds as
currents, when ' and @b' on M⇢ admit continuous extensions to M⇢ . See Ap-
pendix B for a proof by using the Friedrichs approximation theorem. Henkin [7]
formulated @b in the sense of currents. Shaw [18] also used the Friedrichs approx-
imation for @b-solutions.

4. Kernels and the approximate Heisenberg transformation

In this section, we will describe briefly the new kernels when the approximate
Heisenberg transformation is applied. The contents of next few sections are in-
dicated at the end of this section.

Recall that in (3.10) functions A j J
I have the form @2

⇤
r . Hence coefficients of

P 0

0' are sums over |J |=q and 1  j  n ofK'J (x) =

R
D⇢ 'J (⇠)k

j
ab(⇠, x) dV (⇠).

Here ⇣, z 2 M and

k(⇠, x) = k jab(⇠, x) =

@2
⇤
r(⇠, x)(r⇣ j � rz j )

(r⇣ · (⇣ � z))a(rz · (⇣ � z))b
, a = n � q, b = q.

To understand the kernel, let us compute its denominator. Set r̂(z) = r̂(x). On
M ⇥ M we have

rz · (⇣ � z) = z0 · (⇣ 0

� z0) +

i
2
(⇣ n � zn) + r̂z · (⇣ � z)

= z0 · (⇣ 0

� z0) �

1
2
(|⇣ 0

|
2
� |z0|2) +

i
2
(⇠n � xn)

�

1
2
(r̂(⇣ ) � r̂(z)) + r̂z · (⇣ � z)

= i Im(rz · (⇣ � z)) �

1
2
|⇣ 0

� z0|2

�

1
2
(r̂(⇣ ) � r̂(z)) + Re(r̂z · (⇣ � z)).

Also

r⇣ · (⇣ � z) = rz · (⇣ � z) + (r⇣ � rz) · (⇣ � z)

= i Im(rz · (⇣ � z)) +

1
2
|⇣ 0

� z0|2 + (r̂⇣ � r̂z) · (⇣ � z)

�

1
2
�
r̂(⇣ ) � r̂(z) � 2Re(r̂z · (⇣ � z))

 
.

The first two terms in rz · (⇣ � z) and r⇣ · (⇣ � z) can be simplified simultaneously.
Define

N (⇣, z) def
== |⇣ 0

� z0|2 + 2i Im(rz · (⇣ � z)). (4.1)
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Then we arrive at the basic relations

�2rz · (⇣ � z) = N (⇣, z) + A(⇣, z), 2r⇣ · (⇣ � z) = N (⇣, z) + B(⇣, z)

with

A(⇣,z)= r̂(⇣ )�r̂(z)�2Re(r̂z · (⇣ � z)), B(⇣,z)=2(r̂⇣�r̂z) · (⇣ � z)�A(⇣, z).

By the condition (2.2) on r̂ , we will show that D⇢0 is convex and hence

|A(⇣, z)|  C✏|⇣ � z|2, |B(⇣, z)|  C✏|⇣ � z|2, ⇣, z 2 M⇢0 .

Wewill show that |N (⇣, z)| � C�1
|⇣�z|2 on M⇢0⇥M⇢0 . Consequently, the kernel

of P 0

0' is factored as

k(⇠, x) = T1(⇠, x)�aT2(⇠, x)�b
@2
⇤
r(⇠, x)(r⇣ j � rz j )

Na(⇣, z)Nb(⇣, z)
,

T1(⇠, x) = 1+ N�1(⇣, z)B(⇣, z), T2(⇠, x) = 1+ N�1(⇣, z)A(⇣, z)

for ⇣, z 2 M⇢0 . Moreover, min{|T1(⇠, x)|, |T2(⇠, x)|} � 1/4 when (⇠, x) is on
D⇢0 ⇥ D⇢0 and off its diagonal. Now, identity (4.1) suggests the following approx-
imate Heisenberg transformation

 z : ⇣
0

⇤
= ⇣ 0

� z0, ⇣ n
⇤

= �2irz · (⇣ � z).

We will show that for fixed z 2 M⇢0 , ⇣ 0

⇤
= ⇣ 0

� z0, ⇠n
⇤

= 2 Im(rz · (⇣ � z)) indeed
form coordinates of M⇢0 . Thus, with ⇣, z 2 M⇢0

N (⇣, z) = |⇣ 0

⇤
|
2
+ i⇠n

⇤

def
== N⇤(⇠⇤),

k(⇠, x) =

X
|I |=1

EI (⇠⇤, x)⇠ I⇤ N⇤(⇠⇤)
�aN�b

⇤
(⇠⇤), a + b = n.

When ' has compact support, the decomposition for k(⇠, x) allows us to take x-
derivatives of K'J (x) directly onto coefficients EI (⇠⇤, x) and onto 'J ( 

�1
z (⇠⇤)),

without destroying the integrability of the kernels.
We now describe the contents of next few sections.
We will carry out the details of this section in Sections 5, 6, and 8. In Section 5

we will also study how domains B⇢ , D⇢ = ⇡(M⇢) and ⇡ z(M⇢) are nested. We
will need Hölder inequalities in Appendix A for domains D⇢ . Therefore, we will
verify that under the basic assumption (2.2) and 0 < ⇢  ⇢0  3, D⇢ is convex
and B⇢/2 ⇢ D⇢ ⇢ B2⇢ . In Section 6, we will also express the graph  z(M⇢0) for
z 2 M⇢0 as

⌘n
⇤

=

X
|I |=2

hI (⇠⇤, x)⇠ I⇤ , ⇠⇤ = (Re ⇣⇤, Im ⇣ 0

⇤
).
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The latter will be used to show |rz · (⇣ � z)| � C�1(⇢� )2 for z 2 M(1�� )⇢ and
⇣ 2 @M⇢ . In Sections 9 and 10, we derive the Ca-estimates. The 12 -estimate is in
Section 12, following a reduction for Ck+ 1

2 -estimates in Section 11.
We conclude this section with a lower bound for |⇣ n � zn|. By the basic as-

sumption (2.2), D⇢0 is relatively compact in D and hence (xn)2+ yn = ⇢2 on @M⇢

for 0 < ⇢  ⇢0. Then the image of the projection of @M⇢ in the zn-plane is con-
tained in the parabola (xn)2 + yn = ⇢2. Therefore, for z 2 M(1�� )⇢ and ⇣ 2 @M⇢

with ⇢  ⇢0( 3), we obtain

|⇣ n � zn| � C�1⇢2�. (4.2)

5. Domains and images under the transformation

Recall that our real hypersurface M is given by (2.1)-(2.2), and

M⇢ = M \ {(xn)2 + yn < ⇢2}, D⇢ = ⇡(M⇢) = {x 2 D : |x |2 + r̂(x) < ⇢2}.

Lemma 5.1. Let M satisfy (2.2). Suppose that 0 < ⇢  ⇢0. Then D⇢ is strictly
convex with C2 boundary. Also,

B(1�c✏)⇢ ⇢ D⇢ ⇢ B(1+c✏)⇢, C�1⇢�  dist(@D(1�� )⇢, @D⇢)  C⇢�.

Moreover, constants C0, c,C are independent of ⇢ and r̂ .

Proof. Let ✏ = kr̂k⇢0,2 < C�1
0 . The strict convexity follows from the positivity

of the Hessian of �(x) = (xn)2 + yn = |x |2 + r̂(x) on D⇢ . Since 0 2 D⇢ , then
|r̂(x)|  C✏|x |2 on D⇢ . Now,

(1� C✏)|x |2  �(x)  (1+ C✏)|x |2.

In particular, for a possibly larger C , we have B(1�C✏)1/2⇢ ⇢ D⇢ ⇢ B(1+C✏)1/2⇢ ,
since D⇢0 ⇢ D implies that � = ⇢2 on @D⇢ for all 0 < ⇢  ⇢0.

Let x 2 @D(1�� )⇢ . Then �(x) = ((1 � � )⇢)2 and 1
2 (1 � � )⇢ < |x | <

2(1� � )⇢. For y 2 D⇢ , we have |�(y) � �(x)|  Ck@1�k⇢,0|y � x |. We get

|�(y)|  (1� � )2⇢2 + Ck@1�k⇢,0|y � x |  (1� � )2⇢2 + C⇢|y � x |.

Hence, �(y) < ⇢ for |y � x |  C�1⇢� . This shows that dist(@D(1�� )⇢, @D⇢) �

C�1⇢� . On the other hand, if y = (1 + t)x 2 D⇢ and t > 0, applying the mean-
value-theorem to �((1+ s)x) for 0  s  t yields

�(y) � ((1� � )⇢)2 + x · (y � x) � C✏|y||y � x |
� ⇢2(1� � )2 + t |x |2 � C 0✏⇢t |x |

� ⇢2{(1� � )2 +

1
4
t (1� � )2 � 2C 00✏t}.
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This show that �((1 + t)x) > ⇢2 if (1 + t)x 2 D⇢ and t > C� , a contradiction.
Therefore, dist(@D(1�� )⇢, @D⇢)  C⇢� .

Recall the approximate Heisenberg transformation

 z : ⇣
0

⇤
= ⇣ 0

� z0, ⇣ n
⇤

= �2irz · (⇣ � z).

Before applying  z to kernels k jab(⇣, z), we need to know how it transforms M⇢ .
Recall our notation x 2 R2n�1 and ⇠ 2 R2n�1. Define a map  ̃x by relations

⇠⇤ =  ̃x (⇠) = ⇡ z(⇣ ), ⇣, z 2 M⇢0 .

Set 9(⇠, x) = ( ̃x (⇠), x). We have the following.

Lemma 5.2. Let M : yn = |z0|2 + r̂(z0, xn) satisfy (2.2) with 0 < ⇢0  3. There
exist constants C,Cm , independent of r̂ , ⇢ and ⇢0, such that the following hold.

(i) If x 2 D⇢ and 0 < ⇢  ⇢0 then

 ̃x (D⇢) ⇢ B9⇢, 9(D⇢ ⇥ D⇢) ⇢ B9⇢ ⇥ D⇢ .

(ii) For u, v 2 D⇢0 ⇥ D⇢0 ,

C�1
|v � u|  |9(v) �9(u)|  C|v � u|.

In particular, if z 2 M⇢0 then  z(M⇢0) is a graph over ⇡ z(M⇢0).

Proof. Let R(x) = |z0|2 + r̂(x). By (2.2), D⇢0 ⇢ D and ✏ = kr̂k⇢0,2 < C�1
0 . For

brevity, set M = M⇢0 .

(i). Assume that 0 < ⇢  ⇢0. Since D⇢0 is convex, we have |r̂(x)|  C✏|x |2 on
D⇢0 . The map  ̃x is defined by ⇣ 0

⇤
= ⇣ 0

� z0 and

⇠n
⇤

= ⇠n � xn + r̂xn (R(⇠) � R(x)) + 2 Im[Rz0 · (⇣ 0

� z0)]
= ⇠n � xn + 2 Im (z0 · ⇣ 0) + r̂xn (R(⇠) � R(x)) + 2 Im[r̂z0 · (⇣ 0

� z0)].
(5.1)

Let ⇠, x be in D⇢ . Recall that D⇢ ⇢ B(1+C✏)⇢ . We have

|x | < (1+ C✏)⇢, |⇠ | < (1+ C✏)⇢, |r̂xn |  ✏, |r̂z0 |  ✏,

|R(⇠)|  |⇣ 0

|
2
+ C✏|⇠ |2 < (1+ C 0✏)⇢2.

Thus, |⇣ 0

⇤
|
2

= |⇣ 0
� z0|2  2|⇣ 0

|
2

+ 2|z0|2 < 4(1 + C✏)⇢2; by (5.1), |⇠n
⇤
|
2



(2⇢ + 2⇢2 + C✏⇢)2. Since 2⇢2  6⇢ then

|⇣ 0

⇤
|
2
+ |⇠n

⇤
|
2

 4(1+ C✏)⇢2 + (2⇢ + 2⇢2 + C✏⇢)2 < (9⇢)2,

if ✏ is sufficiently small. We get  ̃x (D⇢) ⇢ B9⇢ .
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(ii). It is obvious that the Lipschitz constant of 9 on the convex domain D⇢0 ⇥ D⇢0
is bounded by some C . Let ⇠, x, ⇠̃ , x̃ be in D⇢0 . We need to show that |9(⇠̃ , x̃) �

9(⇠, x)| � C�1
|(⇠̃ , x̃) � (⇠, x)|. Write ⇠ = (⇣ 0, ⇠n), x = (z0, xn). Then

|9(⇠̃ , x̃) �9(⇠, x)| � |(⇣̃ 0

� z̃0 � ⇣ 0

+ z0, x̃ � x)| � |(⇣̃ 0

� ⇣ 0, x̃ � x)|/C.

Set ⇠̃⇤ =  ̃x̃ (⇠̃) and ⇠⇤ =  ̃x (⇠). It suffices to show that

|⇠̃n
⇤

� ⇠n
⇤
| � |⇠̃n � ⇠n|/C

if |(⇣̃ 0
� ⇣ 0, x̃ � x)| < 1

48 |⇠̃
n

� ⇠n|. Assume that the latter holds. Recall that
0 < ⇢0  3 and D⇢0 ⇢ B2⇢0 . We have max{|z0|, |⇣̃ 0

|} < 2⇢0. Now the second
identity in (5.1) implies that

|⇠̃n
⇤
�⇠n

⇤
|� |⇠̃n�⇠n|�|x̃n�xn|�2|⇣̃ 0

||z̃0�z0|�2|z0||⇣̃ 0

�⇣ 0

|�C✏|(⇠̃ � ⇠, x̃ � x)|

� (1�

1
48

)|⇠̃n � ⇠n| � 8⇢0(|⇣̃ 0

� ⇣ 0

| + |z̃0 � z0|) � C 0✏|⇠̃n � ⇠n|.

Thus, |⇠̃n
⇤

� ⇠n
⇤
| � (1�

1
48 �

8·3·
p

2
48 � C 0✏)|⇠̃n � ⇠n| � |⇠̃n � ⇠n|/4.

That  z(M⇢0) is a graph follows from the injectivity of 9.

6. Estimates on rz · (⇣ � z), r⇣ � rz and  z(M) via Taylor’s theorem

To transform k(⇣, z) via  z , we need expansions of rz · (⇣ � z), r⇣ · (⇣ � z) and
r⇣ j � rz j in new variables ⇠⇤. We will find these expansions via Taylor’s theorem.

Let us recall Taylor’s theorem. Assume that 0 < ⇢  ⇢0  3 and r̂ satisfies
(2.2). So D⇢ is strictly convex. If f is a complex-valued function on the convex set
D⇢ , we defineRk f andRI f on D⇢ ⇥ D⇢ by

Rk f (y, x) ⌘ f (y) �

X
0 jk�1

1
j !
@
j
t |t=0 f (x + t (y � x))

=

1
(k � 1)!

Z 1

0
(1� t)k�1@kt f (x + t (y � x)) dt

=

X
|I |=k

RI f (y, x)(y � x)I .

Denote by Rk f the set of coefficients RI f with |I | = k. For any real number
a � 0,

kRI f kD⇢⇥D⇢ ,a  Ca+|I |k f k⇢,a+|I |. (6.1)

We will also need to express the remainders in ⇠⇤ = (Re ⇣⇤, Im ⇣ 0

⇤
). Let z 2 M⇢0

and ⇡(z) = x 2 D⇢0 . By Lemma 5.2,  z(M⇢0) is a graph

⌘n
⇤

= h(⇠⇤, x), ⇠⇤ 2  ̃x (D⇢0).
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By ⇣ 0
� z0 = ⇣ 0

⇤
and ⇣ n

⇤
= �2irz · (⇣ � z), we have

⇣ n
⇤

= ⇣ n � zn � i r̂xn (⇣ n � zn) � 2i Rz0 · ⇣ 0

⇤
.

Here R(x) = |z0|2 + r̂(x). Computing the real and imaginary parts, we get

⇠n
⇤

= ⇠n � xn + r̂xn (R(⇠) � R(x)) + 2 Im(Rz0 · ⇣ 0

⇤
), (6.2)

⌘n
⇤

= |⇣ 0

⇤
|
2
+ r̂(⇠) � r̂(x) � r̂xn (⇠n � xn) � 2Re(r̂z0 · ⇣ 0

⇤
). (6.3)

In (6.2), replace R(⇠) � R(x) byX
|I |=1

RI R(⇠, x)(⇠ � x)I =

X
|I |=1

RI R(⇠, x)(⇠ 0

⇤
, ⇠n � xn)I

and then solve for ⇠n � xn . We get

⇠n � xn =

X
|I |=1

pI (⇠, x)⇠ I⇤ , (6.4)

where pI (⇠, x) are of the form

p
⇣
⇠, x,

1
1+ r̂xnR(00,1)r̂(⇠, x)

, @r̂(x),R1r̂(⇠, x)
⌘

for some polynomials p. With these polynomials p, introduce notation

Ri
⇤
g =

X
|I |=i

p
⇣
⇠, x,

1
1+ r̂xnR(00,1)r̂(⇠, x)

, @r̂(x),R1r̂(⇠, x)
⌘
RI g(⇠, x). (6.5)

Note that reappearing p,Ri
⇤
g may be different. We now express Taylor remainders

in variables ⇣ 0

⇤
, ⇠n

⇤
as follows

Rk f (⇠, x) =

X
|L|=k

RL f (⇠, x)(⇠ � x)L =

X
|L|=k

Rk
⇤
f (⇠, x)⇠ L

⇤
, (6.6)

|Rl
⇤
r̂(⇠, x)|  Ckr̂k⇢0,2, l  2, ⇠, x 2 D⇢0 .

We now apply notation (6.5). Using (6.4) in (6.3) we get

⌘n
⇤

= |⇣ 0

⇤
|
2
+

X
|I |=1

R1
⇤
r̂(⇠, x)⇠ I

⇤
, (6.7)

⌘n
⇤

= |⇣ 0

⇤
|
2
+ R2r̂(⇠, x) = |⇣ 0

⇤
|
2
+

X
|I |=2

R2
⇤
r̂(⇠, x)⇠ I

⇤
. (6.8)

Set r(z) = �yn + |z0|2 + r̂(z0, xn).We have defined

N (⇣, z) = |⇣ 0

� z0|2 + 2i Im(rz · (⇣ � z)), N⇤(⇠⇤) = |⇣ 0

⇤
|
2
+ i⇠n

⇤
.
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Recall that for (⇣, z) 2 M⇢0 ⇥ M⇢0 we have

�2rz · (⇣�z)=N (⇣, z) + R2r̂(⇠,x), 2r⇣ · (⇣ � z)=N (⇣,z) + B(⇣,z), (6.9)

B(⇣, z) = 2(r̂⇣ � r̂z) · (⇣ � z) � R2r̂(⇠, x). (6.10)

Define
Ri

⇤
@r̂ =

X
1 jn

Ri
⇤
r̂x j +

X
1 j<n

Ri
⇤
r̂y j . (6.11)

We have

(r̂⇣ � r̂z) · (⇣ � z) =

X
|K |=2

R1
⇤
@r̂(⇠, x)⇠ K

⇤
,

B(⇣, z) =

X
|L|=2

(R2
⇤
r̂(⇠, x) + R1

⇤
@r̂(⇠, x))⇠ L

⇤
. (6.12)

For the numerator of the kernel, we have

r⇣ � rz = (⇣ 0

⇤
, 0) +

X
|I |=1

(R1
⇤
@r̂, . . . ,R1

⇤
@r̂)(⇠, x)⇠ I

⇤
. (6.13)

In summary, we have proved the following expansions.

Lemma 6.1. Let M : yn = |z0|2 + r̂(z0, xn) satisfy (2.2) with 0 < ⇢0  3. Suppose
that ⇣, z 2 M⇢0 and ⇣⇤ =  z(⇣ ). Then  z(M⇢0) is given by ⌘n⇤ = |⇣ 0

⇤
|
2
+ h(⇠⇤, x).

Moreover,

h(⇠⇤, x) =

X
|I |=1

R1
⇤
r̂(⇠, x)⇠ I

⇤
=

X
|I |=2

R2
⇤
r̂(⇠, x)⇠ I

⇤
,

�2rz · (⇣ � z) = |⇣ 0

⇤
|
2
� i⇠n

⇤
+

X
|I |=2

R2
⇤
r̂(⇠, x)⇠ I

⇤
,

2r⇣ · (⇣ � z) = |⇣ 0

⇤
|
2
+ i⇠n

⇤
+

X
|I |=2

(R2
⇤
r̂(⇠, x) + R1

⇤
@r̂(⇠, x))⇠ I

⇤
,

r⇣ � rz = (⇣ 0

⇤
, 0) +

X
|I |=1

(R1
⇤
r̂z1, . . . ,R1

⇤
r̂zn )(⇠, x)⇠ I⇤ .

We emphasize thatRi
⇤
g,Ri

⇤
@r̂ , defined by (6.5) and (6.11), might be different when

they reoccur.
Remark 6.2. Notice that (6.2)-(6.8) are valid if we fix ⇣ 2 M⇢0 and vary z 2 M⇢0 .
Therefore, the image of M⇢0 under the map z !  z(⇣ ) is still given by (6.7) and
(6.8), where z varies in M⇢0 .

Here are immediate consequences of the above expansions:���2r⇣ · (⇣ � z)
N (⇣, z)

� 1
��� <

1
2
,

���2rz · (⇣ � z)
N (⇣, z)

+ 1
��� <

1
2
,

|N (z, ⇣ )|
|N (⇣, z)|

< 4 (6.14)

for ⇣, z 2 M⇢0 with ⇣ 6= z and ⇢0  3.
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Lemma 6.3. Let M satisfy (2.2) and let 0 < ⇢  ⇢0  3. Set d(⇣, z) = |rz ·(⇣�z)|.
Then

C�1
|⇣ � z|2  d(⇣, z)  C(d(⇣, v) + d(v, z)), ⇣, z, v 2 M⇢0;

d(⇣, z) � C�1⇢2� 2, z 2 M(1�� )⇢, ⇣ 2 @M⇢, 0 < � < 1.

Proof. M is defined by r = �yn + |z0|2 + r̂(z0, xn) = 0 and ✏ = kr̂k⇢0,2 < C�1
0 .

Let ⇣, z, v be in M⇢0 . Set ⇣ 0

⇤
= ⇣ 0

� z0, ⇣ n
⇤

= �2irz · (⇣ � z). Recall that D⇢0 is
convex.
(i). By definition,

N (⇣, z) = |⇣ 0

� z0|2 + 2i Im(rz · (⇣ � z)) = |⇣ 0

⇤
|
2
+ i⇠n

⇤
.

By Lemma 6.1, we have

 zM⇢0 : ⌘
n
⇤

= |⇣ 0

⇤
|
2
+

X
|I |=2

R2
⇤
r̂(⇠, x)⇠ I

⇤
.

On D⇢0 ⇥ D⇢0 , |R2
⇤
r̂ |  C✏, and |⇠⇤| < C . Then |⇣ n

⇤
|
2

= |⇠n
⇤
|
2
+ |⌘n

⇤
|
2

 C 0

0|⇠⇤|
2.

Therefore, |⇣ n � zn|2 = |
i
2rzn

⇣ n
⇤

�
r 0

z
rzn

· ⇣ 0

⇤
|
2

 C|N (⇣, z)|. Also, |⇣ 0
� z0|2 

|N (⇣, z)|. We conclude that |N (⇣, z)| � C�1
|⇣ � z|2 for ⇣, z 2 M⇢0 . By (6.14) we

have d(⇣, z) � |⇣ � z|2/C . Now

|r⇣ · (⇣ � z)|  |(r⇣ � rv) · (z � v)| + |rv · (z � v)| + |r⇣ · (v � ⇣ )|

 |r⇣ � rv|2 + |z � v|
2
+ d(z, v) + d(v, ⇣ )  C(d(⇣, v) + d(v, z)).

Thus d(⇣, z)  C 0(d(⇣, v) + d(z, v)).
(ii). By Lemma 5.1, dist(@D(1�� )⇢,@D⇢) � C�1⇢� . Then d(⇣, z) � C�1(⇢� )2

follows from d(⇣, z) � C�1
|⇣ � z|2.

7. Outline of Ca estimates

Let M satisfy (2.1)-(2.2) and let 0 < ⇢  ⇢0  3. Recall from (3.10)-(3.11) that

P 0

0'(x)=
X

|I |=q�1

X
|J |=q

X
1 jn

dz0 I
Z
D⇢

A j J
I (⇠, x)

'J (⇠)(r⇣ j � rz j )

(Nn�q
0 Sq0 )(⇣, z)

dV (⇠),

P 0

1'(x)=
X

|I |=q�1

X
|J |=q

n�1X
↵,�=1

2n�1X
s=1

dz0 I
Z
@D⇢

B↵� JI s (⇠, x)'J (⇠)(r⇣↵�rz↵ )r⇣�

(⇣ n�zn)(Nn�q�1
0 Sq0 )(⇣, z)

dV s(⇠).

Here ⇣, z 2 M⇢ , and A j J
I , B

↵� J
I s are polynomials in (r⇣ , r⇣ , r⇣⇣ , rz0, r

�1
zn , rzz).
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We emphasize that norms are defined on D⇢ = ⇡(M⇢) via coordinates x . Let
us indicate how to obtain Ca estimates. We will give estimates on shrinking domains
M(1�� )⇢ . For ⇣ 2 @M⇢ and z 2 M(1�� )⇢ , we obtain min{|r⇣ ·(⇣�z)|, |rz ·(⇣�z)|} �

C�1(⇢� )2 by Lemma 6.3 and |⇣ n � zn| � C�1⇢2� by (4.2). This will allow us
to estimate the Ca-norm of boundary integral P 0

1' by passing derivatives over the
integral sign and differentiating the kernels directly.

We now deal with the interior integrals P 0

0'. Using a partition of unity, we can
find a smooth function � = ��,⇢ , which is 1 on D⇢(1��/2) and zero off D⇢(1��/4),
such that k�k⇢,a  Ca(⇢� )�a . On D⇢ , decompose

'0 = �', '1 = ' � '0, P 0

0' = P 0

0'0 + P 0

0'1.

Now P 0

0'1 can be estimated on M(1�� )⇢ by differentiating the kernels directly, since
'1 is supported in M⇢ \ M(1� 1

2� )⇢ . The only non-trivial integral is P
0

0'0, for which
'0 has compact support in M(1� 1

4� )⇢ . To estimate the latter, we will apply the
transformation  z for the integral and then differentiate the new integral.

The estimate for P 0

0'0 is the most technical part. We deal with this estimate first
in Sections 8 and 9. The estimates for boundary and cutoff terms are in Section 10.

We now conclude this section with estimates of some integrals.

Lemma 7.1. Let n � 2. Let a be a real number, and J = ( j1, . . . , j2n�1) be a
multiindex of non-negative integers. Let � = ( j2n�1 + |J | � 2a) + 2n � 1 and
0 < ⇢1  ⇢0 < 1. Then

Z
|z0|⇢1,|xn |<⇢0

|(z0, z0, xn)J |
||z0|2 + i xn|a

dV 

(
C⇢1+�1 , �1 < � < 2n � 3,
C̃⇢2n�21 log(2+

⇢0
⇢21

), � � 2n � 3;

Z
⇢1|z0|⇢0,|xn |<⇢0

|(z0, z0, xn)J |
||z0|2 + i xn|a

dV 

8><
>:
C|⇢

1+�
1 � ⇢

1+�
0 |, � 6=1, � < 2n�3,

C log(⇢0/⇢1), � = �1,
C̃(⇢0 � ⇢1), � � 2n�3.

Here C depends only on n and �, and C̃ depends on ⇢0 too.

Proof. Using |xn|  |z0|2 + |xn| and |z j |  (|z0|2 + |xn|)1/2, we may assume,
without changing �, that J = 0 and

b(z0, xn) =

|(z0, z0, xn)J |
||z0|2 + i xn|a

=

1
(|z0|2 + |xn|)a

.

Assume first that � = 2n � 1� 2a < 2n � 3, i.e. a > 1. Using polar coordinates,
we get

Z
|z0|⇢1,|xn |⇢0

b(z0, xn) dV  C
Z ⇢1

0
dr
Z ⇢0

0

r2n�3 dxn

(r2 + |xn|)a
 C 0

Z ⇢1

0
r� dr.
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Also,
R
⇢1|z0|⇢0,|xn |<⇢0 b(z

0, xn) dV  C 0

R ⇢0
⇢1
r� dr . The estimates in this case

follow.
Assume now that � � 2n � 3, i.e. a  1. Reducing it to a = 1 via C̃ , we getZ

|z0|⇢1,|xn |⇢0
b(z0, xn) dV  C̃

Z ⇢1

0
r2n�3 log

⇣
1+

⇢0
r2
⌘
dr.

Also,
R
⇢1|z0|⇢0,|xn |<⇢0 b(z

0, xn) dV 

R ⇢0
⇢1
C̃ dr . The estimates are obtained by a

simple computation.

8. New kernels and two formulae for derivatives

In this section we express the kernels by using Lemma 6.1 and derive two formulae
for derivatives of P0', where ' has compact support in D⇢ . The first formula will
be used for Ca estimates and the second is for Ck+ 1

2 estimates.
Recall that with ⇣, z 2 M⇢ the coefficients of P 0

0'(x) are sums of

I(x) =

Z
D⇢
'J (⇠)

@2
⇤
r(⇠, x)(r⇣ j � rz j )
(Na

0 S
b
0 )(⇣, z)

dV (⇠)

over 1  j  n and |J | = q, where a = n � q and b = q. Set f (⇠, x) = 'J (⇠).
We have defined @2+k

⇤
r in Section 2. Now, CHANGE NOTATION and let

@2
⇤
r= p

⇣
⇠, x, (1+r̂xn r̂⇠n )�1, r�1

zn , (1+r̂xnR(00,1)r̂(⇠, x))�1, @r̂(x),@r̂(⇠),Q(⇠,x)
⌘

,

Q(⇠, x) =

⇣
@2r̂(x), @2r̂(⇠),R1

⇤
@r̂(⇠, x),R1

⇤
r̂(⇠, x),R2

⇤
r̂(⇠, x)

⌘
,

where p is a polynomial. Again, R1
⇤
@r̂,R2

⇤
r̂ , defined by (6.11) and (6.5), and p

might be different when they reoccur; for instance, (R1
⇤
r)2 may be the product of

two differentR1
⇤
r’s. Define

@2+k
⇤

r(⇠, x) =

X
@2
⇤
r · @ I1Q1(⇠, x) · · · @ I jQ j (⇠, x), j � 0,

@2
⇤
r̂(⇠, x) =

X
@2
⇤
r · Q1(⇠, x) · · ·Q j (⇠, x), j � 1,

where
P j

l=1 |Il |  k, Ql 2 Q and both sums have finitely many terms. Hence, we
have simple relations

@2+k
⇤

r@2+ j
⇤

r = @
2+k+ j
⇤

r, @ J@2+k
⇤

r = @
2+k+|J |
⇤

r.

The chain rule takes the form

@ I⇠⇤,x9
�1

= @2
⇤
r �9�1, |I | = 1,

@ J⇠⇤,x {( f @
2+k
⇤

r) �9�1
} =

X
|L||J |

(@L f · @
2+k+|J |�|L|

⇤
r) �9�1. (8.1)
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New kernels. Set (⇠⇤, x) = 9(⇠, x) with ⇣, z 2 M⇢0 . Recall that N⇤(⇠⇤) =

|⇠ 0

⇤
|
2
+ i⇠n

⇤
. By Lemma 6.1,

N0(⇣, z) ⌘ 2r⇣ · (⇣ � z) = N⇤(⇠⇤)T̂1(⇠⇤, x),

S0(⇣, z) ⌘ �2rz · (⇣ � z) = N⇤(⇠⇤)T̂2(⇠⇤, x),

T̂1(⇠⇤, x) = T1 �9�1(⇠⇤, x) = 1+

X
|J |=2

@2
⇤
r̂ �9�1(⇠⇤, x)N�1

⇤
(⇠⇤)⇠

J
⇤
, (8.2)

T̂2(⇠⇤, x) = T2 �9�1(⇠⇤, x) = 1+

X
|J |=2

@2
⇤
r̂ �9�1(⇠⇤, x)N�1

⇤
(⇠⇤)⇠

J
⇤
, (8.3)

@2
⇤
r(⇣, z)(r⇣ j � rz j ) =

X
|I |=1

@2
⇤
r �9�1(⇠⇤, x)⇠ I⇤ .

Note that |@2
⇤
r̂ |  C✏ and |T̂ j (⇠⇤, x) � 1| < 1/2 when ⇠⇤ 6= 0. Thus, we obtain

@2
⇤
r(⇣, z)(r⇣ j � rz j )
(Na

0 S
b
0 )(⇣, z)

=

X
|I |=1

n
@2
⇤
r �9�1

· T̂�a
1 T̂�b

2

o
(⇠⇤, x)k̂ Iab(⇠⇤), (8.4)

k̂ Iab(⇠⇤) = ⇠ I
⇤
N�a

⇤
(⇠⇤)N�b

⇤
(⇠⇤), a = n � q, b = q. (8.5)

First formula of derivatives of I. Recall that 9(⇠, x) = ( ̃x (⇠), x), ⇠⇤ =  ̃x (⇠)
and ( ̃⇤

x dV )(⇠⇤) = (@1
⇤
r) � 9�1(⇠⇤, x)dV (⇠⇤). By (8.4) and @2⇤r@1⇤r = @2

⇤
r , we

obtain

I(x) =

X
|I |=1

Z
 ̃x (D⇢)

n
( f @2

⇤
r) �9�1

· T̂�a
1 T̂�b

2

o
(⇠⇤, x)k̂ Iab(⇠⇤) dV (⇠⇤), (8.6)

where a = n� q, b = q. By Lemma 7.1 with � � 0, k̂ Iab 2 L1loc. For each x 2 D⇢ ,
the integrand has compact support in  ̃x (D⇢) ⇢ B9⇢ . To compute @kI(x), we
extend the integrand of I(x) to be zero on B9⇢ \  ̃x (D⇢). The integral is over the
fixed domain B9⇢ . So we can interchange the integral sign with @x . The derivatives
of I have the form

@KI(x) =

X
j+k0

+l+m=|K |

X
|J |= j

X
|K 0

|=k0

X
|L|=l

X
|I |=1

(8.7)

Z
B9⇢

n
(@L f @2+m

⇤
r) �9�1

· @ Jx T̂
�a
1 · @K

0

x T̂�b
2

o
(⇠⇤, x) · k̂ Iab(⇠⇤) dV (⇠⇤).

By (8.2), the first-order x-derivatives of T̂�a
1 have the form

@ Ix T̂
�a
1 (⇠⇤, x) =

X
|J 0

|=1

X
|L 0

|=2
{T̂�a�1
1 @ J

0

x (@2
⇤
r �9�1)}(⇠⇤, x)N�1

⇤
(⇠⇤)⇠

L 0

⇤

=

X
|L 0

|=2
(@3

⇤
r �9�1T̂�a�1

1 )(⇠⇤, x)N�1
⇤

(⇠⇤)⇠
L 0

⇤
.
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Take derivatives consecutively and use the product rule. We can write

@ Jx T̂
�a
1 (⇠⇤, x) =

X
s|J |

X
|L 0

|=2s

n
(@
2+|J |
⇤

r) �9�1
· T̂�a�s
1

o
(⇠⇤, x)

⇠ L
0

⇤

Ns
⇤
(⇠⇤)

. (8.8)

Analogously, @K 0

x T̂�b
2 (|K 0

| = k0) can be written as

@K
0

x T̂�b
2 (⇠⇤, x) =

X
t|K 0

|

X
|L 00

|=2t

n
(@
2+|K 0

|

⇤
r) �9�1

· T̂�b�t
2

o
(⇠⇤, x)

⇠ L
00

⇤

Nt
⇤
(⇠⇤)

. (8.9)

Let I 0 = I + L 0
+ L 00, a0

= a + s, b0
= b + t . We have

N�s
⇤

(⇠⇤)⇠
L 0

⇤
N�t

⇤
(⇠⇤)⇠

L 00

⇤
k̂ Iab = k̂ I

0

a0b0, 2a0

+2b0

� |I 0| = 2n�1, a0

+b0

 n+|K |.

By (8.8)-(8.9), we get

@KI(x) =

X
|L||K |

X
aa0

a+|K |

X
bb0

b+|K |

X
2a0

+2b0
�|I 0|=2n�1

(8.10)

Z
B9⇢

(@L f @2+|K |�|L|

⇤
r) �9�1(⇠⇤, x)

(T̂ a0

1 T̂
b0

2 )(⇠⇤, x)
k̂ I

0

a0b0(⇠⇤) dV (⇠⇤).

Recall that f (⇠, x) = 'J (⇠) has compact support in D⇢ . Since |I 0| = 2a0
+

2b0
� 2n + 1, Lemma 7.1 with � � 0 implies k̂ I 0a0b0

2 L1loc. By the dominated
convergence theorem, we see that @kI are continuous. Note that this also implies
that if r̂ 2 Ck+2(D⇢0) and ' 2 Ck(D⇢0), then P 0' 2 Ck(D⇢0).

Second formula of derivatives of I. We return to the original coordinates by
letting (⇠⇤, x) = 9(⇠, x) and ⇣, z 2 M⇢ . So dV (⇠⇤) = @1

⇤
r dV (⇠). Also

T̂�a0

1 �9(⇠, x) = Na0

(⇣, z)N�a0

0 (⇣, z), T̂�b0

2 �9(⇠, x) = Nb0

(⇣, z)S�b0

0 (⇣, z),

k̂ I
0

a0b0 �  ̃x (⇠) =

(Re(⇣ 0
� z0), Im(⇣ 0

� z0), 2 Im(rz · (⇣ � z)))I 0

N (⇣, z)a0Nb0

(⇣, z)
.

Multiply the same sides of the three identities and expand the last numerator. Then
{T̂�a0

1 T̂�b0

2 k̂ I 0a0b0
} �9 is a linear combination of

k I
00

a0b0(⇠, x) def
==

(⇣ 0
� z0, ⇣ 0

� z0, Im(rz · (⇣ � z)))I 00

Na0

0 (⇣, z)Sb0

0 (⇣, z)
.

Since |I 00| = |I 0| = 2a0
+ 2b0

+ 1� 2n, then

|I 00| � 2a0

� 2b0

� 1+ 2n = 0, |I 00|  2|K | + 1, a0

+ b0

 n + |K |. (8.11)



REGULARITY FOR THE CR VECTOR BUNDLE PROBLEM II 149

By (8.10), derivatives of I(x) have the form

@KI(x) =

X
|L||K |

X
aa0

a+|K |

X
bb0

b+|K |

X
1+2a0

+2b0
�2n|I 00|2|K |+1

(8.12)

Z
D⇢
@L'J (⇠)@

2+|K |�|L|

⇤
r(⇠, x)k I

00

a0b0(⇠, x) dV (⇠).

Here 'J has compact support in D⇢ . Obviously, the @
L'J in (8.12) do not depend

on x . This simple observation will be crucial for the 12 -estimate.
The reader might want to acquaint with the counting scheme in Section 2 and

Hölder inequalities on domains D⇢ in Appendix A; see Proposition A.5.

9. Ca-estimates, case of compact support

In this section, we derive the Ca-estimate for P0'0 where
'0 = �', k�k⇢,a  Ca(⇢� )�a (9.1)

and � is supported in D⇢ . We also derive an estimate for P0' when ' itself has
compact support in D⇢ .

Proposition 9.1. Let k � 0 be an integer and 0  ↵ < 1. Let M : yn = |z0|2 +

r̂(z0, xn) satisfy (2.2) and 0 < ⇢  ⇢0  3. Let '0 be a tangential form as in (9.1).
Then

kP 0

0'0k⇢,k+↵  Ck⇢1�k�↵��k�↵�
k'k⇢,k+↵ + k'k⇢,0kr̂k⇢,k+2+↵

�
. (9.2)

If ' has compact support in D⇢ and is tangential, then

kP 0

0'k⇢,k+↵  Ck⇢1�k�↵
�
k'k⇢,k+↵ + k'k⇢,0kr̂k⇢,k+2+↵

�
. (9.3)

The same estimate holds for Q0

0.

Proof. Recall that by applying (8.10) to f = �'L , k-th derivatives of a coefficient
of P 0

0'0 are sums of finitely many

Ik(x) =

Z
B9⇢

u �9�1(⇠⇤, x)
T̂ a0

1 T̂
b0

2 (⇠⇤, x)
k̂ I

0

a0b0(⇠⇤) dV (⇠⇤).

Here a = q, b = n � q, a  a0
 a + k, b  b0

 b + k and

u(⇠, x) def
== @ I�(⇠)@ J'L(⇠)@

2+l
⇤

r(⇠, x), |I | = i, |J | = j, i + j + l = k,

k̂ I
0

a0b0(⇠⇤) = N�a0

(⇠⇤)N�b0

(⇠⇤)⇠
I 0
⇤

, 2a0

+ 2b0

= |I 0| + 2n � 1.

To obtain (9.2), we estimate the C↵-norm of Ik .
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By the definition of @2+l
⇤

r , we have

k@2+l
⇤

rk⇢,↵  C
X

l1+···+ltl
krk2+l1+↵ · · · krk2+lt .

Thus

k@ i�k⇢,0k@
j'Lk⇢,0k@

2+l
⇤

rk⇢,↵

 C(⇢� )�i
X

l1+···+ltl
k'Lk⇢, jkrk2+l1+↵ · · · krk2+lt

 C 0(⇢� )�i⇢�l� j�↵(k'Lk⇢,l+ j+↵ + krk2+l+ j+↵k'Lk⇢,0).

Here the last inequality is obtained by Proposition A.5. Also

k@ i�k⇢,↵k@
j'Lk⇢,0k@

2+l
⇤

rk⇢,0

 C(⇢� )�i�↵⇢�l� j (k'Lk⇢,l+ j + krk2+l+ jk'Lk⇢,0),

k@ i�k⇢,0k@
j'Lk⇢,↵k@

2+l
⇤

rk⇢,0



C
(⇢� )i⇢l+ j+↵ (k'Lk⇢,l+ j+↵ + krk2+l+ j+↵k'Lk⇢,0).

Therefore,

kukD2⇢ ,↵  Ck⇢�k�↵��k�↵(k'k⇢,k+↵ + krk⇢,k+2+↵k'k⇢,0), (9.4)

kukD2⇢ ,0krk⇢,2+↵  Ck⇢�k�↵��k(k'k⇢,k+↵ + krk⇢,k+2+↵k'k⇢,0). (9.5)

By Lemma 5.2, we know that W⇢ = 9(D⇢ ⇥ D⇢) ⇢ B9⇢ ⇥ D⇢ and

|9�1(v) �9�1(u)|  C|v � u|, u, v 2 W⇢ . (9.6)

Assume that 0  ↵ < 1. Fix ⇠⇤ 2 B9⇢ \ {0} and x1, x2 2 D⇢ . Assume first that
⇠ j =  ̃�1

x j (⇠⇤) are in D⇢ for j = 1, 2. First, by (9.6)

|⇠2 � ⇠1|  C|x2 � x1|.

Now by (8.2)-(8.3), we obtain |T̂ j (⇠⇤, x)| � 1/4 and

|T̂ j (⇠⇤, x2) � T̂ j (⇠⇤, x1)|  C|@2
⇤
r(⇠2, x2) � @2

⇤
r(⇠1, x1)|  krk⇢,2+↵|x2 � x1|↵.

Thus

1 = |1(x2) �1(x1)|
def
==

�����
u �9�1(⇠⇤, x2)
T̂ a0

1 T̂
b0

2 (⇠⇤, x2)
�

u �9�1(⇠⇤, x1)
T̂ a0

1 T̂
b0

2 (⇠⇤, x1)

�����
 Ckuk⇢,↵|x2 � x1|↵ + C|u(⇠2, x2)((@2⇤r)(⇠2, x2) � (@2

⇤
r)(⇠1, x1))|

 C(kuk⇢,↵ + kuk⇢,0kr̂k⇢,2+↵)|x2 � x1|↵.



REGULARITY FOR THE CR VECTOR BUNDLE PROBLEM II 151

By (9.4)-(9.5) we get

1  Ck⇢�k�↵��k�↵(k'k⇢,k+↵ + krk⇢,k+2+↵k'k⇢,0)|x2 � x1|↵. (9.7)

The above holds trivially if ⇠1, ⇠2 are both not in D⇢ , in which case 1 = 0. If
⇠2 2 D⇢ and ⇠1 62 D⇢ , we replace x1 by a point x3 in the line segment [x1, x2], for
which ⇠3 =  ̃�1

x3 (⇠⇤) 2 @D⇢ . Then 1 = |1(x2)| = |1(x2) � 1(x3)| and (9.7)
still holds. By Lemma 7.1 (with ⇢1 = ⇢0 = 9⇢ and � � 0),

R
B9⇢ |k̂ I 0a0,b0

|dV  C⇢ .

Combining the above estimates yields (9.2).
The case that '0 = ' is simpler, and it does not involve � . So we can remove

all powers of � in (9.4)-(9.5), (9.7), and (9.2). The latter becomes (9.3).

We compute the C 1
2 norm of @ I�@ J'L@

2+l
⇤

r for a later use. Here it is crucial
to avoid the Hölder 12 -norm of @

J'L .

Proposition 9.2. Let u(⇠, x) = @ I�(⇠)@ J'L(⇠)@
2+l
⇤

r(⇠, x) where � has compact
support in D⇢ and satisfies k�k⇢,a  C(⇢� )�a . Let |I | + |J | + l = k. Then

ku(⇠, ·)k⇢, 12
 Ck(⇢� )�k�

1
2
�
k'Lk⇢,kkrk⇢, 52

+ k'Lk⇢,0kr̂k⇢,k+ 5
2

�
. (9.8)

Proof. Fix ⇠ 2 D⇢ . The 'L appearing in u(⇠, x) depends only on ⇠ . Therefore, for
ku(⇠, ·)k⇢,1/2, we only use the sup norm of @ J'L(⇠). Then

ku(⇠, ·)k⇢,1/2  Ck((⇢� )�i�
1
2 k'Lk⇢, jkrk⇢,l+2 + (⇢� )�ik'Lk⇢, jkrk⇢,l+ 5

2
)

 C 0

k(⇢� )�i�
1
2⇢� j�l(k'Lk⇢, j+l + k'Lk⇢,0krk⇢,2+ j+l)

+ C 0

k(⇢� )�i⇢� j�l� 1
2 (k'Lk⇢,0krk⇢, j+l+ 5

2
+ k'Lk⇢, j+lkrk⇢, 52

),

where |I | = i , |J | = j , |L| = l and the last two terms are obtained by Proposi-
tion A.5 in which we take d1 = 0 and d2 =

5
2 . Simplifying yields (9.8).

10. Boundary integrals, end of Ca-estimates

In this section we will estimate the boundary integrals P 0

1' and cutoff term P 0

0'1,
where '1 vanishes on D(1� 1

2� )⇢ . Estimates (10.14) and (10.15) below will be used

again for the Ck+ 1
2 estimate.

Recall (3.10)-(3.11) that for ⇣, z 2 M⇢

P 0

0'(x) =

X
|I |=q�1

X
|J |=q

X
1 jn

dz0 I
Z
D⇢

A j J
I (⇠, x)

'J (⇠)(r⇣ j � rz j )

(Nn�q
0 Sq0 )(⇣, z)

dV (⇠),

P 0

1'(x)=
X

|I |=q�1

X
|J |=q

n�1X
↵,�=1

2n�1X
s=1

dz0 I
Z
@D⇢

B↵� JI s (⇠, x)'J (⇠)(r⇣↵�rz↵ )r⇣�

(⇣ n � zn)(Nn�q�1
0 Sq0 )(⇣, z)

dV s(⇠).
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Here A j J
I and B↵� JI s are polynomials in (r⇣ , r⇣ , r⇣⇣ , rz0, r

�1
zn , rzz). And N0(⇣, z) =

r⇣ · (⇣ � z), S0(⇣, z) = rz · (⇣ � z). For ⇣, z 2 M⇢ , set

k(⇠, x) def
== k j JI (⇠, x) = A j J

I (⇠, x)
(r⇣ j � rz j )

(Na0
0 Sb00 )(⇣, z)

, a0 + b0 = n, b0 = q,

l(⇠, x) def
== l↵� JI s (⇠, x) = B↵� JI s (⇠, x)

r⇣� (r⇣↵ � rz↵ )

(⇣ n � zn)(Na0�1
0 Sb00 )(⇣, z)

.

Recall that � = ��,⇢ is a smooth function, which is 1 on D⇢(1��/2) and zero off
D⇢(1��/4), and k�k⇢,a  Ca(⇢� )�a . On D⇢ , set

'0 = �', '1 = ' � '0.

Assume that M satisfies (2.1)-(2.2). Thus kr̂k⇢0,2 < 1/C0. Assume that 0 < ⇢ 

⇢0  3. Set R = |z0|2 + r̂(x). Let ⇡s be the projection from @D⇢ into the subspace
⇠ s = 0. Since D⇢ is bounded and strictly convex, then ⇡s is a 2-to-1 map from @D⇢
onto ⇡s(@D⇢) = ⇡(D⇢). Actually, ⇡s sends ⇡�1

s (@(⇡s(D⇢))) one-to-one and onto
@(⇡s(D⇢)). Let vol(⇡s D⇢) be the volume of ⇡s(D⇢) calculated via the volume-
form dV s . Recall that D⇢ is contained in B2⇢ . If f is a continuous function on D⇢ ,
then
���
Z
@D⇢

f (⇠) dV s(⇠)
���  2 vol(⇡s D⇢)k f k⇢,0  2 vol(B2⇢ \ R2n�2)k f k⇢,0

 C⇢2n�2k f k⇢,0.

(10.1)

Since the projection of @D⇢ in any coordinate hyperplane is contained in a ball of
radius 2⇢, by the Fubini theorem one can verify that

vol (D⇢ \ D(1� 1
2� )⇢)  (2n � 1) · C⇢� · ⇢2n�2  C 0⇢2n�1�. (10.2)

Let k � 0 be an integer and 0  ↵ < 1. Fix ⇣ 2 M⇢ \ M(1� 1
2� )⇢ and vary

z 2 M(1�� )⇢ . By Lemma 6.3, we have

|r⇣ · (⇣ � z)| � C�1(⇢� )2, |rz · (⇣ � z)| � C�1(⇢� )2. (10.3)

We also have |r⇣ j � rz j |  Ck⇣ � zk  C 0
|r⇣ · (⇣ � z)|1/2. Hence

|r⇣ j � rz j ||N0|�a|S0|�b  C|N0|
1
2�a�b  C 0(⇢� )1�2a�2b (10.4)

if a + b � 1/2. Using | f (x2) � f (x1)|  Ck f k⇢,1|x2 � x1|  Ck f k⇢,1(|x2| +

|x1|)1�↵|x2 � x1|↵ , we get

k f k⇢,↵  k f k⇢,0 + Ck f k⇢,1⇢
1�↵.
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Therefore, for 1  j  n and 0 < ↵ < 1,

kr⇣ j � rz j (·)k⇢,↵  C⇢1�↵, |r⇣� |  C⇢ . (10.5)

Also for x1, x2 2 D⇢ ,
��� 1
f (x2)

�

1
f (x1)

��� =

| f (x1) � f (x2)|1�↵

| f (x2) f (x1)|
| f (x1) � f (x2)|↵

 C21�↵k1/ f k1+↵⇢,0 k f k↵⇢,1|x2 � x1|↵.

Combining it with Hölder ratio |1/ f a|⇢,↵  Cak1/ f ka�1⇢,0 |1/ f |⇢,↵ for a � 1, we
get

k1/ f ak⇢,↵  k1/ f ak⇢,0 + Cak1/ f ka+↵⇢,0 k f k↵⇢,1, a � 1. (10.6)

Now, by (10.3)

kN0(⇣, ·)�ak(1�� )⇢,↵ + kS0(⇣, ·)�ak(1�� )⇢,↵  C(⇢� )�2(a+↵), a � 1. (10.7)

Note that A j J
I has the form @2

⇤
r . By Proposition A.5, we have

k@2
⇤
r(⇠, ·)k⇢,a · k@2

⇤
r(⇠, ·)k⇢,b  Ca,b⇢�a�b

krk⇢,2+a+b. (10.8)

We have

@Kx k(⇠, x) =

X
a+b+c+|L|=|K |

X
|L|=0,1

@2+c
⇤

r(⇠, x)@Lx (r⇣ j � rz j )

(Na0+a
0 Sb0+b0 )(⇣, z)

,

where a0 + b0 = n. Fix ⇠ and vary x . For the summand, we estimate the C↵-norms
of two terms in the numerator by (10.3)-(10.5), and use (10.7) for the reciprocals of
two terms in the denominator. Set |K | = k and |L| = d. Recall that d = 0 or 1.
We get
���@2+c⇤

r(⇠, ·)@Lx (r⇣ j � rz j (·))

(Na0+a
0 Sb0+b0 )(⇣, ·)

���
(1�� )⇢,↵



C
(⇢� )2(a+a0+b+b0)

n
(⇢� )1�d⇢�c�↵

krk⇢,2+c+↵

+ ⇢(1�d)(1�↵)⇢�c�d↵
krk⇢,2+c+d↵ + 2(⇢� )1�d(⇢� )�2↵⇢�c

krk⇢,2+c
o
.

The worst term in terms of powers of ⇢, � occurs when a + b = k, c = d = 0. We
see that

kk(⇠, ·)k(1�� )⇢,k+↵  Ck(⇢� )�s1krk⇢,k+2+↵, ⇠ 2 D⇢ \ D(1� 1
2� )⇢ (10.9)

with s1 = 2n � 1+ 2k + 2↵.
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To estimate the boundary term, by (4.2) we have

|⇣ n � zn| � C�1⇢2� (10.10)

for z 2 M(1�� )⇢ and ⇣ 2 @M⇢ . Using (10.6), we get for ⇣ 2 @M⇢

k(⇣ n � zn(·))�ak(1�� )⇢,↵  C(⇢2� )�a�↵, a � 1, 0  ↵  1. (10.11)

Note that B↵� JI s has the form @2
⇤
r . We have

@Kx l(⇠, x) =

X
a+b+d+c=|K |

X
c1+|L|=c

X
|L|=0,1

@
2+c1
⇤

r · r⇣� · @Lx (r⇣ j � rz j )

(⇣ n � zn)1+d(Na0�1+a
0 Sb0+b0 )(⇣, z)

.

Set |K | = k and |L| = c2. We now estimate the C↵-norm in the x variables. Fix
⇣ 2 @D⇢ . Using (10.3)-(10.5), (10.8) for three terms in the numerator and (10.7),
(10.10)-(10.11) for the reciprocals of three terms in the denominator, we obtain

kl(⇠, ·)k(1�� )⇢,k+↵  Ck
X

a+b+d+c1+c2=k

X
c2=0,1

(⇢� )�2(a0+a+b0+b+d)� 1+d⇢·

(10.12)

·

n
(⇢� )1�c2⇢�c1�↵

krk⇢,2+c1+↵ + ⇢(1�c2)(1�↵)⇢�c1�c2↵
krk⇢,2+c1+c2↵

+ ⇢�c1(⇢� )1�c2((⇢2� )�↵ + 2(⇢� )�2↵)krk⇢,2+c1

o
.

The worst term in terms of powers of ⇢, � occurs when c1 = c2 = d = 0, a+b = k.
This shows that for each ⇣ 2 M⇢ \ M(1� 1

2� )⇢ , we have

kl(⇠, ·)k(1�� )⇢,k+↵  Ck(⇢� )�s2krk⇢,k+2+↵ (10.13)

with s2 = 2(n + k � 1+ ↵).
By (10.1) and (10.13), we estimate the boundary term by

kP 0

1'k(1�� )⇢,k+↵  Ck⇢2n�2(⇢� )�s2krk⇢,k+↵+2k'k⇢,0. (10.14)

Estimating the cutoff term by (10.9) and (10.2), we obtain

kP 0

0'1k(1�� )⇢,k+↵  Ca⇢2n�1�s1� 1�s1krk⇢,k+2+↵k'k⇢,0. (10.15)

Define s def
== max{s1�1, s2, k+↵} and s⇤

def
== max{s1�2n+1, s2�2n+2, k+↵�1}.

Thus for a = k + ↵, we get

s = 2(a + n � 1), s⇤ = 2a. (10.16)

Combining (9.2), (10.14)-(10.15), we get the following.
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Proposition 10.1. Let n � 4, and let a � 0 be a real number. Let M : yn =

|z0|2 + r̂(z0, xn) satisfy (2.2). Let P 0 be either of P 0, Q0 in the homotopy formula
' = @M P 0'+ Q0@M' on M⇢ . Assume that 0 < ⇢  ⇢0  3. Then for a tangential
form '

kP 0'kD(1�� )⇢ ,a  Ca⇢�s⇤��s(k'kD⇢ ,a + k'kD⇢ ,0kr̂kD⇢ ,a+2),

where 0 < � < 1, s, s⇤ are given by (10.16).

11. Reduction of Ck+ 1
2 -estimates to C 1

2 -estimate. Summary

We want to prove the following Ck+ 1
2 estimates.

Proposition 11.1. Let n � 4, and let k � 0 be an integer. Let M : yn = |z0|2 +

r̂(z0, xn) satisfy (2.2). Let P 0 be one of P 0, Q0 in the homotopy formula ' =

@M P 0' + Q0@M' on M⇢ . Then for 0 < ⇢  ⇢0  3, 0 < � < 1, and a tan-
gential (0, q) form '

kP 0'kD(1�� )⇢ ,k+ 1
2



Ck
⇢2k+1� 2n+2k�1

�
krkD⇢ , 52 k'kD⇢ ,k + kr̂kD⇢ ,k+ 5

2
k'kD⇢ ,0

�
,

kP'kD(1�� )⇢ ,
1
2

 C⇢�1� 1�2nk'kD⇢ ,0, q = 1.

Proof. Fix a positive integer k. To estimate the Ck+ 1
2 -norm of P 0' = (P 0

0 + P 0

1)',
we first recall estimates (10.14) and (10.15) for the boundary and cutoff terms

k(P 0

0'1, P
0

1')k(1�� )⇢,k+ 1
2

 Ca⇢�s⇤��s
krk⇢,k+ 5

2
k'k⇢,0. (11.1)

Here s = 2n + 2k � 1 and s⇤ = 2k + 1 are computed by (10.16) for a = k +
1
2 .

It remains to estimate the Ck+ 1
2 -norm of P 0

0'1, where '1 = �' and � has compact
support in D⇢ and k�k⇢,a  Ca(⇢� )�a . The proof will be completed later. For the
rest of proof, we reduce it to the special case of k = 0.

The second formula (8.12) says that the coefficients of @k P 0

0'0 are sums of

Ku(x) =

Z
D⇢
u(⇠, x)k(⇠, x) dV (11.2)

with functions u(⇠, x) and kernels k(⇠, x) of the form

u(⇠, x) = @E�(⇠)@F'J (⇠)@
2+l
⇤

r(⇠, x), |E | + |F | + l = k, (11.3)

k(⇠, x) def
== k Iab(⇣, z) =

(⇣ 0
� z0, ⇣ 0

� z0, Im(rz · (⇣ � z)))I

(r⇣ · (⇣ � z))a(rz · (⇣ � z))b
, ⇣, z 2 M⇢ . (11.4)
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Moreover, by (8.11), the non-negative integers a, b, I = (i1, . . . , i2n�1) satisfy

|I | � 2a � 2b � 1� 2n, |I |  2k + 1, a + b  n + k. (11.5)

By (9.8) in Proposition 9.2, we have

ku(⇠, ·)k⇢, 12
 Ck(⇢� )�k�

1
2
�
k'k⇢,kkrk⇢, 52

+ k'k⇢,0kr̂k⇢,k+ 5
2

�
. (11.6)

In Section 12 we will prove that if u 2 L1(D⇢ ⇥ D⇢) then

kKukD⇢ ,1/2  C sup
⇠2D⇢

ku(⇠, ·)kD⇢ ,1/2. (11.7)

Combining it with (11.1) and (11.6) yields the first estimate in the proposition.
We now consider the case that ' is a tangential (0, 1)-form. We return to

(3.10)-(3.11) and look at a special property of the kernels of P 0'. Recall that in this
case

P 0

0'(x) =

X
1�<n

X
1 jn

Z
D⇢

A j� (⇠, x)
'� (⇠)(r⇣ j � rz j )
(Nn�1

0 S0)(⇣, z)
dV (⇠),

P 0

1'(x) =

X
1↵,�,�<n

X
1s<2n

Z
@D⇢

B↵��s (⇠, x)'� (⇠)(r⇣↵ � rz↵ )r⇣�
(⇣ n � zn)(Nn�2

0 S0)(⇣, z)
dV s(⇠).

Here ⇣, z 2 M⇢ . Also, A j� and B↵��s are polynomials in r⇣ , r⇣ , r⇣⇣ . In particular,
they are independent of z. Moreover, in the kernels there are only the first-order
derivatives rz j in the z variable. Then all norms of r in (10.12)-(10.14), in which
k = 0, can be replaced by krk⇢,2 < C and the estimate (10.14) for the boundary
term becomes

kP 0

1'k(1�� )⇢,↵  C⇢�2↵� 2�2n�2↵k'k⇢,0, 0  ↵  1.

Absorb A j�
I (⇠) into '� (⇠). With ⇣, z 2 M⇢ the kernels of interior integral P 0

0'
have the form

k(⇠, x) =

r⇣ j � rz j
(r⇣ · (⇣ � z))a(rz · (⇣ � z))b

, a + b = n. (11.8)

We will show that (11.7) holds for this new kernel. Applying it to

u(⇠, x) = A j� (⇠)'� (⇠), ⇣ 2 M

we obtain kP 0

0'0,1k⇢,1/2  Ck'0,1k⇢,0. This shows the second estimate of the
proposition.

The proof of Proposition 11.1 is thus complete, by assuming (11.7) in which
Ku, given by (11.2), has a kernel of the form (11.4)-(11.5) or (11.8).
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We want to unify the two kernels (11.4), which satisfies (11.5), and (11.8). For
(11.4), we write

Im(rz · (⇣ � z)) =

1
2i
rz · (⇣ � z) �

1
2i
rz · (⇣ � z).

Then kernel (11.4) is a linear combination of

k(⇠, x) def
==

(⇣ � z, ⇣ � z, r⇣ � rz)I

(r⇣ · (⇣ � z))a(rz · (⇣ � z))b(r⇣ · (⇣ � z))c (rz · (⇣ � z))d
, (11.9)

where ⇣, z 2 M , a, b, c, d are now possibly negative integers, I is a (3n)-tuple of
nonnegative integers, and

|I |�2(a+b+c+d) � 1�2n, |I |  2k+1, |a|+|b|+|c|+|d|  n+3k+2. (11.10)

Indeed, the I = (i1, . . . , i2n�1) in (11.5) is a multi-index of nonnegative integers.
Hence, (11.5) and i2n�1 � 0 implies (11.10). Obviously, (11.8) is of the form
(11.9). In Section 12, for the new kernel (11.9) with the condition (11.10) we will
prove (11.7), i.e.

���
Z

D⇢
u(⇠, ·)k(⇠, ·) dV (⇠)

���
D⇢ ,1/2

 C sup
⇠2D⇢

ku(⇠, ·)kD⇢ ,1/2, (11.11)

where u 2 L1(D⇢ ⇥ D⇢).

Summary. We would like to summarize our observations on Ck+ 1
2 -estimates to

explain how the general estimate (11.11) gives us an actual 12 -gain in special cases.

a) k � 1 and q � 1. In our applications of (11.11) to the Ck+ 1
2 -estimates,

u(⇠, x), arising from the k-th order derivatives of P 0

0' after applying the approxi-
mate Heisenberg transformation, is of the form @k� j'J (⇠)@

j+2
⇤

r(⇠, x) where ' has
compact support in D⇢ ; see the second formula of the derivatives in Section 8.
In particular, the C 1

2 -norm of u(⇠, x) in x variables involves only k'k⇢,k (and
krk⇢,k+ 5

2
). Thus the estimate for kP 0

0'k⇢,k+ 1
2
gains 12 in Hölder exponent from

k'k⇢,k at the expense of two extra derivatives in krk⇢,k+ 5
2
.

b) k = 0 and q = 1. Apply (11.11) to (0, 1) forms. In this case, we will
not need to differentiate the kernels and apply cutoff. Both simplify the estimate
considerably. However, it is crucial that when (11.11) is applied, u(⇠, x) has the
form A j� (⇠)'� (⇠); in particular, it is independent of x . Therefore, the 12 -estimate
of u in the x-variables and hence 12 -estimate of P

0

0' only require r 2 C2.
c) While the 1

2 -estimate of P
0

0' is on the original domain (Proposition 12.1
below), the estimate for the boundary term P 0

1', which only requires r 2 C2 for the
same reason as in b), is on shrinking domains.
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12. 12 -estimate

We will derive the 12 -estimate, by modifying a standard argument for Hölder esti-
mates. This will complete the proof of Proposition 11.1 via (11.6) and (11.11). We
restate the latter as the following.

Proposition 12.1. Let M be a real hypersurface of class C2 and satisfy (2.2). As-
sume that 0 < ⇢  ⇢0  3. Let a, b, c, d be (possibly negative) integers and I be a
(3n)-tuple of nonnegative integers. Suppose that |I | � 2(a + b+ c+ d) � 1� 2n.
Let

k(⇠, x) =

(⇣ � z, ⇣ � z, r⇣ � rz)I

(r⇣ · (⇣ � z))a(rz · (⇣ � z))b(r⇣ · (⇣ � z))c (rz · (⇣ � z))d
, ⇣, z 2 M,

Ku(x) =

Z
M⇢

u(⇠, x)k(⇠, x) dV .

Then for u 2 L1(D⇢ ⇥ D⇢),

kKukD⇢ , 12  C
⇣
⇢ sup
⇠2D⇢

ku(⇠, ·)kD⇢ , 12 + sup
⇠2D⇢

ku(⇠, ·)kD⇢ ,0
⌘
.

Proof. Recall that D⇢ is convex. It will be convenient to regard Ku as a function
on M . The 12 -Hölder ratios on M⇢ and ⇡M⇢ are equivalent, since |⇡(z2 � z1)| �

|z2� z1|/C for z1, z2 2 M⇢ . By abuse of notation, we write u(⇠, x) as u(⇣, z) with
⇣, z 2 M and apply the same change of notation to k(⇠, x), Ku(x).

Fix z1, z2 in M⇢ . We have

Ku(z2) � Ku(z1) =

Z
M⇢

u(⇣, z2)
�
k(⇣, z2) � k(⇣, z1)

�
dV

+

Z
M⇢

�
u(⇣, z2) � u(⇣, z1)

�
k(⇣, z1) dV = I + I 0.

To estimate I 0, we need to estimate
R
M⇢ |k(⇠, z1)| dV (⇠). So we apply the approx-

imate Heisenberg transformation ⇣⇤ =  z1(⇣ ). (However, we want to refrain from
use of Taylor remainder expansions, such as (8.4)-(8.5), for the kernel. This avoids
the requirement of r 2 C5/2.) Let ⇣ 2 M⇢ . Using the fundamental theorem of
calculus, we get ⌘n � yn1 = A(⇠, x1) · (⇠ � x1) with |A| < C . By (6.4), we have
⇠n � xn1 = p(⇠, x1) · ⇠⇤ with |p| < C . Therefore,

|⇣ � z1|  C|⇠⇤|.

By Lemma 6.1, we have

|r⇣ � rz1 |  C|⇠⇤|, 1/C 

|rz1 · (⇣ � z1)|
||⇣ 0

⇤
|
2
+ i⇠n

⇤
|

 C, 1/C 

|r⇣ · (⇣ � z1)|
||⇣ 0

⇤
|
2
+ i⇠n

⇤
|

 C.
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Therefore, for ⇣ 2 M⇢

|k(⇣, z1)| 

C|⇠⇤|
|I |

||⇣ 0

⇤
|
2
+ i⇠n

⇤
|
a+b+c+d 

X
|J |=|I |

C|⇠ J
⇤
|

||⇣ 0

⇤
|
2
+ i⇠n

⇤
|
a+b+c+d .

By Lemma 5.2, ⇡( z1(M⇢)) ⇢ B9⇢ . Applying Lemma 7.1 with ⇢1 = ⇢0 = 9⇢ and
� � 0, we get

Z
M⇢

|k(⇣, z1)| dV 

X
|J |=|I |

Z
B9⇢

C|⇠ J
⇤
|

|⇠n
⇤

+ i |⇣ 0

⇤
|
2
|
a+b+c+d dV  C 0⇢ . (12.1)

Since u(⇣, z) is of class C1/2 in the z-variable, one gets
|I|  C|z2 � z1|1/2⇢ sup

⇣2D⇢
ku(⇣, ·)k⇢,1/2.

To estimate the integral I 0, it suffices to show thatZ
M⇢

|k(⇣, z2) � k(⇣, z1)| dV  C�1/2, � = |z2 � z1|.

As mentioned in the introduction we decompose M⇢ into a cylinder and its comple-
ment. Consider the cylinder M⇢ \ {|⇣ 0

� z01| < ⇢1}, where ⇢1 = min(9⇢,C⇤|z2 �

z1|
1
2 ) with C⇤ > 1 to be determined. Notice that the radius of cylinder is about

|z2 � z1|1/2, which is much large than |z2 � z1|, the Euclidean distance between
z1, z2.

We have Z
M⇢

|k(⇣, z2) � k(⇣, z1)| dV  I1 + I2 + I3,

I1 =

Z
M⇢\{|⇣ 0

�z01|<⇢1}
|k(⇣, z1)| dV, I2 =

Z
M⇢\{|⇣ 0

�z01|<⇢1}
|k(⇣, z2)| dV,

I3 =

Z
M⇢\{|⇣ 0

�z01|�⇢1}
|k(⇣, z2) � k(⇣, z1)| dV .

By an analogy of (12.1), we have

I1 

X
|J |=|I |

C
Z

|⇣ 0

⇤
|<⇢1,|⇣⇤|<9⇢

|⇠ J
⇤
|

|⇠n
⇤

+ i |⇣ 0

⇤
|
2
|
a+b+c+d dV .

By Lemma 7.1 with � � 0 and ⇢0 = 9⇢ and ⇢1 = min(9⇢,C⇤|z2 � z1|
1
2 ), we get

I1  C⇢1  CC⇤|z2 � z1|1/2. Note that

M⇢ \ {|⇣ 0

� z01| < ⇢1} ⇢ M⇢ \ {|⇣ 0

� z02| < ⇢1 + |z2 � z1|}.

Applying the estimate for I1, we get I2  C(⇢1 + |z2 � z1|)  C 0C⇤|z2 � z1|1/2.
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With C⇤ > 1 to be determined, we have I3 = 0 if ⇢1 = 9⇢. Therefore, we
may assume that ⇢1 = C⇤|z2 � z1|

1
2 .

To estimate I3, we ignore any non-isotropic distance and connect (z01, xn1 ) and
(z02, x

n
2 ) by a line segment in the convex domain D⇢ . Let z(t) be the graph of the

line segment in M . Let ⇣ be a point of M⇢ which is not in the cylinder. Then

|⇣ 0

⇤
| = |⇣ 0

� z01| � ⇢1 = C⇤|z2 � z1|1/2.

We have

|rz(t) · (⇣ � z(t)) � rz1 · (⇣ � z1)|  C0|z2 � z1|,
|rz1 · (⇣ � z1)| � C1|⇣ � z1|2 � C1|⇣ 0

� z01|
2

� C1C2⇤ |z2 � z1|,

where the second inequality comes from Lemma 6.3. We now fix C⇤ > 1 such that
C1C2⇤ > 2C0. (As remarked earlier, if C⇤|z2�z1|

1
2 > 9⇢, we already have I3 = 0.)

We obtain

|rz1 · (⇣ � z1)|/2  |rz(t) · (⇣ � z(t))|  2|rz1 · (⇣ � z1)|.

Recall that ⇣⇤ =  z1(⇣ ) and C�1
||⇣ 0

⇤
|
2
+ i⇠n

⇤
|  |rz1 · (⇣ � z1)|  C||⇣ 0

⇤
|
2
+ i⇠n

⇤
|.

Using |rz(t) · (⇣ � z(t))|/C  |r⇣ · (⇣ � z(t))|  C|rz(t) · (⇣ � z(t))|, we get

C�1
||⇣ 0

⇤
|
2
+ i⇠n

⇤
|  |r⇣ · (⇣ � z(t))|  C||⇣ 0

⇤
|
2
+ i⇠n

⇤
|, (12.2)

C�1
||⇣ 0

⇤
|
2
+ i⇠n

⇤
|  |rz(t) · (⇣ � z(t))|  C||⇣ 0

⇤
|
2
+ i⇠n

⇤
|. (12.3)

Write k(⇣, z) =
p(⇣,z)
q(⇣,z) with p(⇣, z) = (⇣ 0

� z0, ⇣ 0
� z0, r⇣ � rz)I and

q(⇣, z) = (r⇣ · (⇣ � z))a(rz · (⇣ � z))b (r⇣ · (⇣ � z))c (rz · (⇣ � z))d .

For ⇣ 2 M⇢ and C⇤ > 1 we have

|⇣ � z(t)|  |⇣ � z1| + |z(t) � z1|  |⇣ � z1| + C|z2 � z1|
 |⇣ � z1| + CC�2

⇤
|⇣ 0

� z01|
2

 C 0

|⇣ � z1|.

By (6.4), |⇠n � xn1 |  C|⇠⇤|. Thus |⇣ � z1|  C|⇠⇤|. Therefore, |⇣ � z(t)|  C|⇠⇤|
and

|p(⇣, z(t))|  C|⇣ � z(t)||I |  C 0

|⇠⇤|
|I |.

By (12.2)-(12.3), we have

|{q(⇣, z(t))}�1| 

C
||⇣ 0

⇤
|
2
+ i⇠n

⇤
|
a+b+c+d .
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It is easy to see that |z0(t)|  C|x2 � x1|  C|z2 � z1|. Then |@t q(⇣, z(t))�1| does
not exceed the sum of

C|z2 � z1|
|(r⇣ · (⇣ � z(t)))a0

(rz(t) · (⇣ � z(t)))b0

(r⇣ · (⇣ � z(t)))c0 (rz(t) · (⇣ � z(t)))d 0

|

,

where a0
+ b0

+ c0 + d 0
= a + b + c + d + 1. Applying the product rule, we get

|@t p(⇣, z(t))|  C|z2 � z1|
X

|I 0|=|I |�1
|(⇣ � z(t), ⇣ � z(t), r⇣ � rz(t))I

0

|.

Therefore,

|@t p(⇣, z(t))|  C|z2�z1||(⇣ 0

⇤
, ⇠n

⇤
)||I |�1,

��@t 1
q(⇣,z(t))

��


C|z2 � z1|
||⇣ 0

⇤
|
2
+ i⇠n

⇤
|
a+b+c+d+1 .

By the mean-value-theorem, we get for ⇣ 2 M⇢ \ {|⇣ 0
� z0| > ⇢1}

|k(⇣,z2)� k(⇣,z1)| C|z2�z1|
n

|⇠⇤|
|I |

||⇣ 0

⇤
|
2
+ i⇠n

⇤
|
a+b+c+d+1 +

|⇠⇤|
|I |�1

||⇣ 0

⇤
|
2
+ i⇠n

⇤
|
a+b+c+d

o

 C 0

|z2�z1|
|⇠⇤|

|I |

||⇣ 0

⇤
|
2
+ i⇠n

⇤
|
a+b+c+d+1



X
|J |=|I |

C 0
|z2 � z1||⇠ J⇤ |

||⇣ 0

⇤
|
2
+ i⇠n

⇤
|
a+b+c+d+1 .

Applying Lemma 7.1 with ⇢1 = C⇤|z2 � z1|1/2 < 9⇢ = ⇢0 and � � �2, we get

I3  C|z2 � z1|⇢�1
1  C|z2 � z1|1/2.

13. Proof of Theorem 1.1

We now prove Theorem 1.1, following a KAM argument in [5]. We restate the
theorem.
Theorem. Let M : r = 0 be a strongly pseudoconvex real hypersurface of class
C2 in Cn with n � 4. Let ! be a continuous r ⇥ r matrix of (0, 1)-forms on M
satisfying the integrability condition @b! = ! ^! mod @r . Near each point of M
there exists a non-singular matrix A 2 C1/2(M) such that @b A = �A! mod @r .
Moreover, if a is a positive real number, M is of class Ca+2 and ! 2 Ca(M), there
is a solution A 2 Ca(M); if k is a positive integer, ! 2 Ck and M 2 Ck+ 5

2 , there is
a solution A 2 Ck+ 1

2 (M).

Note that not all solutions have the same regularity. If u is a continuous CR
function vanishing nowhere on M , then uA is still a solution.
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Non-isotropic dilations. The non-isotropic dilation T� : z ! (
p

�z0, �zn) with
� > 0 does not preserve the real hypersurface M . However, it is obvious that it
sends M�

= T�1
� M onto M . By abuse of notation, we will denote T� its restriction

to Cn�1
⇥ R.

We want to show that M can be put in the form (2.1)-(2.2) after a second order
normalization and a non-isotropic dilation.

Let M be a graph yn = |z0|2 + r̂(z0, xn) over D. Recall that M⇢ = M \

{(xn)2 + yn < ⇢2} and

D⇢ = ⇡(M⇢) =

n
(z0, xn) 2 D : |z0|2 + |xn|2 + r̂(z0, xn) < ⇢2

o
.

Set r(z) = �yn + r̂(z0, xn). Define

r̂ �(z) = ��2r̂(�z0, �2xn), r �(z) = ��2r(�z0, �2xn).

Then M�
= T�1

� M is the graph over D� = T�1
� D, given by

yn = |z0|2 + r̂ �(z0, xn).

For 0 < � < 1, we have

M�
⇢ = M�

\ {|xn|2 + yn < ⇢2} ⇢ M�
\ {�2|xn|2 + yn < ⇢2}.

So D�⇢
def
== ⇡(M�

⇢) ⇢ T�1
� D⇢ for 0 < � < 1.

In Theorem 1.1, we need a local solution A. By a change of local holomorphic
coordinates, we may assume that r̂(0) = @r̂(0) = @2r̂(0) = 0. Therefore

kr̂ �kD�1,2 < ✏, D�1 ⇢ D�,

if � is sufficiently small.

Integrability conditions. We will find our solution through a sequence of frame
changes. We also need a small norm of initial ! via dilation. Therefore, we need to
verify that the integrability condition is preserved under dilation and frame changes.

Recall that for '=

P
|I |=q 'I dz0

I , we define @M'=

P
|I |=q,1↵<n X↵'I dz↵^

dz0 I for X↵ = @z↵ � rz↵/rzn@zn . A direct computation shows that �dT
�1
� X↵ =

X �↵ ⌘ @z↵ � r �z↵/r
�
zn@zn . Thus, T

⇤

� @M = @M�T ⇤

� . This shows that the formal integra-
bility condition is invariant under dilation, i.e. @M�!� = !�^!� . If ! =

P
'J dz

J

is a tangential (0, 1)-form on M , then T ⇤

� ! is a tangential (0, 1)-form on M
� . More-

over, if ! 2 Ca(M), then

T ⇤

� ! = �
n�1X
↵=1

'↵ � T� dz↵, lim
�!0

k!�kCa(D�1) = 0. (13.1)

In other words, we have achieved the smallness of ! via dilation alone.
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We now consider the integrability condition under a frame change. We are
given an r ⇥ r matrix of continuous (0, 1)-forms ! on M . We assume that @b! =

! ^ ! mod @r . Without loss of generality, we may assume that ! are tangential.
The formal integrability condition is that as currents

@M! = ! ^ !. (13.2)

Recall that our goal is to find a non-singular matrix A which solves

@M A + A! = 0. (13.3)

We will consider only the solution A such that both A and @M A are continuous.
For any such A, the transformation ! ! !̃ = (@M A + A!)A�1 preserves the
integrability condition (13.2). Indeed, differentiating !̃A = @M A + A! and then
using ! = A�1!̃A � A�1@M A, @M! = ! ^ !, we verify @M !̃ = !̃ ^ !̃ by

(@M !̃)A � !̃ ^ @M A = @M A ^ ! + A@M! = @M A ^ (A�1!̃A � A�1@M A)

+ (!̃A � @M A) ^ (A�1!̃A � A�1@M A)

= !̃ ^ !̃A � !̃ ^ @M A.

Assume that the matrix ! is of class Ca . In what follows, all constants, including �,
will depend on a. For simplicity this dependence will not be indicated sometimes.
However, constants C0, �⇤ and ✏ do not depend on a.

Proof of Theorem 1.1. We need to find a non-singular matrix A = I + B, defined
near the origin of M , such that

@MB + ! + B! = 0.

It suffices to find a � > 0 and a non-singular matrix A� defined near 0 2 M� such
that @M�!� + A�!� = 0. Then A� � T�1

� is a solution to the original equation.

Take ⇢0 = 1, � j = 2� j�1 and ⇢ j+1 = (1� � j )⇢ j . Then ⇢1 = lim j!1 ⇢ j >
0. We will assume that 0 < �  �⇤. We want to apply our estimates for P 0 and
Q0. So we choose �⇤ 2 (0, 1] such that the homotopy formula holds on M�

⇢ for
⇢ 2 (0, 1] and � 2 (0, �⇤]. For ⇢1 < ⇢  1 we have

kP 0'kCa(M�
(1�� )⇢)

 C��s
k'kCa+2(M�

⇢)
, (13.4)

where P 0 is either of operators P 0, Q0 in the homotopy formula on M�
⇢ . We em-

phasize that the constant Ca is independent of � 2 (0, ⇢⇤) and ⇢ 2 (⇢1, 1]. We
have also absorbed kr �kCa+2(D�⇢ j )

into Ca , since r̂ �(z0, xn) = ��2r̂(�z0, �2xn) and
r̂(0) = @r̂(0) = 0 imply that

kr̂ �kCa+2(D�⇢ j )
 Ckr̂kC2(D�⇢0 ) + �akr̂kCa+2(D�⇢0 ) < Ca, 0 < � < �⇤.
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Set Mj = M�
⇢ j and k ·k⇢ j+1,a = k ·kCa(Mj+1). We have Mj+1 ⇢ M0. Let !0 =

T ⇤

� !, restricted on M0. On Mj we have the homotopy formula ' = @M� P 0

j' +

Q0

j@M�', where P 0

j = P 0

Mj
and Q0

j = Q0

Mj
.

Using @M�!0 = !0 ^ !0, we arrive at the equation

@M� (B0 + P 0

0!0) + Q0

0(!0 ^ !0) + B0!0 = 0,

where P 0

0, Q
0

0 are applied entrywise to the matrices. We use the approximate solu-
tion

B0 = �P 0

0!0.

Assume that A0 = I + B0 is invertible. We repeat this procedure and get Bj =

�P 0

j! j and

! j+1=(@M A j + A j! j )A�1
j ={Q0

j (! j ^ ! j ) � (P 0

j! j )! j }(I � P 0

j! j )
�1. (13.5)

Here, we need all A j = I + Bj to be non-singular on Mj . We want to show that
lim j!1 A j A j�1 · · · A0 is a solution.

We now estimate kBjk⇢ j+1,a and k! j+1k⇢ j+1,a .
For an r ⇥ r matrix B = (b ji ) of functions on M⇢ we define kBk⇢,a =

max{kb ji k⇢,a}. If B, D are two such matrices, we have

kDBk⇢,0  r2kDk⇢,0kBk⇢,0, kBlk⇢,0  rlkBk
l
⇢,0.

Assume that ⇢1 < ⇢  ⇢0. We want to show that if kBk⇢,0 
1
2r , then

kDk⇢,a  cakBk⇢,a, 0  a < 1, (13.6)

where ca > 1 depends on a, r, n. Let A�1
= I + D. We know that D =P

l�1(�1)l Bl and

kDk⇢,0 

rkBk⇢,0
1� rkBk⇢,0

 2rkBk⇢,0,

which is (13.6) with a = 0. Since I is constant, then

D(z2) � D(z1) = A(z2)�1 � A(z1)�1 = A(z1)�1(A(z1) � A(z2))A(z2)�1

= A(z1)�1(B(z1) � B(z2))A(z2)�1.

Using (13.6) with a = 0, we get kDk⇢,a  CkBk⇢,a if 0 < a  1. Assume
that (13.6) holds when [a] < k. Let [a] = k � 1. Applying the product rule to
(I + B)D = �B and multiplying from left by (I + B)�1 = I + D, we get

@D = (I + D)(@B)D � (I + D)@B.
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By Proposition A.4 and the induction assumption, we obtain

kDk⇢,a  Ca{(1+ kBk⇢,a�1)kBk⇢,1 + kBk⇢,a}  C 0

akBk⇢,a,

which proves (13.6).
Since Bj = �P 0

j! j , by (13.4) we have

kBjk⇢ j+1,a  c⇤a�
�sa
j k! jk⇢ j ,a, c⇤a > 1. (13.7)

We want to achieve kBjk⇢ j+1,0 
1
2r . So it suffices to obtain

k! jk⇢ j ,a 

�
sa
j

2rc⇤aca
= b j , j = 0, 1, 2, . . . . (13.8)

By (13.6)-(13.8), we have k(I+B)�1k⇢ j ,a  1+kDk⇢ j ,a  2. Using (13.4)-(13.5)
and the estimates on matrix products, we get

k! j+1k⇢ j+1,a  2 · r2
�
kQ0

j (! j ^ ! j )k⇢ j+1,a (13.9)

+r2kBjk⇢ j+1,ak! jk⇢ j+1,a
 

 C⇤

a� j
�sa

k! jk
2
⇢ j ,a.

Assume that k!0k⇢0,a 6= 0. Otherwise the theorem holds trivially. Define

b̂ j+1 = C⇤

a� j
�sa b̂2j , b̂0 = k!0k⇢0,a.

By (13.1), we choose a dilation T� with � 2 (0, �⇤] such that !0 = T�! satisfies

b̂0 = k!0k⇢0,a  b0.

Then r j = b̂ j+1/b̂ j satisfies

r0 = C⇤

a�0
�sa b̂0, r j = 2sa (r j�1)2,

r1/r0 = 2sar0, r j+1/r j = (r j/r j�1)2.

This shows that r j+1/r j , and hence r j , b̂ j , converge rapidly, if b̂0 is sufficiently
small. Specifically,

r j+1/r j = (r1/r0)2
j
, r j = r0(r1/r0)2

j
�1, b̂ j = b̂0r

j
0 (r1/r0)

2 j� j�1.

Recall that � j = 2� j�1. Clearly, k! jk⇢ j ,a  b̂ j  b̂0r
j
0 

2�sa
2rc⇤aca

(2�sa ) j = b j ,
provided

b̂0 

2�sa

2rc⇤aca
, r0  2�sa , r1/r0 = 2sar0 

1
2
.
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Therefore, we have shown that if ! 2 Ca and M 2 C2+a then (I + Bj ) · · · (I + B0)
converges in Ca-norm on \D�⇢ j to an invertible matrix A1. When a = k is an
integer and M 2 Ck+5/2, or when M 2 C2 for k = 0, we have

kBjk⇢ j+1,k+1/2  ck��sk
j k! jk⇢ j ,k .

Since k! jk⇢ j ,k tends to zero rapidly, it is obvious that Bj converges to 0 rapidly in
Ck+1/2 on \D j

⇢ j . This shows that A1 is of class Ck+1/2.
To complete the proof, we check that @M� A1

+ A1!0 = 0. Recall that for
A j = I + Bj , we have @M� A j + A j! j = w j+1A j . Thus

! j+1A j A j�1 = (@M� A j )A j�1 + A j! j A j�1

= (@M� A j )A j�1 + A j (@M� A j�1 + A j�1! j�1)

= @M� (A j A j�1) + A j A j�1! j�1.

Inductively, we get @M� (A j · · · A0) + A j · · · A0!0 = ! j+1A j · · · A0. Taking the
limits, we get @M� A1

+ A1!0 = 0 on M�
⇢1

. When k = 0, the derivatives in the
sense of currents are continuous and the above computation is valid as currents.

In the above argument, we obtain the rapid convergence of Bj ,! j in Ca norm
in one step when a is finite. One can also establish a rapid convergence of ! j , Bj
first in C0-norm and then in higher order derivatives. See [23], [5] for details.

Appendix

A. Hölder inequalities

The main purpose of this appendix is to present some Hölder inequalities on do-
mains in Rm . We do not claim any originality in deriving these inequalities. In fact,
we will just modify formulation and proofs of Hörmander [9]. The inequalities
in [9] are for a fixed convex domain. In our applications, we need to allow the
domain D⇢ to vary. Therefore, we will derive them in full details and omit simple
repetitions only.

We say that a domain D in Rm has the cone property if the following hold: (i)
Given two points p0, p1 in D there exists a piecewise C1 curve � (t) in D such that
� (0) = p0 and � (1) = p1, |� 0(t)|  C⇤kp1 � p0k for all t except finitely many
values. The diameter of D is less than C⇤. (ii) For each point x 2 D, D contains a
cone V with vertex x , opening ✓ > C�1

⇤
and height h > C�1

⇤
.

We will denote C⇤(D) a constant C⇤ > 1 satisfying (i) and (ii).



REGULARITY FOR THE CR VECTOR BUNDLE PROBLEM II 167

In this appendix, by a cone V = V (✓, h, v) with vertex at the origin, opening
✓ > 0 and height h > 0, and centered at positive v axis where v is a unit vector, we
mean

V = {t 2 Rm
: v · t > ✓�1

kt � (v · t)vk, v · t < h}, (A.1)

where ktk = (|t1|2 + · · · + |tm |
2)

1
2 . Note that x + V is a cone with vertex at x .

Note that each cone satisfying (ii) contains a ball of radius at least C⇤(D)/C . Let
D1, D2 be domains of the cone property, and let V1, V2 be cones in (ii) for D1, D2
respectively. Assume that the vertex of Vi is pi . Then D1⇥ D2 contains the convex
hull of (p1, p2) and a ball of radius depending only on C⇤(D1),C⇤(D2). Therefore,
D1 ⇥ D2 still has the cone property.

For the rest of the appendix, until Proposition A.5, we assume that the domain
D has the cone property unless stated otherwise. The constants in all Hölder in-
equalities will depend on m and C⇤(D). For simplicity this dependence will not be
expressed sometimes.

Let k � 0 be an integer. For a complex-valued function u on D ⇢ Rm , define

k@kukD,0 = sup
x2D,|I |=k

|@ I u(x)|, kukD,k = max
0 jk

k@ j ukD,0,

|u|D,↵ = sup
x,y2D

|u(x) � u(y)|
|x � y|↵

, 0 < ↵  1,

kukD,k+↵ = max{kukD,k, |@
I u|D,↵ : |I | = k}, 0 < ↵ < 1.

If A = (a ji ) is a matrix of functions on D, we define kAkD,k+↵ = max{ka ji kD,k+↵}.
We also define

|u|D,k+↵ = max
|I |=k

|@ I u|D,↵, 0 < ↵  1.

By (i) of the cone property and the fundamental theorem of calculus

C�1
0 |u|D,k  k@kukD,0  |u|D,k, k = 1, 2, . . . , (A.2)

provided that u 2 Ck(D). It will be convenient to use both |u|D,k and k@kukD,0.

Lemma A.1. Let D ⇢ Rm satisfy (i) of the cone property. Let f be a C1 map from
D intoRm . There exists a constant C0 > 1 such that if | f 0

� I | < C�1
0 on D, then f

is a C1 diffeomorphism from D onto D0. Moreover, k f �1
� IkD0,1  Ck f � IkD,1.

Proof. Take two points p0, p1 in D. By assumption there exists a piecewise C1
curve � in D such that � (0) = p0, � (1) = p1, and |� 0(t)|  C⇤kp1 � p0k. Write
f = I + f̃ . We have

f (p1) � f (p0) = p1 � p0 �

Z 1

0
r f̃ (� (t)) · � 0(t) dt.
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Since k f̃ 0
kD,0 < C�1

0 , then for C0 sufficiently large we get

1
2
kp1 � p0k  k f (p1) � f (p0)k  2kp1 � p0k. (A.3)

Now it is obvious that f is a C1 diffeomorphism from D onto D0 and that D0

satisfies (i) of the cone property. Let g̃ = f �1
� I . Then g̃ � f = � f̃ . In particular,

kg̃kD0,0  k f̃ kD,0, and by (A.3), |g̃|D0,1  C| f̃ |D,1.

We are ready to derive Hölder inequalities. We start with two lemmas in [9]
for our domains.

Lemma A.2. Let 0 < a < b. Let D satisfy the cone property. If |u|D,a  1 and
|u|D,b  1 then |u|D,c  C for a < c < b, where C depends only on a, b and
C⇤(D).

Proof. For simplicity, denote |u|D,a by |u|a . Since the diameter of D is bounded by
some constant C , it is obvious that |u|c  C 0

|u|c0 if k < c < c0  k+ 1. Therefore,
it suffices to prove the inequality when c is an integer.

Let V ⇢ D be a cone as stated in the cone property. We may assume that
0 2 V .

If a is an integer, we get |@au|  1 on V . If a is not an integer, let P be its
Taylor polynomial of degree [a] at 0. Set v = u � P . Since @ I P are constants
for all |I | � [a], then |v|c0 = |u|c0 for all c0 > [a]. Therefore, we may assume
that @ I u(0) = 0 for all |I | = [a]. Now |u|a  1 implies that |@ I u| < C0 for all
|I | = [a].

We want to use the mean-value-theorem repeatedly. Let us first look at the
one-variable case. When f is Ck on [0, 1] and k f k0 ⌘ k f k[0,1],0 < C0, there is
a point t in [0, 1] such that | f 0(t)|  2C0. One can divide [0, 1] into a sufficient
number of equal parts and find a point t j 2 [0, 1] such that | f ( j)(t j )| < C 0 for j =

1, . . . , k. If | f |a  1 for some a 2 (k, k + 1], we obtain further that k f (k)
k0 < Ck .

Consequently, k f ( j)
k0 < C j hold for j = k, k � 1, . . . , 0.

Return to our case. Fix a polydisc 1m in V with side larger than C�1. Fix
I with |I | = [a]. Using |@ I u| < C0 for |I | = [a] and |u|b  1, by the one-
variable argument we obtain |@ j@ I u| < C on1m for j = [b]� [a], . . . , c� [a]. So
|@ j u| < C on1m for j = c, . . . , [b]. If [b] < b, |u|b  1 implies that |@ [b]u| < C 0

on D. If b = [b] the assumption and (A.2) implies |@bu|  1. Using a path
connecting a point in D to 1m and |@ j u| < C on 1m for j = [b], . . . , c, we get
|@ j u|  C 00 on D for j = [b] � 1, . . . , c. Using (A.2) again, we get |u|c  C .

Example. Let f (x) = x + x3 and D = [0, ✏]. Then f 0(0) = f 0(x) �

R x
0 f 00(t) dt

and

✏ f 0(0) =

Z ✏

0
f 0(x) dx�

Z ✏

0

Z x

0
f 00(t) dt dx = f (✏)� f (0)�

Z ✏

0

Z x

0
f 00(t) dt dx .
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This shows that 1 = | f 0(0)|  C1k f k0 + C2k f 00
k0  2✏C1 + 6✏C2. However,

|C1| + |C2| tends to 1 as ✏ ! 0. This example demonstrates that in some in-
equalities derived in this appendix, the constants indeed depend on C⇤(D). For
special domains used in this paper, we will find these constants by dilation; see
Proposition A.5.

Lemma A.3. Let D ⇢ Rm satisfy the cone property. Set k · kD,a = k · ka . If
0 < a < b, c = �a + (1� �)b and 0 < � < 1, then |u|c  C|u|�a(|u|a + |u|b)1��,
where C depends only on a, b.

Proof. The case |u|a � |u|c is obvious and we may assume that |u|a  |u|c. If
|u|a = 0, then u is a polynomial of degree < a. Then |u|c = 0 too for c > a, and
the inequality holds. We may assume that |u|a 6= 0. Without loss of generality, we
may assume that |u|a = 1 < |u|c. If |u|b  1, Lemma A.2 implies that |u|c  C
and the inequality holds. Therefore, it suffices to verify

|u|c  C|u|1��b , if |u|a = 1 < |u|b. (A.4)

We first assume the inequality for integer c and verify it for non-integer c. Set
[c] = k. We have � =

b�c
b�a and 1 � � =

c�a
b�a . Depending on whether a, b are in

[k, k + 1], we have the following cases.

Case i) k  a < c < b  k + 1. Since c = �a + (1 � �)b then c � k =

�(a�k)+(1��)(b�k). Consider first the case a = k. Then c�k = (1��)(b�k).
Let v = @ I u with |I | = k. Hence

|v(y) � v(x)|
|y � x |c�k

= |v(y) � v(x)|�
����v(y) � v(x)

|y � x |b�k

����
1��

 2�kvk
�
0|v|

1��
b�k

 C 0

|u|�k |@
I u|1��b�k  C 0

|u|�k |u|
1��
b ,

where the second last inequality is obtained by (A.2) using k = a > 0. Therefore,
|u|c  C|u|�a|u|

1��
b . Assume now that a�k > 0. Then a�k, b�k, c�k are in (0, 1].

Computing the Hölder ratio gives us |v|c�k  |v|
�
a�k |v|

1��
b�k , i.e. |u|c  |u|�a|u|

1��
b .

We emphasize that we have proved |u|c  C|u|�a|u|
1��
b (and hence (A.4) for case

i)) without using any condition on |u|a, |u|b, |u|c other than that on a, b, c, k.

Case ii) a < k < c < b  k + 1. We get |u|c  C|u|(b�c)/(b�k)k |u|(c�k)/(b�k)b , by
case i). By the assumption for the integer case (applied to triple a < k < b) we
obtain

|u|k  C|u|(k�a)/(b�a)b . (A.5)

Eliminating |u|k from two inequalities gives us (A.4); indeed

k � a
b � a

·

b � c
b � k

+

c � k
b � k

=

c � a
b � a

.
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Case iii) k  a < c < k + 1 < b. We have |u|c  C|u|(c�a)/(k+1�a)k+1 , by case i).
The assumption on the integer case (applied to triple a < k + 1 < b) gives us

|u|k+1  C|u|(k+1�a)/(b�a)b . (A.6)

Eliminating |u|k+1 gives us (A.4).
Case iv) a < k < c < k + 1 < b. Then (A.5) and (A.6) are still valid. By i), we
have |u|c  C|u|k+1�ck |u|c�kk+1. Using (A.5)-(A.6) and eliminating |u|k , |u|k+1 gives
us (A.4).

Finally, we prove (A.4) when c is a positive integer by repeating an argument
in [9].

Fix x0 2 D and let V be a cone in D with vertex x0, height and opening 1/C⇤.
Since V is convex, for x 2 V and 0 < ✏ < 1 we can define

u✏x (y) = u((1� ✏)x + ✏y), y 2 V .

Then |u✏x |V,b  ✏b|u|b and |u✏x |V,a  ✏a . Since |u|b > 1, there is an ✏ 2 (0, 1) so
that ✏a = µ = ✏b|u|b. Now, apply Lemma A.2 to the domain V and the function
µ�1u✏x . For any multiindex I with |I | = c, we have

✏c|@ I u(x)| = |@ I u✏x (x)|  C0µ = C0(✏a)�(✏b|u|b)1��.

Canceling ✏’s shows |@ I u(x)|  C0|u|1��b for x 2 V . Since C0 does not depend
on x0 2 V , we get k@cuk0  C0|u|1��b on D; by (A.2), |u|c  Ck@cuk0 and (A.4)
follows.

Proposition A.4. Let D ⇢ Rm have the cone property and denote k ·kD,a by k ·ka .
Let a, b, a j , b j be nonnegative real numbers.

(i) kuk�a+(1��)b  Ca,bkuk�akuk
1��
b for 0 < � < 1.

(ii) kuvka  Ca(kuk0kvka + kukakvk0).
(iii) Suppose that Dj ⇢ Rn j has the cone property for j = 1, . . . , k. Let a j , c j

be non-negative real numbers, and let (b1, . . . , bk) be in the convex hull of
(a1, . . . , ak) and (c1, . . . , ck). Then

kY
j=1

ku jkDj ,b j  Ck+|a|+|b|+|c|

 
kY
j=1

kukDj ,a j +

kY
j=1

kukDj ,c j

!
.

(iv) Let f be a map from D into D0
⇢ Rn . Assume that D0 has the cone property.

Then

ku � f ka  Ca(ku0

kD0,a�1k f 0

k
a
0 + ku0

kD0,0k f 0

ka�1) + kukD0,0, a � 1,
ku � f ka  C min(ku0

kD0,0| f |a, kukD0,ak f 0

k
a
0) + kukD0,0, 0  a  1.
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(v) Let f = I + f̃ be a Ca map from D into Rm . There exists C0 > 1 such that if
| f̃ 0

| < C�1
0 then

k f �1
� Ik f (D),a  Cak f̃ ka, a � 0.

(vi) Let f = I + f̃ be a C1 map from D into D0
⇢ Rm with | f 0

| < C0. Assume
that D [ D0 is contained in a convex domain D00 of the cone property. Then

ku � f � uka  Ca(ku0

kD00,ak f̃ k0 + ku0

kD00,0k f̃ ka), a � 0.

Proof. (i)-(iii) are proved in [9]. The proof for (iii) is for Dj being the same do-
main. In fact, by (i), one has log ku jkDj ,b j� log ku jkDj ,a j+(1��) log ku jkDj ,c j+
logC for all j . Sum over j = 1, . . . , k and take exponential on both sides. The
convexity of ex yields (iii). For 0  a  1, two inequalities in (iv) are verified
directly. Assume that (iv) holds when a is replaced by a � 1. Assume that a > 1.
Then (u � f )0 = u0( f ) f 0. For both cases of 0 < a�1  1 and a�1 > 1 we obtain

k(u � f )0ka�1  C(ku0( f )ka�1k f 0

k0 + ku0( f )k0k f 0

ka�1)

 C 0(ku0

kD0,a�1k f 0

k
a
0 + ku0

k0k f 0

ka�1),

where ku0
ka�1 ⌘ ku0

kD0,a�1. Note that for the second inequality when a > 2, we
have used

ku0

k1k f 0

ka�2k f 0

k0  Cku0

k

a�2
a�1
0 ku0

k

1
a�1
a�1k f

0

k

1
a�1
0 k f 0

k

a�2
a�1
a�1k f

0

k0

 C 0(ku0

ka�1k f 0

k
a
0 + ku0

k0k f 0

ka�1).

This gives us (iv) as ku � f ka  kuk0 + k(u � f )0ka�1.

(v). It follows immediately from Lemma A.1 when 0  a  1. We now prove it
for a > 1 by using a variant of counting scheme in Section 2. Define

b@1+kv =

X
j1+···+ jlk

p( f̃ 0)@ J1v · · · @ Jlv, ji = |Ji | � 1 � 0, (A.7)

where p( f̃ 0) is a polynomial in (I + f̃ 0)�1 and f̃ 0 and it might be different when
it reoccurs. Let g = f �1 and g̃ = f �1

� I . Let 1 denote the identity matrix. We
have g̃0

= �((1+ f̃ 0)�1 f̃ 0) � g, i.e. @ I g̃ = (b@1 f̃ ) � g for |I | = 1. Inductively,

@ J g̃ = (b@ |J | f̃ ) � g, |J | � 1. (A.8)

By Lemma A.1, we have 12 |y1� y0|  |g(y1)�g(y0)|  2|y1� y0|. Let k = [a]�1
and ↵ = a � k � 1. Thus kgkD0,1+k+↵  Ck f k0 + C

P
jk k

b@1+ j f̃ k↵ . Now

k
b@1+k f̃ k↵ 

X
j1+...+ jlk

C 0

n
k f̃ k1+↵k f̃ k1+ j1 · · · k f̃ k1+ jl

+

X
1il

k f̃ k1+ j1 · · · k f̃ k1+ ji+↵ · · · k f̃ k1+ jl

o
.

By (iii) we obtain kg̃kD0,1+k+↵ 

P
C(k f̃ kl1 + k f̃ kl�11 )k f̃ k1+k+↵  C 0

k f̃ ka .
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(vi). By convexity of D00, we have u(x+ f̃ (x))�u(x)= f̃ (x) ·

R 1
0 u

0(x+ t f̃ (x))dt.
Consider case 0  a < 1. We have
���
Z 1

0
{u0(y+t f̃ (y)) � u0(x+t f̃ (x))}dt

��� max
t

ku0

kD00,a|y�x+t ( f̃ (y)� f̃ (x))|a

 Cku0

kD00,a(1+ k f̃ kD,1)|y � x |↵.

By k f̃ k1  C , one sees easily that

ku(I + f̃ ) � uka  C(ku0

kD00,ak f̃ k0 + ku0

kD00,0k f̃ ka),

which is (vi) for 0  a < 1. Assume that the above inequality holds when a is
replaced by a � 1. Assume that a � 1. We need to estimate the k · ka�1 norm of

@xi (u�(I+ f̃ )�u) = (@yi u)�(I+ f̃ )�@xi u+

X
1 jm

(@y j u)�(I+ f̃ )·@xi f̃ j . (A.9)

By the induction assumption, we have

k(@yi u) � (I + f̃ ) � @xi uka�1  C(k@2ukD00,a�1k f̃ k0 + k@2ukD00,0k f̃ ka�1).

We need to put k@2ukD00,lk f̃ ka�1�l  ku0
kD00,l+1k f̃ ka�1�l into the desired form.

By (iii), we get

ku0

kD00,l+1k f̃ ka�1�l  C(k f̃ k0ku0

kD00,a + ku0

kD00,0k f̃ ka). (A.10)

We now treat the term in the sum of (A.9). Set ku0
kb ⌘ ku0

kD00,b. By (iv) we have
k(@y j u)(I + f̃ )ka�1  C(ku0

ka�1 + ku0
k1k f̃ ka�1) + ku0

k0. Thus

k(@y j u)(I + f̃ ) · @xi f̃ jka�1  C((ku0

ka�1 + ku0

k1k f̃ ka�1)k f̃ k1 + ku0

k0k f̃ ka)

 C 0(ku0

ka�1k f̃ k1 + ku0

k1k f̃ ka�1 + ku0

k0k f̃ ka).

We can put the first two terms in the desired form by (A.10).

Two inequalities in the next proposition are used in estimating P and Q.
Proposition A.5. Let D be a convex domain in Rm satisfying

B⇢/c0 ⇢ D ⇢ Bc0⇢, 0 < ⇢  3.

Let a⇤ = 0 for 0  a  1 and a⇤ = a for a > 1. Let k · ka = k · kCa(D). Then

⇢a⇤

��� mY
j=1

u j
���
a

 Ca,c0
mX
j=1

ku jka
Y
i 6= j

kuik0,

⇢e
mY
j=1

kukd j+b j  Ca,b,c,c0

 
mY
j=1

ku jkd j+a j +

mY
j=1

ku jkd j+c j

!
,

where e = (b1+d1�[d1])+· · ·+(bm+dm�[dm]), a j , c j , d j are non-negative real
numbers, and (b1, . . . , bm) is in the convex hull of (a1, . . . , am) and (c1, . . . , cm).
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Proof. The first estimate is trivial if a  1. So assume that a > 1. We know that
D is convex and B⇢/c0 ⇢ D ⇢ Bc0⇢ . Thus D has the cone property if 1  ⇢  ⇢0,
where the cone of fixed size with vertex at x 2 D can be found from the convex
hull of x and B⇢/c0 . Assume now that 0 < ⇢ < 1. Consider the isotropic dilation
S⇢(x) = ⇢x . Then, D⇤ = S�1

⇢ D has the cone property. Since 0 < ⇢ < 1, we have

⇢akuka  ku � S⇢kD⇤,a  kuka. (A.11)

By Proposition A.4 (ii) we obtain

⇢a
��� mY
j=1

u j
���
a



��� mY
j=1

u j � S⇢
���
D⇤,a

 C
mX
j=1

ku j � S⇢kD⇤,a
Y
i 6= j

kui � S⇢kD⇤,0.

Using (A.11), we get the first inequality easily. Let l j  [d j ] be any non-negative
integers. By (A.11) and Proposition A.4 (iii), we get

⇢e
mY
j=1

k@l j u jkb j+d j�[d j ] 

mY
j=1

k(@l j u j ) � S⇢kD⇤,b j+d j�[d j ]

 C

 
mY
j=1

k(@l j u j ) � S⇢kD⇤,a j+d j�[d j ]+
mY
j=1

k(@l j u j ) � S⇢kD⇤,c j+d j�[d j ]

!

 C

 
mY
j=1

ku jkl j+a j+d j�[d j ] +

mY
j=1

ku jkl j+c j+d j�[d j ]

!

 C

 
mY
j=1

ku jkd j+a j +

mY
j=1

ku jkd j+c j

!
.

Summing over all non-negative integers l j  [d j ] gives us the second inequality.

One can also obtain other inequalities via dilation. The inequalities below are
not directly used in this paper.

Proposition A.6. Let a⇤ be as in Proposition A.5. Let ⇢, D, k · ka be as in Propo-
sition A.5. Let a, b, a j , b j be nonnegative real numbers.

(i) ⇢c⇤kuk�a+(1��)b  Ca,bkuk�akuk
1��
b for 0 < � < 1, where c⇤ = �a + (1 �

�)b.
(ii) Let f be a map from D into D0

⇢ Rn . Assume that D0 is convex and Bc�10 ⇢
⇢

D0
⇢ Bc0⇢ . Then

⇢a⇤
ku � f ka  Ca,c0⇢(ku0

kD0,a�1k f 0

k
a
0 + ku0

kD0,0k f 0

ka�1) + kukD0,0, a � 1,
ku � f ka  Cc0 min(kukD0,1k f ka, kukD0,ak f ka1) + kukD0,0, 0  a  1.
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(iii) Let a⇤⇤ = 0 for 0  a  2 and a⇤⇤ = a � 1 for a > 2. Let f be a Ca map
from D into Rm . There exists C0 > 1 such that if | f 0

� I | < 1/C0 then

⇢a⇤⇤
k f �1

� Ik f (D),a  Cak f � Ika.

(iv) Let f = I+ f̃ be a C1 map from D into D0
⇢ Rm with | f 0

| < C0. Assume that
D [ D0 is contained in a convex domain D00 satisfying B⇢/c0 ⇢ D00

⇢ Bc0⇢ .
Then

⇢a⇤
ku � f � uka  Ca,c0(ku

0

kD00,ak f̃ k0 + ku0

kD00,0k f̃ ka).

Proof. We may assume that 0<⇢<1. Let u⇤(x) = u(⇢x), f ⇤(x) = ⇢�1 f (⇢x) =

x + f̃ ⇤(x), and D⇤ = ⇢�1D. Then D⇤ has the cone property.
(i) is immediate, by applying Proposition A.4 to u⇤ and by using (A.11).
(ii). The case 0  a  1 is verified directly. Assume that a > 1. Applying
Proposition A.4 to u⇤ � f ⇤, we get

ku⇤ � f ⇤

kD⇤,aCa(k@u⇤kD0

⇤
,a�1k f ⇤0

k
a
D⇤,0+k@u⇤kD0

⇤
,0k f ⇤0

kD⇤,a�1)+ku⇤kD0

⇤
,0.

Since f ⇤0(x) = f 0(⇢x), then k f ⇤0
kD⇤,b  k f 0

kD,b for b � 0. By (A.11), we also
have

ku⇤ � f ⇤

kD⇤,a = k(u � f ) � S⇢kD⇤,a � ⇢aku � f ka,
k@u⇤kD0

⇤
,a�1 = k⇢(@u)⇤kD0

⇤
,a�1  ⇢k@uka�1, a � 1.

Simplifying gives us (ii).
(iv). Let f̃ = f � I . The case 0  a  1 is verified directly. Assume that a > 1.
Then

ku⇤ � f ⇤

� u⇤kD⇤,a  C(k f̃ ⇤

kak@u⇤kD00

⇤
,0 + k f̃ ⇤

k0k@u⇤kD00

⇤
,a).

As in (ii), we can get (iv) by (A.11) and

k f̃ ⇤

kD0

⇤
,a = ⇢�1

k f̃ � S⇢kD0

⇤
,a  ⇢�1

k f̃ ka.

(iii). (A dilation would give us a⇤⇤ = a.) Let g = f �1
= I + g̃. We have

g̃ = � f̃ � g and g̃0
= �{ f̃ 0(1 + f̃ 0)�1} � g. By Lemma A.1, C�1

|x 0
� x | 

|g(x 0) � g(x)|  C|x 0
� x |. We get immediately

kg̃k f (D),a  Ck f̃ ka, 0  a  2.

Assume that k � 1. Recall that by (A.7)-(A.8),

@K g̃ =

X
j1+···+ jlk

{p( f̃ 0)@ J1 f̃ · · · @ Jl f̃ }�g, k = |K |�1 � 0, ji = |J |i �1 � 0.

Set 1 + k = [a] and ↵ = a � k � 1. Computing the Hölder ratio of (A.8) and
applying Proposition A.5 with d j = 1, we obtain (iii) from

k@K g̃k↵  C
X

j1+···+ jlk
⇢� j1�···� jl�↵

k f̃ k1+k+↵  C 0⇢�k�↵
k f̃ k1+k+↵.
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Remark A.7. If all norms in Proposition A.6 are replaced by the scalar-invariant
norm k · k

⇤, defined as
kuk⇤

D,a = ku � SdkS�1
d D,a

with d being the diameter of D, we can take c⇤ = a⇤ = a⇤⇤ = 0 for the proposition.
For the use of scalar-invariant norms to derive estimates on the Bochner-Martinelli-
Koppelman formula for balls in Cn , see [20].

B. The Henkin homotopy formula

Recall notation z0 = (z1, . . . , zn�1), z = (z0, zn) and x = ⇡(z) = (Re z, Im z0).
In this appendix, we will derive the following version of Henkin’s homotopy

formula.

Theorem B.1. Let M ⇢ Cn be a graph yn = |z0|2+r̂(x) over D ⇢ R2n�1. Assume
that 0 < ⇢ < ⇢0  3 and

D⇢0 ⇢ D, r̂(0) = 0, @r̂(0) = 0, kr̂k⇢0,2 = kr̂kD⇢0 ,2 < 1/C0 (B.1)

with C0 sufficiently large. Assume that 0 < ⇢ < ⇢0  3. Let ' be a continuous
tangential (0, q)-form on M⇢ . Assume that @M' is continuous as currents on M⇢

and admits a continuous extension on M⇢ . If 0 < q < n � 2, then on M⇢ and as
currents

' = @M(P0 + P1)' + (Q0 + Q1)@M' mod @r,
where P0, P1, Q0, Q1 are defined by (3.5).

Recall that M⇢ = M \ {z : |xn|2 + yn < ⇢2} and D⇢ = {x 2 D : |xn|2 + yn <

⇢2}. When M is strictly convex, see Henkin [7] for the proof. Our proof will
follow [21] via Stokes’ theorem.

Set r = �yn + |z0|2 + r̂(x) and define

F(⇣, z) = rz · (⇣ � z) +

1
2

X
1 j,kn

rz j zk (⇣ j � z j )(⇣ k � zk), (B.2)

St (z) = ⇡{⇣ 2 M : |F(⇣, z)| = t}, S0

t (⇣ ) = ⇡{z 2 M : |F(⇣, z)| = t}.

Note that rz j zk = r̂z j zk .

Lemma B.2. Let n � 2. Let M be as in Theorem B.1. There exists C1 > 1
satisfying the following.

(i) If 0 < t < (⇢0 � ⇢)2/C1 and z 2 M⇢ , then St (z) and S0

t (z) are compact subsets
of D⇢0 .

(ii) Assume that r̂ 2 C3(D⇢0), z 2 M⇢ and 0 < t < C�1
1 min{(⇢0 � ⇢)2, (1 +

kr̂k⇢0,3)�1}. Then St (z) and S0

t (z) are smooth and of classes C3 and C1, respec-
tively.
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Proof. Set ✏ = kr̂k⇢0,2. (i) By Lemma 5.1, D⇢0 is convex and dist(@D⇢0, @D⇢) �

(⇢0 � ⇢)/C . On M⇢0 ⇥ M⇢0 , |rz · (⇣ � z)| � |⇣ � z|2/C by Lemma 6.3 and
|r̂z j zk |  C✏. Hence, (i) follows from

|F(⇣, z)| � |⇣ � z|2/(2C). (B.3)

(ii) Fix z 2 M⇢0 . Let ⇣ n⇤ = �2irz(⇣ � z). By Lemma 6.1, ⇠⇤ = (Re ⇣⇤, Im ⇣ 0

⇤
) are

coordinates of M⇢0 and

⇠n
⇤

= Re(�2irz · (⇣ � z)) = ⇠n � xn + 2 Im(z0 · ⇣ 0) + Im{2r̂z · (⇣ � z)}, (B.4)
⌘n

⇤
= Im(�2irz · (⇣ � z)) = |⇣ 0

⇤
|
2
+

X
|I |=2

R2
⇤
r̂(⇠, x)⇠ I

⇤
, (B.5)

whereRi
⇤
is defined by (6.5). Write u = Re(�2i F(⇣, z)) and v = Im(�2i F(⇣, z)).

We have

�2i F(⇣, z) = �2irz · (⇣ � z) � i
X

1 j,kn
rz j zk (⇣ j � z j )(⇣ k � zk),

u(⇠⇤) = ⇠n
⇤

+ ũ(⇠⇤), ũ(⇠⇤) =

X
|I |=2

aI �9�1(⇠⇤, x)⇠ I⇤ , (B.6)

v(⇠⇤) = |⇣ 0

⇤
|
2
+ ṽ(⇠⇤), ṽ(⇠⇤) =

X
|I |=2

bI �9�1(⇠⇤, x)⇠ I⇤ , (B.7)

where |aI | + |bI |  Ckr̂k⇢0,2  C 0✏ and |@1aI (⇣, z)| + |@1bI (⇣, z)|  Ckr̂k⇢0,3.
Suppose that |F(⇣, z)| = t and

t1/2kr̂k⇢0,3 < 1/C0 (B.8)

and C0 is sufficiently large. To show that St (z) is smooth, we need to verify that
d⇣ 0

⇤
,⇠n

⇤

(u2 + v2) 6= 0 when u2 + v2 = t2. By (B.3)-(B.4) we know that

|⇣ � z|/C  |⇠⇤|  C|⇣ � z|  C 0t1/2.

By (B.3) and (B.8), we obtain |⇣ � z|kr̂k⇢0,3  1/C0 and

|@1ũ| + |@1ṽ|  C(kr̂k⇢0,3|⇣ � z|2 + ✏|⇣ � z|)  C 0(C�1
0 + ✏)|⇠⇤|.

Assume that d⇣ 0

⇤
,⇠n

⇤

(u2 + v2) = 0. Then

(⇠n
⇤

+ ũ)(1+ ũ⇠n
⇤

) + vv⇠n
⇤

= 0, uũ⇣ 0

⇤

+ v(⇣ 0

⇤
+ ṽ⇣ 0

⇤

) = 0.

From the first identity we get |⇠n
⇤
|  C(|ũ| + |v|)  C 0(|⇣ 0

⇤
|
2

+ |⇠n
⇤
|
2). Therefore,

for t < 1/C , |⇠n
⇤
|  C|⇣ 0

⇤
|
2. Now, |v| � |⇣ 0

⇤
|
2

� C✏(|⇣ 0

⇤
|
2

+ |⇠n
⇤
|
2) �

1
2 |⇣

0

⇤
|
2 and

|u|  C|⇣ 0

⇤
|
2. By Lemma 5.2, |@1⇠⇤⇠ |  C , and by (B.7) and (B.8),

|ṽ⇣ 0

⇤

|  |⇣ 0

⇤
|/2, |⇣ 0

⇤
+ ṽ⇣ 0

⇤

| � |⇣ 0

⇤
|/2,

|⇣ 0

⇤
|
3/4  |v(⇣ 0

⇤
+ ṽ⇣ 0

⇤

)| = |uũ⇣ 0

⇤

|  C|⇣ 0

⇤
|
2(✏ + C�1

0 )|⇣ 0

⇤
|.
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Hence ⇣ 0

⇤
= ⇠n

⇤
= 0, when C�1

0 , ✏ are sufficiently small. This shows that t = 0,
a contradiction. It is clear that for a fixed z, u2 + v2 is a function of class C3 in
(⇣ 0, ⇠n). This shows that St (z) is smooth and of class C3.

For a fixed ⇣ 2 M⇢ , (⇣ 0

⇤
, ⇠n

⇤
) still form a coordinate system of class C2 for M .

We have the same formulae (B.4)-(B.5), only to vary z 2 M⇢0 ; see Remark 6.2.
Thus (B.6)-(B.7) are still valid, where ⇠ is fixed and z varies in M⇢0 . The same
argument shows that S0

t (⇣ ) is smooth and of class C1.

Let us recall from Section 3

�+�

0,q =

(r⇣ � rz) · d⇣ ^ rz · d⇣ ^ (@⇣ @⇣ r)n�2�q ^ (@ zrz ^ d⇣ )q

(r⇣ · (⇣ � z))n�1�q(rz · (⇣ � z))q+1 .

The following computation is essential in Folland-Stein [3]. See also Romero [17].

Lemma B.3. Let n � 2 and 0  q  n � 1. Let M satisfy (B.1) and r̂ 2 C3. Let
F(⇣, z) be the Levi polynomial of r about z 2 M . Let ' be a continuous tangential
(0, q)-form on M . Then

lim
t!0

Z
|F(⇣,z)|=t,⇣2M

'(⇣ ) ^�+�

0,q (⇣, z) =

(2⇡ i)n

2
'(z) mod @r(z), (B.9)

where the convergence is uniformly in z on each compact subset of M .

In the lemma, |F(z, ·)| = t} is oriented as the boundary of the domain |F(z, ·)| < t
in M on which dV = d⇠1 ^ d⌘1 ^ · · · ^ d⌘n�1 ^ d⇠n is the volume-form.

Here is an outline. Following [3], we will use the Levi polynomial F(⇣, z) to
define new coordinates of M near z and compute each term in the kernel. On T 1,0z M
there are two quadratic forms h =

P
1 j,kn rz j zk t

j tk , A =

P
1 j,kn rz j zk t j tk .

We will express the kernel in h and A, with error terms. When we compute the
residue, the error terms can be removed via non-isotropic dilation. This gives us a
limit kernel (see (B.19) below) on a non-isotropic sphere. Roughly speaking, the
limit kernel is expressed in h and A, but not in A. For latter purpose we will use
�2i F(⇣, z), instead of its linear part�2irz · (⇣ � z), as part of coordinates. Without
A, we remove A in the limit kernel by averaging. By a linear transformation, we
reduce h to the identity, and compute the residue.

CHANGE NOTATION. Let ⇣ 0

⇤
= ⇣ 0

� z0 and

⇣ n
⇤

= �2i F(⇣, z) = �2irz · (⇣ � z) � i
X

1 j,kn
r̂z j zk (⇣ j � z j )(⇣ k � zk). (B.10)

Then near z 2 M⇢0 , ⇣ 0

⇤
, ⇠n

⇤
form coordinates of M⇢0 . We will modify some earlier

computations where the approximate Heisenberg transformation is used.
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Applying the Taylor formula on convex domain D⇢0⇥R and then letting ⇣, z 2

M⇢0 , we obtain

r(⇣ ) � r(z) = 2Re F(⇣, z) +

X
1 j,kn

rz j zk (⇣
j
� z j )(⇣ k � zk) + E(⇣, z),

E(⇣, z)=o(|(⇣ 0

� z0, ⇠n � xn)|2), |@1E(⇣, z)|Ckr̂k⇢0,3|(⇣
0

� z0, ⇠n � xn)|2.

With z 2 M⇢0 the equation r(⇣ ) = 0 becomes

�⌘n
⇤

+

X
1 j,kn

rz j zk (⇣
j
� z j )(⇣ k � zk) + E(⇣, z) = 0,

where ⇣n � zn , with ⇣ 0
� z0 = ⇣⇤, is a local solution to (B.10). Replace ⇣ � z by

the solution expressed in ⇣⇤. Solving for ⌘n⇤ from the new equation shows that for
(⇣ 0

⇤
, ⇠n

⇤
) 2 ⇡ z(M⇢0)

⌘n
⇤

=

X
1↵,�<n

h↵�⇣
↵
⇤
⇣⇤
�

+ o(|⇣ 0

⇤
|
2) + O(|⇠n

⇤
||⇣ 0

⇤
| + |⇠n

⇤
|
2). (B.11)

Write A(⇣ 0

⇤
,⇠n

⇤
)=o(k) if t�k A(t⇣ 0

⇤
,t2⇠n

⇤
) tends to zero uniformly for |⇣ 0

⇤
|+ |⇠n

⇤
|< 1

and small |t |, where A is a function or differential form. Write A(⇣ 0

⇤
, ⇠n

⇤
) = O(k)

if |t�k A(t⇣ 0

⇤
, t2⇠n

⇤
)|  C . Thus ⇣ 0

� z0 = O(1), ⇣ n
⇤

= O(2), d⇠ 0

⇤
= O(1) and

d⇠n
⇤

= O(2). By (B.10)-(B.11), ⇣ n � zn = �
rz0
rzn

· ⇣ 0

⇤
+ O(2). The Levi matrix

(h↵�) at z is determined by
X

1 j,kn
rz j zk (⇣

j
� z j )(⇣ k � zk) =

X
1↵,�<n

h↵�⇣
↵
⇤
⇣⇤
�

+ o(2). (B.12)

Explicitly, we have

h↵� = rz↵z� � rz↵zn
rz�
rzn

�

rz↵
rzn

rznz� + rznzn
rz↵
rzn

rz�
rzn

. (B.13)

We also have the holomorphic quadratic form
X

1 j,kn
rz j zk (⇣ j � z j )(⇣ k � zk) =

X
1↵,�<n

A↵�⇣↵⇤ ⇣
�
⇤

+ o(2). (B.14)

Here A↵� = A�↵ . Set h = (h↵�) and A = (A↵�). To simplify notation, we define

h(⇣ 0

⇤
, ⇣ 0

⇤
) =

X
1↵,�<n

h↵�⇣
↵
⇤
⇣⇤
�
, A(⇣ 0

⇤
, ⇣ 0

⇤
) =

X
1↵,�<n

A↵�⇣↵⇤ ⇣
�
⇤
.

We can write

@⇣⇤h(⇣
0

⇤
, ⇣ 0

⇤
) = h(⇣ 0

⇤
, d⇣ 0

⇤
), @⇣⇤ A(⇣ 0

⇤
, ⇣ 0

⇤
) = 2A(d⇣ 0

⇤
, ⇣ 0

⇤
).
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We will need to express the kernel in h = (h↵�) and A = (A↵�), but not in (A↵�).
This will play a crucial role, when we eliminate A later via averaging.

For the denominator of the kernel, using (B.10)-(B.11) we get

�2irz · (⇣ � z) = ⇣ n
⇤

+ i
X

1 j,kn
rz j zk (⇣ j � z j )(⇣ k � zk) (B.15)

= ⇠n
⇤

+ i(h(⇣ 0

⇤
, ⇣ 0

⇤
) + A(⇣ 0

⇤
, ⇣ 0

⇤
)) + o(2).

Using r⇣ · (⇣ � z) = rz · (⇣ � z) + (r⇣ � rz) · (⇣ � z), we get

� 2ir⇣ · (⇣ � z) = �2irz · (⇣ � z) � 2i
X

1 j,kn
rz j zk (⇣ j � z j )(⇣ k � zk)

� 2i
X

1 j,kn
rz j zk (⇣

j
� z j )(⇣ k � zk) + o(2)

= �2irz · (⇣ � z) � 2i(h(⇣ 0

⇤
, ⇣ 0

⇤
) + A(⇣ 0

⇤
, ⇣ 0

⇤
)) + o(2) (by (B.12), (B.14))

= ⇠n
⇤

� i(h(⇣ 0

⇤
, ⇣ 0

⇤
) + A(⇣ 0

⇤
, ⇣ 0

⇤
)) + o(2). (by (B.15))

We arrive at the basic relations
�2ir⇣ · (⇣ � z) = ⇠n

⇤
� i(h(⇣ 0

⇤
, ⇣ 0

⇤
) + A(⇣ 0

⇤
, ⇣ 0

⇤
)) + o(2), (B.16)

�2irz · (⇣ � z) = ⇠n
⇤

+ i(h(⇣ 0

⇤
, ⇣ 0

⇤
) + A(⇣ 0

⇤
, ⇣ 0

⇤
)) + o(2). (B.17)

We now computer the numerator of the kernel. Using the first-order expansion of
r⇣ about z, we get

(r⇣�rz) · d⇣ =

X
1 j,kn

�
rz j zk (⇣ k � zk) + rz j zk (⇣

k
� zk) + O(2)

 
d⇣ j

= @⇣
X

1 j,kn

⇢
1
2
rz j zk (⇣ j � z j )(⇣ k � zk) + rz j zk (⇣

j
� z j )(⇣ k � zk)

�

+ o(2).
Note that for fixed z, ⇣ ! ⇣⇤ is holomorphic. So we can switch the above @⇣ to @⇣⇤
and then restrict it to M , which gives us

(r⇣ � rz) · d⇣ = h(d⇣ 0

⇤
, ⇣ 0

⇤
) + A(d⇣ 0

⇤
, ⇣ 0

⇤
) + o(2). (B.18)

Recall that ⇣ n
⇤

= �2irz · (⇣ � z) � i
P
1 j,kn rz j zk (⇣ j � z j )(⇣ k � zk). Applying

@⇣ gives us

�2irz · d⇣ = @⇣

(
⇣ n
⇤

+ i
X

1 j,kn
rz j zk (⇣ j � z j )(⇣ k � zk)

)

= @⇣

(
⇣ n
⇤

+ i
X

1↵,�<n
A↵�⇣↵⇤ ⇣

�
⇤

+ o(2)

)
by (B.14)

= d⇣ n
⇤

+ 2i A(d⇣ 0

⇤
, ⇣ 0

⇤
) + o(2).
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Recall that z is fixed. So on M we have

@⇣ @⇣ r = @@r(⇣ ) = @@

( X
1 j,kn

rz j zk (⇣
j
� z j )(⇣ k � zk) + o(2)

)

= @@

( X
1↵,�<n

h↵�⇣
↵
⇤
⇣⇤
�

)
+ o(2) by (B.12)

= �h(d⇣ 0

⇤
, d⇣ 0

⇤
) + o(2).

On M , @rz j =@Mrz j mod @r(z) and @rz j =

Pn�1
�=1

�
rz j z� �

rz�
rzn
rz j zn

�
dz� mod @r(z).

Recall that ⇣ n � zn = �r�1
zn rz0 · ⇣ 0

⇤
+ O(2). Thus d⇣ n = �

rz0
rzn

· d⇣ 0

⇤
+ O(2).

Therefore,

(@rz) ^ d⇣ =

X
1↵,�<n

�
rz↵z� �

rz�
rzn

rz↵zn
�
dz� ^ d⇣↵

⇤
+ O(2)

�

X
1↵,�<n

�
rznz� �

rz�
rzn

rznzn
�
dz� ^

rz↵
rzn

d⇣↵
⇤

mod @r(z).

Looking at (B.13), we see that

(@rz)^d⇣ = �h(d⇣ 0

⇤
, dz0) + O(2) mod @r(z).

We apply the non-isotropy dilation Tt (⇣ 0

⇤
, ⇠n

⇤
) = (t⇣ 0

⇤
, t2⇠n

⇤
) and summarize the

above as

t�2T ⇤

t {�2ir⇣ · (⇣ � z)} = ⇠n
⇤

� i(h(⇣ 0

⇤
, ⇣ 0

⇤
) + A(⇣ 0

⇤
, ⇣ 0

⇤
)) + o(t0),

t�2T ⇤

t {�2irz · (⇣ � z)} = ⇠n
⇤

+ i(h(⇣ 0

⇤
, ⇣ 0

⇤
) + A(⇣ 0

⇤
, ⇣ 0

⇤
)) + o(t0),

t�2T ⇤

t {(r⇣ � rz) · d⇣ } = h(d⇣ 0

⇤
, ⇣ 0

⇤
) + A(d⇣ 0

⇤
, ⇣ 0

⇤
) + o(t0),

t�2T ⇤

t {�2irz · d⇣ } = d⇣ n
⇤

+ 2i A(d⇣ 0

⇤
, ⇣ 0

⇤
) + o(t0),

t�2T ⇤

t {@⇣ r⇣ ˙̂ d⇣ } = �h(d⇣ 0

⇤
, d⇣ 0

⇤
) + o(t0),

t�1T ⇤

t {@ zrz ˙̂ d⇣ } = �h(d⇣ 0

⇤
, dz0) + O(t) mod @r(z).

By (B.10) and (B.15), the subset of M defined by 2|F(⇣, z)| = t2 has the form

St (z) =

n
(⇣ 0

⇤
, ⇠n

⇤
) : |⇠n

⇤
+ ih(⇣ 0

⇤
, ⇣ 0

⇤
) + o(2)| = t2

o
.

Then we have a non-isotropic sphere

lim
t!0

T�1
t (St ) =

n
(⇣ 0

⇤
, ⇠n

⇤
) : |⇠n

⇤
+ ih(⇣ 0

⇤
, ⇣ 0

⇤
)| = 1

o
def
== S.
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Set N⇤(⇣
0

⇤
, ⇠n

⇤
) = ⇠n

⇤
+ih(⇣ 0

⇤
, ⇣ 0

⇤
). As t tends to 0, tqT ⇤

t �
+�

(0,q) mod @r(z) converges
uniformly in a neighborhood of S to e�. Here e� is
(h(d⇣ 0

⇤
,⇣ 0

⇤
)+A(d⇣ 0

⇤
,⇣ 0

⇤
))^(d⇣ n

⇤
+ 2i A(d⇣ 0

⇤
,⇣ 0

⇤
))^h(d⇣ 0

⇤
, d⇣ 0

⇤
)n�q�2

^h(d⇣ 0

⇤
,dz0)q

�(2i)1�nNn�q�1
⇤

Nq+1
⇤

(1� i N�1
⇤
⇣ 0

⇤
A⇣ 0T

⇤
)
n�q�1

(1+ i N�1
⇤
⇣ 0

⇤
A⇣ 0T

⇤
)
q+1

.

(B.19)
Here N⇤ = N⇤(⇣

0

⇤
, ⇠n

⇤
). Note that except at the origin, the above form is smooth in

the (⇣ 0

⇤
, ⇠n

⇤
)-space. Therefore, for '(⇣ ) =

P
|I |=q 'I (⇣ )d⇣ 0

I

Z
2|F(⇣,z)|=t2

'(⇣ ) ^�+�

0,q (⇣, z) =

Z
(⇣ 0

⇤
,⇠n

⇤
)2St (z)

'(⇣(⇣ 0

⇤
, ⇠n

⇤
)) ^�+�

0,q (⇣(⇣ 0

⇤
, ⇠n

⇤
), z)

=

Z
(⇣ 0

⇤
,⇠n

⇤
)2T�1

t St (z)
T ⇤

t

n
'(⇣(⇣ 0

⇤
, ⇠n

⇤
)) ^�+�

0,q (⇣(⇣ 0

⇤
, ⇠n

⇤
), z)

o

=

X
|I |=q

'I (z)
Z

(⇣ 0

⇤
,⇠n

⇤
)2T�1

t St (z)
T ⇤

t

n
d⇣ 0

⇤

I
^�+�

0,q (⇣(⇣ 0

⇤
, ⇠n

⇤
), z)

o
mod @r(z).

We obtain

lim
t!0

Z
2|F(⇣,z)|=t2

'(⇣ )^�+�

0,q (⇣, z)=
X
|I |=q

'I (z)
Z
S
d⇣ 0

⇤

I
^
e�(⇣ 0

⇤
, ⇠n

⇤
, z) mod @r(z).

Return to e�, defined by (B.19). We are ready to remove A via an averaging. By
(B.1), |A| is small. Express (1 � i N�1

⇤
⇣ 0

⇤
A⇣ 0T

⇤
)�(n�q�1)(1 + i N�1

⇤
⇣ 0

⇤
A⇣ 0T

⇤
)�(q+1)

as a convergent power series in N�1
⇤
⇣ 0

⇤
A⇣ 0T

⇤
and N�1

⇤
⇣ 0

⇤
A⇣ 0T

⇤
. Note that N⇤(⇠⇤) is

invariant under the rotation e✓ : (⇣ 0

⇤
, ⇠n) ! (ei✓ ⇣ 0

⇤
, ⇠n

⇤
). Using |I | = q, we can

verify that

Z
(⇣ 0

⇤
,⇠n

⇤
)2S

d⇣ 0

⇤

I
^
e�(⇣ 0

⇤
, ⇠n

⇤
, z) =

1
2⇡

Z 2⇡

0
d✓
Z

(⇣ 0

⇤
,⇠n

⇤
)2e✓ S

d⇣ 0

⇤

I
^
e�(⇣ 0

⇤
, ⇠n

⇤
, z)

=

1
2⇡

Z 2⇡

0
d✓
Z

(⇣ 0

⇤
,⇠n

⇤
)2S

e⇤✓ {d⇣ 0

⇤

I
^
e�}

=

1
2⇡

Z
(⇣ 0

⇤
,⇠n

⇤
)2S

Z 2⇡

✓=0
e⇤✓ {d⇣ 0

⇤

I
^
e�}d✓ .

Therefore
R
(⇣ 0

⇤
,⇠n

⇤
)2S d⇣ 0

⇤

I
^
e�(⇣ 0

⇤
, ⇠n

⇤
, z) =

R
(⇣ 0

⇤
,⇠n

⇤
)2S d⇣ 0

⇤

I
^�0(⇣ 0

⇤
, ⇠n

⇤
, z), where

�0(⇣ 0

⇤
, ⇠n

⇤
, z) =

d⇣ 0

⇤
h⇣ 0

⇤

T
^ d⇣ n

⇤
^ (d⇣ 0

⇤
^ hd⇣ 0

⇤

T
)n�q�2

^ (d⇣ 0

⇤
^ hdz0T )q

�(2i)1�nNn�q�1
⇤

(⇠⇤)N
q+1
⇤

(⇠⇤)
.
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In eliminating A, we have used the fact that there are no terms ⇣⇤
↵
⇣⇤
� in (B.16)-

(B.17).
Take a linear transformation ⇣̂ 0

= U(⇣ 0

⇤
), ⇠̂n = ⇠n

⇤
such that

h(⇣ 0

⇤
, ⇣⇤) = |⇣̂ 0

|
2, ⇣̂ n = ⇠̂n + i |⇣̂ 0

|
2.

Let ẑ0 = U(z0). Under the new coordinates and on |⇣̂ n| = 1, �0(⇣ 0

⇤
, ⇠n

⇤
, z) becomes

b�(⇣̂ 0, ⇠̂n, ẑ0) =

(⇣̂ 0
· d ⇣̂ 0) ^ d ⇣̂ n ^ (d ⇣̂ 0

˙̂ d ⇣̂ 0)n�q�2
^ (d ⇣̂ 0

˙̂ dẑ0)q

�(2i)1�n(⇣̂ n)n�q�1(⇣̂ n)q+1

= (⇣̂ 0
· d ⇣̂ 0) ^ dµ(⇣̂ n) ^ (d ⇣̂ 0

˙̂ d ⇣̂ 0)n�q�2
^ (d ⇣̂ 0

˙̂ dẑ0)q .

Here

µ(⇣̂ n) =

(
�(2i)n�1(n � 2q � 1)�1(⇣̂ n)n�2q�1, n � 2q 6= 1,
�(2i)n�1 log ⇣̂ n, n � 2q = 1.

Note that Im ⇣̂ n � 0 and hence µ(⇣̂ n) is smooth and single-valued on |⇣̂ n| = 1. To
remove the differential on µ, we apply Stokes’ theorem and get

cqdẑ0
I def

==

Z
|⇣̂ n |=1

d ⇣̂ 0

I
^ (⇣̂ 0

· d ⇣̂ 0) ^ dµ(⇣̂ n) ^ (d ⇣̂ 0
˙̂ d ⇣̂ 0)n�q�2

^ (d ⇣̂ 0
˙̂ dẑ0)q

= �

Z
|⇣̂ n |=1

µ(⇣̂ n)(d ⇣̂ 0
˙̂ d ⇣̂ 0)n�q�1

^ d ⇣̂ 0

I
^ (d ⇣̂ 0

˙̂ dẑ0)q .

Now, the differential form is a multiple of the volume-form on Cn�1 (the ⇣̂ 0-space).
The projection from |⇣̂ n| = 1 to the ball |⇣̂ 0

|  1 is two-to-one, branched over
|⇣̂ 0

| = 1. Recall that dV (⇣ ) = d⇠1^d⌘1^· · ·^d⌘n�1^d⇠n defines the orientation
of M and (⇣ 0, ⇠n) ! (⇣ 0

⇤
, ⇠n

⇤
) preserves the orientation. Since S : |⇣̂ n| = 1 is

obtained via the dilation of the boundary of |F(z, ·)| < t , S must be oriented as the
boundary of |⇣̂ n| < 1 on which dV (⇣̂ ) is the volume-form. After considering the
orientation, we conclude that

cqdẑ0
I

=

Z
|⇣̂ 0

|1
(µ(⇣̂ n

�
) � µ(⇣̂ n

+
))(d ⇣̂ 0

˙̂ d ⇣̂ 0)n�q�1
^ d ⇣̂ 0

I
^ (d ⇣̂ 0

˙̂ dẑ0)q .

Here dV (⇣̂ 0) = d ⇠̂1 ^ d⌘̂1 ^ · · · ^ d⌘̂n�1 is the volume-form on the ⇣̂ 0-space, and

⇣̂ n
+

= (1� |⇣̂ 0

|
4)1/2 + i |⇣̂ 0

|
2, ⇣̂ n

�
= �(1� |⇣̂ 0

|
4)1/2 + i |⇣̂ 0

|
2.

To rewrite the integrand, introduce variables ⇠ = (⇠1, · · · , ⇠q), ⌘, x , y so that

d ⇣̂ 0

I
= d⇠ I , d ⇣̂ 0

˙̂ d ⇣̂ 0
= d⇠ ˙̂ d⇠ + d⌘ ˙̂ d⌘, d ⇣̂ 0

˙̂ dẑ0 = d⇠ ˙̂ dx + d⌘ ˙̂ dy.
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Then (d⇠ ˙̂ d⇠ + d⌘ ˙̂ d⌘)n�q�1
^ d⇠ I ^ (d⇠ ˙̂ dx + d⌘ ˙̂ dy)q equals

(d⌘ ˙̂ d⌘)n�q�1
^ d⇠ I ^ (d⇠ ˙̂ dx + d⌘ ˙̂ dy)q

= (d⌘ ˙̂ d⌘)n�q�1
^ d⇠ I ^ (d⇠ ˙̂ dx)q

= (�1)q(d⌘ ˙̂ d⌘)n�q�1
^ (d⇠ ˙̂ d⇠)q ^ dx I .

The last term equals (�1)q
�n�1
q
��1

(d⇠ ˙̂ d⇠ + d⌘ ˙̂ d⌘)n�1 ^ dx I . Therefore

cqdẑ0
I

= (�1)q
✓
n � 1
q

◆
�1 Z

|⇣̂ 0
|<1

(µ(⇣̂ n
�
) � µ(⇣̂ n

+
))(d ⇣̂ 0

˙̂ d ⇣̂ 0)n�1 ^ dẑ0
I
.

We now compute cq . Using the polar coordinates, we get

cq = (�1)q
✓
n � 1
q

◆
�1

(n � 1)!(�2i)n�1
Z

|⇣̂ 0
|<1

(µ(⇣̂ n
�
) � µ(⇣̂ n

+
))dV (⇠̂ 0)

= c̃q
Z 1

0
(µ((1� r4)1/2 + ir2) � µ(�(1� r4)1/2 + ir2))r2n�3 dr

=

c̃q
2(n � 1)

Z 1

r=0
r2n�2d

�
µ((1� r4)1/2 + ir2) � µ(�(1� r4)1/2 + ir2)

 
.

Note that the last identity is obtained by integration by parts. Here

c̃q = (�1)q+1
✓
n � 1
q

◆
�1

(n � 1)!(�2i)n�1�n�1, �n�1 =

2⇡n�1

(n � 2)!
.

Letting r2 = s and z = (1� s2)1/2 + is, we get

cq =

c̃q
2(n � 1)

Z 1

s=�1
sn�1d

�
µ((1� s2)1/2 + is)

 

=

c̃q
4(n � 1)

Z
|z|=1

(Im z)n�1dµ(z) =

�(2i)n�1c̃q
4(n � 1)

Z
|z|=1

(Im z)n�1zn�2q�2dz.

A simple residue computation yields cq =
1
2 (2⇡ i)

n for 0  q  n � 1. The proof
of Lemma B.3 is complete.

We need the following lemma from [7], where |F(⇣, z)| = t is replaced by
|⇣ � z| = t and only r 2 C2 is needed.
Lemma B.4. Let 1  q  n � 1. Let M, ⇢0 be as in Lemma B.3. Assume that r is
of class C3. Let ' be a continuous (0, q)-form on M⇢0 . If 0 < ⇢ < ⇢0 and t > 0 is
sufficiently small, then on M⇢ , in the sense of currents and modulo @r(z),Z
F(⇣,z)>t

'(⇣ ) ^ @ z�
+�

(0,q�1)(⇣, z) = (�1)q�1@b

Z
F(⇣,z)>t

'(⇣ ) ^�+�

(0,q�1)(⇣, z).
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Proof. For the convenience of the reader, we reproduce the proof in [7]. Since
r 2 C3, for t sufficiently small, both integrals are continuous on M⇢ . To verify the
identity in the sense of currents, let be a smooth (n, n�1�q)-form with compact
support in M⇢ . Interchanging the order of integration, we have

I(z) =

Z
z2M

Z
F(⇣,z)>t

'(⇣ ) ^ @ z�
+�

(0,q�1)(⇣, z) ^  (z)

= �

Z
⇣2M

Z
F(⇣,z)>t

'(⇣ ) ^ @ z�
+�

(0,q�1)(⇣, z) ^  (z) (by Fubini)

=

Z
⇣2M

Z
F(⇣,z)>t

 (z) ^ @ z�
+�

(0,q�1)(⇣, z) ^ '(⇣ ).

Applying Stokes’ theorem yields

I(z) = (�1)q
Z
⇣2M

Z
F(⇣,z)>t

@ z (z) ^�+�

(0,q�1)(⇣, z) ^ '(⇣ )

+ (�1)q+1
Z
⇣2M

Z
F(⇣,z)=t

 (z) ^�+�

(0,q�1)(⇣, z) ^ '(⇣ )

=

Z
⇣2M

Z
F(⇣,z)>t

'(⇣ ) ^�+�

(0,q�1)(⇣, z) ^ @ z (z)

+ (�1)q+1
Z
⇣2M

Z
F(⇣,z)=t

'(⇣ ) ^�+�

(0,q�1)(⇣, z) ^  (z).

Interchanging the order of integration in both terms yields

I(z) = �

Z
z2M

Z
F(⇣,z)>t

'(⇣ ) ^�+�

(0,q�1)(⇣, z) ^ @ z (z)

+ (�1)q+1
Z
z2M

Z
F(⇣,z)=t

'(⇣ ) ^�+�

(0,q�1)(⇣, z) ^  (z)

= �

Z
z2M

Z
F(⇣,z)>t

'(⇣ ) ^�+�

(0,q�1)(⇣, z) ^ @ z (z).

Here the second last term vanishes by counting total degree in ⇣ , which equals
q + 2n � q � 1 > 2n � 2.

As in [21], the above two lemmas can be used to derive the Henkin homotopy
formula for (0, q)-forms on M⇢ via Stokes’ theorem, when r 2 C3 satisfies (B.1)
and ' 2 C1(M⇢0). Here are the details. Let Mt (z) = M⇢0 \ {⇣ : |F(⇣, z)| > t}.
We will use @⇣�+�

(0,q) + @ z�
+�

(0,q) = 0 for ⇣ 6= z and 1  q  n � 2; see [21]. For
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z 2 M⇢ and t sufficiently small,
Z
@Mt (z)

'(⇣ ) ^�+�

(0,q)(⇣, z)

=

Z
Mt (z)

@⇣ ' ^�+�

(0,q) + (�1)q
Z
Mt (z)

'(⇣ ) ^ @⇣�
+�

(0,q)

=

Z
Mt (z)

@⇣ ' ^�+�

(0,q)(⇣, z) + (�1)q�1
Z
Mt (z)

'(⇣ ) ^ @ z�
+�

(0,q�1)(⇣, z).

Using Lemmas B.3-B.4 and letting t ! 0, we obtain, modulo @r(z),
Z
@M⇢0

'(⇣ )^�+�

(0,q)(⇣, z) = c0'(z)+
Z
M⇢0

@⇣ '^�+�

(0,q)+@b

Z
M⇢0

'(⇣ )^�+�

(0,q�1).

Now assume that 0 < q < n�2. Then��+�

(0,q) = @⇣�
0+�

(0,q) +@ z�
0+�

(0,q�1); see [21].
We get that modulo @r(z)

Z
@M⇢0

'(⇣ ) ^�+�

(0,q)(⇣, z)

= �

Z
@M⇢0

'(⇣ ) ^ @⇣�
0+�

(0,q) �

Z
@M⇢0

'(⇣ ) ^ @ z�
0+�

(0,q�1)

= (�1)q
Z
@M⇢0

@b'(⇣ ) ^�0+�

(0,q) � (�1)q@b
Z
@M⇢0

'(⇣ ) ^�0+�

(0,q�1).

Therefore, modulo @r(z) and as currents,

c0'(z) = @b
n
�

Z
M⇢0

'(⇣ ) ^�+�

(0,q�1)(⇣, z) � (�1)q
Z
@M⇢0

'(⇣ ) ^�0+�

(0,q�1)(⇣, z)
o

+

n
�

Z
M⇢0

@b'(⇣ ) ^�+�

(0,q)(⇣, z) + (�1)q
Z
@M⇢0

@b'(⇣ ) ^�0+�

(0,q)(⇣, z)
o

= �@b
nZ

M⇢0
�+�

(0,q�1)(⇣, z) ^ '(⇣ ) +

Z
@M⇢0

�0+�

(0,q�1)(⇣, z) ^ '(⇣ )
o

�

nZ
M⇢0

�+�

(0,q)(⇣, z) ^ @b'(⇣ ) +

Z
@M⇢0

�0+�

(0,q)(⇣, z) ^ @b'(⇣ )
o
.
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We now derive the homotopy formula by reducing the regularity condition.
Notice that when M is C2 and strictly convex it is proved by Henkin [21].

Fix a tangential (0, q)-form ' on M⇢0 . Let 0 < q < n � 2.

Case a) r 2 C2 and ' 2 C1(M⇢0). Write x = (Re z, Im z0) and ⇠ = (Re ⇣, Im ⇣ 0)
with ⇣, z 2 M⇢0 . We first consider the case when ' has compact support, say in
M⇢1 with ⇢1 < ⇢0. Then P 0

M⇢0
' has no boundary term. Recall that 9(⇠, x) =

( ̃x (⇠), x) = (⇠⇤, x) is defined by relations ⇣ 0

⇤
= ⇣ 0

� z0, ⇣ n
⇤

= �2irz(⇣ � z) and
⇣, z 2 M⇢0 . By (8.2)-(8.3) and (8.6), on D⇢0

P 0

0,M⇢0
'(x) =

X
|I |=q�1

II (x) dz0
I
,

II (x) =

X
|K |=1

X
|J |=q

Z
B9⇢0

⇣
('J Ã

J
I K ) �9�1

· T̂�a
1 · T̂�b

2

⌘
(⇠⇤, x) · k̂Kab(⇠⇤) dV (⇠⇤),

'J (⇠, x) = 'J (⇠), T̂1(⇠⇤, x) = 1+

X
|L|=2

CL �9�1(⇠⇤, x)⇠ L⇤ N
�1
⇤

(⇠⇤).

Here ÃJI K ,CL are functions of the form @2⇤r , @2⇤ r̂ , respectively, defined in Section 8.
An analogous formula holds for T̂2. These functions depend only on derivatives of
r̂ of order at most two. We take a sequence of C1 functions r̂m converging to r̂
in C2-norm on D⇢0 . Subtracting r̂m by its Taylor polynomial of order 1 about the
origin, we may assume that r̂m(0) = 0 and @r̂m(0) = 0. In what follows we use the
letter m to indicate dependence on r̂m . Let Mm be the graph yn = |z0|2 + r̂m(x)
over D⇢0 . Let ⇢ 2 (⇢1, ⇢0). There exists m⇤ such that for m > m⇤

D⇢1 ⇢ Dm
⇢ ⇢ D⇢0, Dm

⇢
def
== {x 2 D⇢0 : |x |2 + r̂m(x) < ⇢2}.

Assume that m > m⇤. Then by kr̂mkD⇢0 ,2 < 1/C0, Dm
⇢ is strictly convex. Note

that ' is still a tangential (0, q)-form of Mm on D⇢0 . By the homotopy formula for
the smooth Mm ,

' = @Mm P 0

Mm
⇢
' + Q0

Mm
⇢
@Mm'. (B.20)

By the formula of T̂ j , it is clear that |T̂ j,m | � 1/2 for m sufficiently large and
0 6= ⇠⇤ 2 B9⇢ \  ̃m

x (D⇢). Since 'J has compact support, we have

|{('J Ã
Jm
I K ) �9�1

m · T̂�a
1,m · T̂�b

2,m}(⇠⇤, x)|  C, ⇠⇤ 6= 0.

Since k̂ Iab 2 L1loc, by the dominated convergence theorem, ImI converges to II
pointwise on D⇢1 as m ! 1. Thus, P 0

Mm
⇢
' converges to P 0

M⇢' pointwise on D⇢1 .
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By the C0-estimate on P 0

0 (see (9.3)), we know that |P
0

Mm
⇢
'| < C on D⇢1 ⇢ \mDm

⇢ .
Since ' is of class C1, @Mm' converges to @M' uniformly on D⇢0 . Next, we fix
an (n, n � q � 1)-form  =

P
|J |=n�q�1  J dz

1
^ · · · ^ dzn�1 ^ @r(z) ^ dz0 J

of class C1 and of compact support in D⇢1 . Then  m
=

P
|J |=n�q�1  J dz

1
^

· · · ^ dzn�1 ^ @rm(z) ^ dz0 J is an (n, n � 1 � q)-form of Mm on Dm
⇢ . Obvi-

ously,  m converges to  in C1-norm uniformly on R2n�1. Now one can see thatR
D⇢1

P 0

0,Mm
⇢
' ^ @Mm m converges to

R
D⇢1

P 0

0,M⇢' ^ @M . A similar argument
shows that Q0

0,Mm
⇢
@Mm' are uniformly bounded and converge to Q0

0,M⇢ @M' point-
wise on D⇢1 . Thus

R
D⇢1

(Q0

0,Mm
⇢
@Mm') ^  m converges to

R
D⇢1

(Q0

0,M⇢ @M') ^  .
By the homotopy formula (B.20),

Z
D⇢1

' ^  m
= (�1)q

Z
D⇢1

(P 0

0,Mm
⇢
') ^ @Mm m

+

Z
D⇢1

(Q0

0,Mm
⇢
@Mm') ^  m .

(B.21)

Taking limits, we see that as currents, ' = @M P 0

0,M⇢' + Q0

0,M⇢ @M' holds on D⇢1 .
Since ' has compact support in D⇢1 ⇢ D⇢ , we replace the domain of integration
M⇢ by M⇢0 and add boundary integrals. We get ' = @M P 0

M⇢0
' + Q0

M⇢0
@M' on

D⇢1 as currents, and hence on D⇢0 whenever ' has compact support in D⇢0 .
Return to the general case. Let Mm be as before. Take any ⇢1, ⇢2, ⇢ such

that 0 < ⇢1 < ⇢2 < ⇢ < ⇢0. Take a C1 function � which is 1 on D⇢2 and has
compact support in D⇢0 . Let '0 = �' and '1 = (1 � �)'. We have proved that
'0 = @M P 0

M⇢0
'0 + Q0

M⇢0
@M'0 as currents on D⇢0 . Let  , m be as before, which

are supported in D⇢1 . By an analogy of (B.21), for m > m⇤ we haveZ
D⇢1

'1 ^  m
= (�1)q

Z
D⇢1

(P 0

Mm
⇢
'1) ^ @Mm m

+

Z
D⇢1

(Q0

Mm
⇢
@Mm'1) ^  m .

Since supp m
⇢ D⇢1 and supp'1 ⇢ D⇢0 \ D⇢2 , the dominated convergence theo-

rem implies the convergence of
R
D⇢1

(P 0

0,Mm
⇢
'1)^@Mm m to

R
D⇢1

(P 0

0,M⇢'1)^@M .

The integrands for the boundary integrals (P 0

1,Mm
⇢
'1)(x) are of class C1 in a neigh-

borhood of @D⇢ , when x 2 D⇢2 . Note that the map d⇢ sending x 2 @D⇢ to
r⇢(x)x 2 @Dm

⇢ with r⇢ > 0 converges to the identity map in the C2 norm as
m ! 1. Thus we can verify that P 0

1,Mm
⇢
'1 converges uniformly to P 0

1,M⇢'1 on D⇢1 .
Combining with supp m

⇢ D⇢1 , we obtain the convergence of
R
D⇢1

(P 0

1,Mm
⇢
'1) ^

@Mm m to
R
D⇢1

(P 0

1,M⇢'1) ^ @M . One can verify that
R
D⇢1

(Q0

1,Mm
⇢
@Mm'1) ^  m

converges to
R
D⇢1

(Q0

1,M⇢ @M'1) ^  . Hence '1 = @M PM⇢'1 + QM⇢ @M'1 holds
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as currents on D⇢1 . The definition of '1 is independent of ⇢ > ⇢2. Letting
⇢ ! ⇢0, we get '1 = @M PM⇢0'1 + QM⇢0 @M'1 on D⇢1 . Add to '0. We get
' = @M PM⇢0' + QM⇢0 @M' as currents on D⇢1 , and hence on D⇢0 .

Case b) r 2 C2(D) and ', @M' 2 C0(M⇢0). We verify the homotopy formula
by the Friedrichs approximation theorem, for which we need the commutator of a
smoothing operator St and @M , applied to tangential (0, q)-forms.

Recall that on M

✓(⇠) = �2i@r(⇣ ) = a d⇠n mod (d⇣↵, d⇣�), a = 1+ r̂2⇠n . (B.22)

Let ' =

P
|I |=q 'I (x)dz0

I be a continuous tangential (0, q) form on M . Let � be
a smooth function of compact support in R2n�1 such that

R
�dV = 1. Let �t (x) =

t1�2n�(t�1x) and define St' =

P
|I |=q 'I ⇤�t dz0

I
. Recall that X↵ = @z↵ + b↵@xn

with b↵ = �rz↵/(2rzn ).

Lemma B.5. Let 0  q < n � 1. Let M ⇢ Cn be a graph of class C2 over
D ⇢ Cn�1

⇥ R. Assume that ' is a continuous tangential (0, q)-form on M⇢ such
that @M' is continuous on M⇢ . Let 0 < ⇢0 < ⇢. Then for t sufficiently small and
on M⇢0 ,

[@M ,St ]'(x) =

X
|I |=q,1↵<n

Z n
'I (x � t⇠)t�1(b↵(x) � b↵(x � t⇠))(@⇠n�)(⇠)

� ('I a
�1X↵a)(x � t⇠)�(⇠)

o
dV (⇠) ^ dz↵ ^ dz0 I.

Proof. We follow a computation in [4]; see also [10, page 121]. Let '=

P
|I |=q

'I dz0
I.

By the assumption, we have @M' =

P
|J |=q+1  J dz0

J with  J 2 C0. Now

@MSt'(x) =

X
|I |=q

X
1↵<n

Z
'I (⇠)X

(x)
↵ �t (x � ⇠) dV (⇠) ^ dz↵ ^ dz0 I ,

St@M'(x) =

X
|J |=q+1

Z
 J (⇠)�t (x � ⇠) dV (⇠) ^ dz0 J .

Set ⌫ = d⇣ 1^ · · ·^d⇣ n�1^d⇠n . We may assume that dV = d⇣ 1^ · · ·^d⇣ n�1^⌫.
For each J = ( j1, . . . , jq+1), there exist increasing indices J⇤

= ( j⇤1 , . . . , j
⇤

n�2�q)

and ✏ J = ±1 such that d⇣ 1 ^ · · · ^ d⇣ n�1 = ✏ J d⇣ 0
J

^ d⇣ 0
J⇤

. Assume that  J are
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skew-symmetric. Thus

St@M'(x) =

X
|J |=q+1

✏ J
Z
 J (⇠)�t (x � ⇠) d⇣ 0

J
^ d⇣ 0

J⇤

^ ⌫ ^ dz0 J

=

X
|J |=q+1

✏ J

(q + 1)!

Z
@

(⇠)
M ' ^ �t (x � ⇠) d⇣ 0

J⇤

^ ⌫ ^ dz0 J .

By Stokes’ formula, (3.1) and (B.22), St@M'(x) equals

X
|J |=q+1

(�1)q+1✏ J

(q + 1)!

Z
'(⇠) ^ a(⇠)@(⇠)

M (a�1(⇠)�t (x � ⇠)) ^ d⇣ 0
J⇤

^ ⌫ ^ dz0 J

=

X
|I |=q

X
1↵<n

X
|J |=q+1

�✏ J

(q+1)!

Z
'I (⇠)a(⇠)X

(⇠)
↵

�t (x�⇠)

a(⇠)
d⇣↵^ d⇣ 0

I
^ d⇣ 0

J⇤

^⌫^ dz0 J

= �

X
|I |=q

X
1↵<n

Z
'I (⇠)a(⇠)X

(⇠)
↵ (a�1(⇠)�t (x � ⇠)) dV (⇠) ^ dz↵ ^ dz0 I .

Here the last identity is seen as follows. Set dz↵ ^ dz0I = ✏ J↵ I dz
0J , if the identity

can hold; otherwise, set ✏ J↵ I = 0. In the above summation
P

|I |=q
P

|J |=q+1, we
may restrict to terms with ✏↵ IJ 6= 0. For ✏ J↵ I 6= 0, we have

✏ J d⇣↵ ^ d⇣ 0I
^ d⇣ 0

J⇤

^ dz0J = ✏ J ✏↵ IJ d⇣ 0
J

^ d⇣ 0
J⇤

^ dz0J

= ✏ J d⇣ 0
J

^ d⇣ 0
J⇤

^ dz↵ ^ dz0I .

Note that the last term is independent of J . We have (q + 1)! such terms for a fixed
(↵ I ). Set E↵(⇠, x) = a(⇠)X (⇠)

↵ (a�1(⇠)�t (x � ⇠)) + X (x)
↵ (�t (x � ⇠)).We get

[@M , St ]'(x) =

X
|I |=q

X
1↵<n

Z
'I (⇠)E↵(⇠, x) dV (⇠) ^ dz↵ ^ dz0 I ,

which can be put into the form in the lemma.

We now derive the homotopy formula for the case b) via smoothing. We have

@MSt' � @M' = St@M' � @M' + [@M , St ](' � St 0') + [@M , St ]St 0'.

Fix ⇢ < ⇢1 < ⇢0 and ✏ > 0. Fix t 0 > 0 sufficiently small such that |St 0' � '| < ✏
on M⇢1 . By Lemma B.5, for all small t

sup
M⇢

��
[@M , St ](' � St 0')

��
 C sup

M⇢1
|' � St 0'|  C✏. (B.23)
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Let St 0' =

P
|I |=q  I dz0

I . Then [@M , St ] =

P
[b↵@xn , St ] and

([@M ,St ] )(x)=
X
1↵<n

X
|I |=q

Z
�t (y)(b↵(x)�b↵(x�y))@xn I (x�y) dV (y)^dz0 I.

This shows that limt!0[@M , St ]St 0' = 0 on M⇢ . We also have limt!0 St@M' =

@M' on M⇢ . Therefore, (B.23) implies that limt!0 @MSt' = @M' on M⇢ . Now by
case a), 't = @M P 0

M⇢'t + Q0

M⇢ @M't holds on M⇢ as currents. Letting t ! 0 and
then ⇢ ! ⇢0, we obtain ' = @M P 0

M0'+Q0

M0@M' on M⇢0 in the sense of currents.
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