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Least energy nodal solution of a singular perturbed problem
with jumping nonlinearity

EDWARD N. DANCER, SANJIBAN SANTRA AND JUNCHENG WEI

Abstract. In this paper we study the asymptotic behavior of the least energy
nodal solution of a problem with a jumping nonlinearity.
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1. Introduction

There has been a considerable interest to understand the asymptotic behavior of
positive solutions of the elliptic problem

(
"21u � u + f (u) = 0 in �
u = 0 on @�

(1.1)

where " > 0 is a parameter, f is a superlinear function, � is a smooth bounded
domain in RN . Let F(u) =

R u
0 f (t)dt. In this paper, we consider the problem

8><
>:
"21u � �1u+

+ �2u�
+ f (u) = 0 in�

u±
6= 0 in �

u = 0 on @�
(1.2)

where �1 > 0, �2 > 0 with �1 6= �2, and u±
= max{±u, 0}. Let f : R ! R be a

continuously differentiable function satisfying:

(f1) f (t) = o(t) as t ! 0;

(f2) f (t) = O(|t |p) as t ! +1 for some p 2 (1, N+2
N�2 ) if N � 3 and p > 1 if

N = 1, 2;
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(f3) there exists a constant ✓ > 2 such that ✓F(t)  t f (t) where

F(t) =

Z t

0
f (s)ds;

(f4) |t | f 0(t) > f (t)(sgn t) for all t 6= 0.

Condition (f4) implies that 12 f (t)t�F(t) is strictly increasing in (0,+1). Problem
(1.1) arises in various applications, such as chemotaxis, population genetic, chem-
ical reactor theory. Problem (1.2) arises in the study of population dynamics with
jumping nonlinearity [9]. It can also be considered as the limiting problem of the
following elliptic system8>>><

>>>:

"21u � �1u + µ1u3 + �uv2 = 0 in �
"21v � �2v + µ2v3 + �vu2 = 0 in �
u, v > 0 in �
u = v = 0 on @�

(1.3)

The system (1.3) arises in the Bose-Einstein condenstates and nonlinear optics. An
important phenomena of (1.3) is the so-called phase separation. As � ! �1, the
components u, v separates and the difference function u � v approaches a solution
of (1.2) with f (u) = µ1u3+ � µ2u3�. This has been proved for the least energy
solution of (1.3) in [5, 7] and for radial solutions on two dimensional balls in [20].
We refer to [1, 2, 4, 5, 8, 10, 14, 19, 20] and the references therein.

Existence and concentration of positive solution of this type of problems were
extensively studied by Ni-Takagi [16, 17], Ni-Wei [18], del Pino- Felmer [11].

Define

I�1(W ) =

1
2

Z
RN

|rW |
2
+

�1
2

Z
RN

W 2
�

Z
RN

F(W )

and
I�2(W ) =

1
2

Z
RN

|rW |
2
+

�2
2

Z
RN

W 2
�

Z
RN

F(W ).

Let W�1 be a least energy positive solution of8><
>:

�1u + �1u = f (u) in RN

u > 0 in RN

u 2 H1(RN )

(1.4)

and W�2 be a least positive solution of8><
>:

�1u + �2u = f (u) in RN

u > 0 in RN

u 2 H1(RN ).

(1.5)
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By Gidas, Ni and Nirenberg [13], it is well known that W�i is radially decreasing
and decays as

W�i (|x |) ⇠ e�
p

�i |x |
|x |

1�N
2 as |x | ! +1

for i = 1, 2. Throughout the course of the paper we will call W�i an entire solution
or a ground state.

In this paper, we prove the existence of a least energy nodal solution and show
that for " sufficiently small, the solution has a exactly one positive spike and one
negative spike and the spikes concentrate at two distinct points of�, in other words
they repel each other. We define a function ' : �⇥� ! R by

'(x, y) = min
⇢p

�1d(x, @�),
p
�2d(y, @�)),

1
2

p

�1
p

�2
p

�1 +

p

�2
|x � y|

�
.

Theorem 1.1. There exists "0 > 0 such that for every 0 < " < "0, the least energy
nodal solution u" 2 H10 (�) of (1.2) having exactly one positive local maximum
(hence a global maximum) point P1" and one negative local minimum (hence a
global minimum) point P2" and

lim
"!0

'(P1" , P2" ) = max
(x,y)2�⇥�

'(x, y),

with u"(Pi" ) ! (�1)i�1W�i (0) and u" ! 0 in C1loc(� \ {P1" , P2" }).

Note that for sufficiently small " > 0, the least energy positive solution to the
problem (1.1) has a unique maxima P"; u" decays exponentially away from P"
and d(P", @�) ! max

P2�
d(P, @�) as " ! 0, which implies that the solution con-

centrates at an interior point furthest from the boundary of �. This was studied
by Ni–Wei [15]. For the least energy nodal solution, the problem was studied by
Noussair–Wei [18] when �1 = �2 = 1 and f (u) = u p. They obtain the same results
as in Theorem 1.1. In addition, they prove that u"(x) = W (

x�P1"
" )�W (

x�P2"
" )+v",

where kv"kL1(�) ! 0 as " ! 0 and W is the unique solution of the limiting prob-
lem. The study of asymptotic behavior involves the uniqueness and non-degeneracy
of solution of the limiting problem. Then using the expansion, an asymptotic ex-
pansion of the energy is obtained. This approach does not work here since u+ and
u� are not differentiable. Neither we have uniqueness nor nondegeneracy of the
ground state. There is another approach by del Pino and Felmer [11] where they
used variational characterizations of positive solutions and symmetrization tech-
nique. However their approach works well for positive solutions but does not work
for sign-changing solutions. We shall modify the approach of del Pino and Felmer.
The problem here is more complicated since the solution is sign-changing and we
have to estimate the interaction of the positive and negative components.
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2. Preliminaries

Without loss of generality, we consider 0 < �1 < �2. The associated functional to
the problem (1.2) is

E"(u) =

Z
�

✓
"2

2
|ru|2 +

�1
2

(u+)2 +

�2
2

(u�)2 � F(u)
◆
dx .

Note that from ( f2), E" 2 C1(H10 (�), R). Moreover, if u" 2 H10 (�) is a critical
point of E", then u" 2 C2(�) \ C(�) and hence u" is a classical solution of (1.2).
Note that E"(u) = E",�1(u) + E",�2(u) where

E",�1(u) =

Z
�

✓
"2

2
|ru+

|
2
+

�1
2

(u+)2 � F(u+)

◆
dx,

E",�2(u) =

Z
�

✓
"2

2
|ru�

|
2
+

�2
2

(u�)2 � F(u�)

◆
dx .

Define the Nehari set as

N"=

⇢
u2H10 (�) : u±

6⌘ 0, "2
Z
�

|ru+

|
2
+ �1

Z
�
(u+)2 =

Z
�
f (u+)u+

;

"2
Z
�

|ru�

|
2
+ �2

Z
�
(u�)2=

Z
�
f (u�)u�

�
. (2.1)

Define the positive and negative Nehari set as

N +

" = {u 2 H10 (�) : hE 0

",�1(u), ui = 0; u 6⌘ 0 and u � 0} (2.2)

and

N �

" = {u 2 H10 (�) : hE 0

",�2(u), ui = 0; u 6⌘ 0 and � u � 0} (2.3)

respectively. Note that any u belonging to N" is sign-changing. Moreover, all the
sign-changing solutions of (1.2) are contained inN". Also note thatN +

" \N �

" = ;.
Let

c" = inf
u2N"

E"(u). (2.4)

Remark 2.1. The setN" is not a manifold in H10 (�) due to the lack of differentia-
bility of the map u 7! u±. In fact,N" \ H2(�) is a C1 manifold of codimension 2
in H2(�), see [1]. Hence it is not clear whether a minimizer of E" onN" is indeed
a solution of (1.2).
Remark 2.2. Define h±(t) = E"(tu±

" ). Note that h± is strictly increasing for t 2

(0, 1) and strictly decreasing in t 2 (1,+1). This implies that max0<t<+1 h±(t)
exists and occurs at t = 1.
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We will show that there exists u" 2 N" such that c" = E"(u"), and that u" is a
least energy sign-changing solution. We state some elementary lemmas,

Lemma 2.3. For all " > 0, N +

" and N �

" are closed subsets of H10 (�).

0 < c+" = inf
u2N+

"

E",�1(u) = inf
u2H10 (�),u 6=0

max
t�0

E",�1(tu)

and
0 < c�" = inf

u2N�

"

E",�2(u) = inf
u2H10 (�),u 6=0

max
t�0

E",�2(tu).

Moreover, N ±

" is a C1 manifold of codimension 1 and every minimizer u of E" on
N ±

" is positive.

Proof. This follows trivially by using ( f4) and Sobolev embedding theorem. See
[15]. N ±

" is a C1 manifold of codimension 1 follows from [3].

Lemma 2.4. There exists some u" 2 N" such that c" is achieved. Moreover, u" is
a weak solution and hence a classical nodal solution of (1.2).

Proof. Let " > 0 be fixed. We use the argument by Bartsch, Weth and Willem [2].
Since c" = infu2N" E"(u), there exists a minimizing sequence u",n 2 N" such that
E"(u",n) ! c" as n ! +1. Note that by ( f 3), E" is coercive onN", as

E"(u",n) �

✓
1
2

�

1
✓

◆Z
�

⇢
"2|ru",n|2 + �1(u+

",n)
2
+ �2(u�

",n)
2
�
. (2.5)

and hence there exist b(") > 0, d(") > 0 independent of n such that b(") 

ku±

",nkH10 (�)  d("). Therefore there exist u±

" 2 H10 (�) such that u±

",n * u±

"

as n ! +1 and by the Rellich Lemma u±

",n ! u±

" in Lq(�) for q 2 (1, 2N
N�2 ).

This implies that u±

" � 0 and u+

" .u�

" = 0 since u+

",n.u�

",n = 0. Thus u±

" are indeed
the positive and negative part of u" = u+

" � u�

" . From the fact that (2.2) and (2.3)
we have ku±

",nkLq (�) has a positive lower bound and this implies u±

" 6⌘ 0. But also
we have

lim
n!1

Z
�
f (u±

",n)u
±

",n =

Z
�
f (u±

" )u±

" (2.6)

and
lim
n!1

Z
�
F(u±

",n) =

Z
�
F(u±

" ). (2.7)

From (2.6) using Fatou’s lemma we have

ku±

" k
2
H10 (�)



Z
�
f (u±

" )u±

" .
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By a variant Remark 2.2 there exist s, t 2 (0, 1] such that

ktu+

" k
2
H10 (�)

=

Z
�
f (tu+

" )tu+

"

and
ksu�

" k
2
H10 (�)

=

Z
�
f (su�

" )su�

" .

This implies tu+

" � su�

" 2 N" and hence

E"(tu+

" � su�

" ) = E",�1(tu
+

" ) + E",�2(su
�

" )

 lim
n!1

E",�1(u
+

",n) + lim
n!1

E",�2(u
�

",n) = c".
(2.8)

Note that we have used the fact (f4), (2.6), (2.7) to obtain

E",�1(tu
+

" )  lim
n!1

E",�1(u
+

" ) and E",�2(su
�

" )  lim
n!1

E",�2(u
�

" ).

Hence we have c"  E"(tu+

" � su�

" )  c" and indeed tu+

" � su�

" is a minimizer in
N".

By Remark 2.1 we want to show that v" := tu+

" � su�

" is a critical point of E".
If possible, let E 0

"(v") 6= 0 and then there exist � > 0 and � > 0 such that

kE 0

"(w)k � � whenever kv" � wk  �. (2.9)

Define a square S = (12 ,
3
2 ) ⇥ (12 ,

3
2 ) and for any (m, n) 2 S

 (m, n) = mv+

" � nv�

" .

Then from (2.8) we have

c̃" = max
@S

E"( ) < c" . (2.10)

Indeed our earlier comments, E"( ) < c" on S except at (1, 1). Choose ⌧ =

min{ c"�c̃"2 , ��8 } and B(v", �) be ball centered at v". Then by Willem [21, Lemma
2.3, page 38], there exist a deformation ⌘ 2 C([0, 1] ⇥ H10 (�); H10 (�)) such that
(a) ⌘(t, w) = w if t = 0 or if w 2 E�1

" (c" � 2⌧, c" + 2⌧ ),
(b) ⌘(1, Ec"+⌧" \ B(v", �)) ⇢ Ec"�⌧" ,
(c) E"(⌘(1, w))  E"(w),8w 2 H10 (�). Moreover, by our remarks and results
in [21], we have

max
(m,n)2S̄

E"(⌘(1, (m, n)) < c". (2.11)
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The idea of the proof is to obtain a contradiction. To this end we claim that
⌘(1, (S)) \ N" 6= ;. Define h(m, n) = ⌘(1, (m, n)) and

51(m, n) =

✓
E 0

"(mv+

" )v+

" , E 0

"(nv
�

" )v�

"

◆

52(m, n) =

✓
1
m
E 0

"(h
+(m, n))h+(m, n),

1
n
E 0

"(h
�(m, n))h�(m, n)

◆
.

Note that the first component of 51(m, n) is positive if m < 1 and is negative
if m > 1 with an analogous property for the second component. Hence by the
product rule for degree theory we have deg(51, S, 0) = 1. Moreover, as  = h
on @S (by our choice of ⌧ and the property (a) of the deformation) we must have
deg(51, S, 0) = deg(52, S, 0). Hence there exists a tuple (m0, n0) 2 S such that
52(m0, n0) = 0 which implies h(m0, n0) = ⌘(1, (m0, n0)) 2 N".

Lemma 2.5. Let !",�1 and !",�2 be the least energy solutions of
8><
>:

�"21u + �1u = f (u) in Br (0)
u > 0 in Br (0)
u = 0 on @Br (0)

(2.12)

8><
>:

�"21u + �2u = f (u) in Br (0)
u > 0 in Br (0)
u = 0 on @Br (0)

(2.13)

respectively. Then for sufficiently small " > 0, we have

E",�1(!",�1) = "N
⇢
I�1(W�1) + e�

2
p

�1r(1+o(1))
"

�

E",�2(!",�2) = "N
⇢
I�2(W�2) + e�

2
p

�2r(1+o(1))
"

�

where o(1) ! 0 as " ! 0.

Proof. For the proof see [11].

Let 3 = {x 2 � :

p

�1|x � P1| =

p

�2|x � P2|}.

Lemma 2.6. We have for " > 0 sufficiently small

c"  "N
⇢
I�1(W�1) + I�2(W�2) + e�

2'(P1,P2)
" + o(e�

2'(P1,P2)
" )

�
. (2.14)
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Proof. Let v" be a positive solution of
8><
>:

�"21u + �1u = f (u) in Br1(P1)
u > 0 in Br1(P1)
u = 0 on Br1(P1)

(2.15)

where r1 = min{d(P1, @�), d(P1,3)}. Let w" be a positive solution of
8><
>:

�"21u + �2u = f (u) in Br2(P2)
u > 0 in Br2(P2)
u = 0 on Br2(P2)

(2.16)

where r2 = min{d(P2, @�), d(P2,3)}. Note that supp v" \ supp w" = ; and v" 2

N +

" and w" 2 N �

" . Then we have v" � w" 2 N" and hence we have from (2.15)
and (2.16),

c"  E"(v" � w")

 E",�1(v") + E",�2(w")

 "N
⇢
I�1(W�1) + e�

2r1
" + I�2(W�2) + e�

2r2
" + o(e�

2r1
" ) + o(e�

2r2
" )

�
.

Hence we have,

c"  "N
⇢
I�1(W�1) + e�

2min{r1,r2}
" + I�2(W�2) + o(e�

2min{r1,r2}
" )

�

 "N
⇢
I�1(W�1) + I�2(W�2) + e�

2'(P1,P2)
" + o(e�

2'(P1,P2)
" )

�
.

(2.17)

Corollary 2.7. We also have c" � "N
⇢
I�1(W�1) + I�2(W�2) + o(1)

�
.

Proof.

c" = inf
u2N"

{E",�1(u) + E",�2(u)} � inf
u2N+

"

E",�1(u) + inf
u2N�

"

E",�2(u)

this implies the result.

Lemma 2.8. As " ! 0,

d(P1" , @�)

"
! +1,

d(P2" , @�)

"
! +1,

|P1" � P2" |

"
! +1.
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Proof. As "21u"(P1" )  0 it implies that f (u"(P1" )) � �1u"(P1" ) which implies
that Cup�1" (P1" ) � �1, hence there exists a positive constant � such that u"(P1" ) �

� and similarly we obtain that u"(P2" )  ��. Also by Lemma 2.6,

"2
Z
�

|ru"|2 + �1

Z
�
(u+

" )2 + �2

Z
�
(u�

" )2  C"N

and hence by Moser iteration we obtain ku"kL1(�)  C.

Suppose that lim
"!0

d(P1" , @�)

"
 C . By scaling v"(x) = u"("x + P1" ), then (1.2)

reduces to,
8><
>:
1v" � �1v" + �2v�

" + f (v") = 0 in�"
v±

" 6= 0 in �"
v" = 0 on @�"

(2.18)

where �" =
x�P1"
" . Note that from (2.6), kv"kH10 (�")

 C ; there exists W 2

H1(RN ) we have v" * W in H1(RN ) and by the Sobolev embedding theorem
we have v" ! W in L ploc(RN ). Hence v" ! W point-wise almost everywhere
in RN . Also by Schauder estimates, it follows that there exists C > 0 such that
kv"kC2,�loc (RN )

 C for some 0 < �  1. Hence by the Ascoli-Arzela’s theorem
there exists W 6= 0 such that

kv" � WkC2loc(RN ) ! 0 as " ! 0

where W is a nontrivial solution satisfying
8><
>:
1W � �1W + f (W ) = 0 in RN

+

supW � �,W 2 H1

W = 0 on @RN
+

(2.19)

whereRN
+

= {y : yn > �a}. Then by a result in [12] we obtainW ⌘ 0, a contradic-

tion. Similarly lim
"!0

d(P2" , @�)

"
= +1.Nowwe prove that lim

"!0

|P1" � P2" |

"
= +1.

By applying the Schauder estimates we obtain a C > 0 such that k"Du"kL1  C.

If possible let lim
"!0

|P1" � P2" |

"
= � < +1. Then it easily follows that u"(P1" ) � �

and u"(P2" )  �� which implies that u"(P1" ) � u"(P2" ) � 2�. Then

2�  |u"(P1" ) � u"(P2" )|  "kDu"k1

|P1" � P2" |

"
.
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Suppose P" =
P1" �P2"
" . Then along a subsequence |P"| ! � 2 (0,+1). Define

v" = u"("y + P1" ). Then v" ! W in C2loc(RN ) and W satisfies
8><
>:

�1W + �1W+
� �2W�

= f (W ) in RN

W (0) � �, W (P)  ��

W 2 H1(RN )

(2.20)

where P = lim"!0
P1" �P2"
" which implies that W is a nodal solution of (2.20) and

hence a critical point of the functional

I1(u) =

Z
RN

✓
1
2
|ru|2 +

�1
2

(u+)2 +

�2
2

(u�)2 � F(u)
◆
dx

and in particular we have hI 0
1

(W ),W±
i = 0 and W 2 N1 where

N1 =

⇢
u 2 H1(RN ) : u±

6⌘ 0,
Z

RN
|ru+

|
2
+ �1

Z
RN

(u+)2 =

Z
RN

f (u+)u+

;

Z
RN

|ru�

|
2
+ �2

Z
RN

(u�)2 =

Z
RN

f (u�)u�

�
.

But by (2.1) we know that "N (I�1(W�1) + I�2(W�2) + o(1)) � "N (I1(W+) +

I1(W�) + o(1)). This implies

I1(W+) + I1(W�)  I�1(W�1) + I�2(W�2) = c�1 + c�2

where c�i is a mountain pass critical value with respect to the functional I�i , i.e.

c�i = inf
u2H1(RN ),u 6⌘0,

R
RN |ru|2+�i

R
RN u2=

R
RN f (u)u

I�i (u). (2.21)

Also it easily follows that I1(W+) = I�1(W+) � c�1 , I1(W�) = I�2(W�) �

c�2 . Since any minimizer c�i is a weak solution, we have c�1 = I�1(W+), c�2 =

I�2(W�). Thus W+
= W�1(x � R) and W�

= W�2(x � S) for some R, S in
RN . The first equality implies W+ > 0 on RN which contradicts that W changes
sign.

Lemma 2.9. For sufficiently small " > 0, u" has exactly one positive local maxi-
mum and one negative local minimum.

Proof. Note that from Lemma 2.6, we obtain that c"  "N (I�1(W�1) + I�2(W�2) +

o(1)). Suppose it has two positive local maxima as P" and Q" and a negative local
minimum R". Then it follows similarly as in the proof of Lemma 2.8 one can show
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that |P"�Q"|
" ! +1, |Q"�R"|

" ! +1 and |P"�R"|
" ! +1 as " ! 0. Also note

that 12 f (u")u" � F(u") � 0 by assumption (f4), and thus

c" = E"(u") =

Z
�

✓
1
2
f (u")u" � F(u")

◆
dx

�

Z
B"R(P")

✓
1
2
f (u")u" � F(u")

◆
+

Z
B"R(Q")

✓
1
2
f (u")u" � F(u")

◆

+

Z
B"R(R")

✓
1
2
f (u")u" � F(u")

◆

� "N
�
2I�1(W�1) + I�2(W�2) + o(1)

�

(2.22)

a contradiction to Lemma 2.6. Hence u" has exactly one positive maximum and
one negative minimum.

Now let us define

d" = min
⇢
p

�1d(P1" , @�),
p

�2d(P2" , @�),

p

�1
p

�2
p

�1 +

p

�2
|P1" � P2" |

�
.

Then by the above lemma d"
" ! +1 as " ! 0. Now let us re-scale the problem

by " =
"
d" and x = d"x . Then we have

1u � �1u+

+ �2u�

+ f (u) = 0 in �d" =

�

d"
. (2.23)

Lemma 2.10. For any 0 < �0 < 1, there exists a constant C > 0 independent of �0
such that

u+

"  Ce�
p

�1(1��0)|x�P1" |

" and u�

"  Ce�
p

�2(1��0)|x�P2" |

" 8x 2 �.

Proof. Let vi"(y) = u"("y + Pi" ). Then v1" ! W�1 in C2loc(RN ). Also we have
W�1(r)  Ce�

p

�1r for all r . Let R = ln C
⇣ such that ⇣ = Ce�R . Then there exist

an "0 > 0 such that v+

" (y)  W�1(y) + ⇣  2⇣. Let us consider the domain �1 =

� \ B"R(P1" ) where R > 0 is large. Hence we can choose a ⇣ > 0, independent of
" such that v+

"  C on @BR(0). This implies that u+

"  2⇣ on @B"R(P1" ). For any
0 < �0 < 1, choose ⇣ in such a way that

f (u")
�1u+

"

< �0,

consider the equation with u" > 0

�"21u" + �1u" =

f (u")
u"

u" in �1.
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Then we obtain,
8>>><
>>>:

�"21u" + (1� �0)�1u"  0 in �1

u" > 0 in �1

u"  2⇣ in @B"R(P1" )

u" = 0 on @�.

(2.24)

Using a comparison argument we obtain u+

"  Ce�
p

�1(1��0)|x�P1" |

" . We obtain the
other estimate similarly.

3. Lower bound of the energy expansion

In order to obtain the greatest lower bound of the energy E" we consider three cases.

Case 1. Suppose that

d"
p

�1d(P1" , @�)
! 1 as " ! 0.

Note that
c" � inf

u2N+

"

E",�1(u) + inf
u2N�

"

E",�2(u).

We use del Pino-Felmer’s symmetrization technique in [11] to conclude that

E",�1(u
+

" ) � "N
⇢
I�1(W�1) +

1
2
e�2

p

�1(d(P1" ,@�)+o(1))
"

�
.

We also deduce that

E",�2(u
�

" ) � "N
⇢
I�2(W�2) +

1
2
e�2

(d"+o(1))
"

�

and as d" =

p

�1d(P1" , @�) + o(1), we have

c" � "N
✓
I�1(W�1) + I�2(W�2) + e�

2(d"+o(1))
"

◆
. (3.1)

Case 2. Suppose that

d"
p

�2d(P2" , @�)
! 1 as " ! 0.

Then we argue as in Case 1.
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s
P 0

s
P1"

s
P2"

� p

�1 |x � P1" | =

p

�2 |x � P2" |

z }| {�

Figure 3.1. The region of intersection.

Case 3.
Suppose that

d" =

p

�1
p

�2
p

�1 +

p

�2
|P1" � P2" |.

Then we can choose � > 0 such that d" � (1 + 5�)
p

�1d(P1" , @�), d" � (1 +

5�)
p

�2d(P2" , @�). Furthermore, we define |P 0
�P1" | =

p

�2
p

�1+
p

�2
|P1" �P2" | = d",1.

Then we have

|P 0

� P2" | =

p

�1
p

�1 +

p

�2
|P1" � P2" | = d",2.

We consider balls Bd",1+�(P1" ) and Bd",2+�2(P2" ), where 0 < � ⌧ d",1 is small and
�2 ⇠

p

�2
p

�1
� is defined by

(d",1 + �)2 � d2",1 = (d",2 + �2)
2
� d2",2. (3.2)

Define the intersection 0" = Bd",1+�(P1" ) \ Bd",2+�(P2" ). Then the total volume of
0" ⇡ �O(�

N�1
2 ). Since 0" = (0" \ {u" � 0}) [ (0" \ {u"  0}), we either have

|0" \ {u" � 0}| 
1
2 |0"| or |0" \ {u"  0}| 

1
2 |0"|.

Without loss of generality, let

|0" \ {u" � 0}| 

1
2
|0"| .

Thus
|Bd",1+�(P

1
" ) \ {u" > 0}|  |Bd",1+�(P

1
" )| �

1
2
|0"| = |Br"(0)|
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where r" = (d1," + �)(1 � ⌘) for some 0 < ⌘ < 1, where ⌘ ⇠ �
N+1
2 . We define a

smooth function

�(x) =

(
1 if |x � P1" |  (d",1 + �)(1� ⌘)

0 if |x � P1" | � (d",1 + �)
(3.3)

and 0  �  1 and |r� | 
C

(d",1+�)⌘ . Then the support of u
+

" �
2 is contained in

Bd",1+�(P1" ).Multiplying (1.2) by u+

" �
2 we obtain

Z
�
"2ru"r(u+

" �
2) + �1(u+

" )2�2 =

Z
�
f (u")u+

" �
2 . (3.4)

Now let us computeZ
�
"2ru"r(u+

" �
2) =

Z
�
"2ru+

" r(u+

" �
2)

=

Z
�
"2ru+

"

⇢
�r(u+

" �) + u+

" �r�

�

=

Z
�
"2
⇢
(r(u+

" �) � u+

" r�)r(u+

" �) + u+

" �r�ru+

"

�

=

Z
�
"2
⇢
|r(u+

" �)|2 � u+

" r�r(u+

" �) + u+

" �r�ru+

"

�

=

Z
�
"2
⇢
|r(u+

" �)|2 � u+

" �r�ru+

" � (u+

" )2|r� |
2

+ u+

" �r�ru+

"

�

= "2
Z
�

|r(u+

" �)|2 � "2
Z
�
(u+

" )2|r� |
2

(3.5)

where
"2

Z
�
(u+

" )2|r� |
2

 C"Ne�
p

�1
2(1� ⌘

2 )(d",1+�)
" . (3.6)

On the other handZ
�
f (u")u+

" �
2

=

Z
�
f (u+

" �)u+

" � +

Z
�
{ f (u+

" �) � f (u")�}u+

" �

=

Z
�
f (u+

" �)u+

" � + O
✓
"Ne�

(p+1)
p

�1(d",1+�)(1�
⌘
2 )

"

◆
. (3.7)

Note that in order to derive (3.6), we use the assumption ( f2), Lemma 2.10, (3.3)

u+

"  Ce�
p

�1(1��
0

)|x�P1" |

" , �
0

=

⌘

2(1� ⌘)
,
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and |r� | 6= 0 if |x � P"1 | � (d",1 + �)(1 � ⌘). Moreover, note that { f (u+

" �) �

f (u")�}u+

" � = 0 if � = 1.When (d",1 + �)(1� ⌘)  |x � P1" |  (d",1 + �) using
(f2) we obtain

�
f (u+

" �) � f (u")�
 
u+

" �  Ce�(p+1)
p

�1(1��
0

)|x�P1" |

"

and hence
Z
�

�
f (u+

" �) � f (u")�
 
u+

" �  C"Ne�
p

�1(p+1)(d",1+�)(1��0)
"

 C"Ne�
p

�1(p+1)(d",1+�)(1�
⌘
2 )

" .

Hence combining (3.4), (3.5) and (3.7) we have

"2
Z
�

|r(u+

" �)|2 + �1

Z
�
(u+

" �)2

=

Z
�
f (u+

" �)u+

" � + O
✓
"Ne�

2
p

�1(d",1+�)(1�
⌘
2 )

"

◆
.

(3.8)

Let v" = t"u+

" � where t" is such that

"2
Z
�

|rv"|
2
+ �1

Z
�

v2" =

Z
�
f (v")v".

Now we claim that

t" = 1+ O
✓
e�

2
p

�1(1�
⌘
2 )(d",1+�)
"

◆
.

Define �̃ : [0,+1) ⇥ [0,�?) ! R such that

�̃ (t,�) =

Z
�
f (tu+

" �)u+

" � �

Z
�
f (u+

" �)u+

" � � �

Z
�
f 0(u+

" �)(u+

" �)2

for some �? > 0. Then �̃ 2 C1. Note that �̃ (1, 0) = 0 and

�̃t (1, 0) =

Z
�
f 0(u+

" �)(u+

" �)2 6= 0.

Hence by implicit function theorem, there exists a C1 function � 7! t (�) such that
�̃(t (�),�) = 0, for small � and t (0) = 1. Letting t" = 1+ �, we have from (3.8)

� ⇠

"2
R
� |ru+

" � |
2
+ �1

R
�(u+

" �)2 �

R
� f (u+

" �)u+

" �

"2
R
� |ru+

" � |
2
+ �1

R
�(u+

" �)2 �

R
� f 0(u+

" )(u+

" �)2
.
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Hence

� ⇠

O
✓
"Ne�

2
p

�1(d",1+�)(1�
⌘
2 )

"

◆
R
� f (u+

" �)u+

" � �

R
� f 0(u+

" �)(u+

" �)2

which implies � = O(e�
2
p

�1(1�
⌘
2 )(d",1+�)
" ). Then we obtain,

"2

2

Z
Bd1,"+�(P

1
" )

|rv"|
2

=

"2

2

Z
Bd1,"+�(P

1
" )

|r(u+

" �)|2

+ "2�

Z
Bd1,"+�(P

1
" )

|ru+

" � |
2
+ O(�2"N ),

�1
2

Z
Bd1,"+�(P

1
" )

v2" =

�1
2

Z
Bd1,"+�(P

1
" )

(u+

" �)2

+ �1�

Z
Bd1,"+�(P

1
" )

(u+

" �)2 + O(�2"N ),

andZ
Bd1,"+�(P

1
" )
F(v") =

Z
Bd1,"+�(P

1
" )
F(u+

" �)+�

Z
Bd1,"+�(P

1
" )
f (u+

" �)u+

" �+O(�2"N ).

Also we have

"2
Z
Bd1,"+�(P

1
" )

|ru+

" � |
2
+�1

Z
Bd1,"+�(P

1
" )
(u+

" �)2�

Z
Bd1,"+�(P

1
" )
f (u+

" �)u+

" �=O(�"N ).

Using the above facts we have,

"2

2

Z
Bd1,"+�(P

1
" )

|rv"|
2
+

�1
2

Z
Bd1,"+�(P

1
" )

v2" �

Z
Bd1,"+�(P

1
" )
F(v")

=

"2

2

Z
Bd1,"+�(P

1
" )

|ru+

" � |
2
+

�1
2

Z
Bd1,"+�(P

1
" )

(u+

" �)2

�

Z
Bd1,"+�(P

1
" )
F(u+

" �) + O("N |t" � 1|2)

=

Z
Bd1,"+�(P

1
" )

✓
1
2
f (u+

" �)u+

" � � F(u+

" �)

◆
+ O("N |t" � 1|2)

=

Z
�

✓
1
2
f (u+

" )u+

" � F(u+

" )

◆

+ O
✓
"N |t" � 1|2 + e�

p

�1(p+1)(1�
⌘
2 )(d",1+�)

"

◆

= E",�1(u
+

" ) + "N O
✓
e�

p

�1(2+� )(d",1+�)
"

◆

(3.9)
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for some � 2 (0,min(1, p � 1)). Thus we have

E",�1(u
+

" ) � inf
N+

"

E",�1,Bd"+�(P1" )(v) � C"Ne�
p

�1(2+� )(d",1+�)
"

� "N
⇢
I�1(W�1) + e�

2
p

�1(1�
⌘
2 )(d",1+�)
"

�
� C"Ne�

p

�1(2+� )(d",1+�)
"

� "N
⇢
I�1(W�1) +

1
2
e�

2
p

�1(1�
⌘
2 )(d",1+�)
"

�

� "N
⇢
I�1(W�1) +

1
2
e�

2(1� ⌘
2 )(d"+�)
"

�
.

Similarly we obtain the estimate for E",�2(u�

" ). This proves the result.

Proof of Theorem 1.1. This follows from Lemma 2.6 and Section 3.
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