We obtain local and global estimates on weighted Lebesgue spaces with certain Muckenhoupt weights for solutions to a nonhomogeneous -Laplace type equation with coefficients in a domain. These estimates can be viewed as weighted norm inequalities for certain nonlinear singular operators (without any explicit kernel) arising from the -Laplacian, and are applicable to a quasilinear Riccati type equation.
@article{ASNSP_2011_5_10_1_1_0, author = {Nguyen, Cong Phuc}, title = {Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--17}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {1}, year = {2011}, mrnumber = {2829320}, zbl = {1228.35260}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2011_5_10_1_1_0/} }
TY - JOUR AU - Nguyen, Cong Phuc TI - Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 1 EP - 17 VL - 10 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2011_5_10_1_1_0/ LA - en ID - ASNSP_2011_5_10_1_1_0 ER -
%0 Journal Article %A Nguyen, Cong Phuc %T Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 1-17 %V 10 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2011_5_10_1_1_0/ %G en %F ASNSP_2011_5_10_1_1_0
Nguyen, Cong Phuc. Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 1-17. http://archive.numdam.org/item/ASNSP_2011_5_10_1_1_0/
[1] S. Byun and L. Wang, Quasilinear elliptic equations with BMO coefficients in Lipschitz domains, Trans. Amer. Math. Soc. 359 (2007), 5899–5913. | MR | Zbl
[2] S. Byun, L. Wang and S. Zhou, Nonlinear elliptic equations with BMO coefficients in Reifenberg domains, J. Funct. Anal. 250 (2007), 167–196. | MR | Zbl
[3] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. | EuDML | MR | Zbl
[4] E. DiBenedetto, local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827–850. | MR | Zbl
[5] E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math. 115 (1993), 1107–1134. | MR | Zbl
[6] L. D’Onofrio and T. Iwaniec, Notes on -harmonic analysis, In: “The -harmonic Equation and Recent Advances in Analysis”, Contemp. Math., Vol. 370, Amer. Math. Soc., Providence, RI, 2005, 25–49. | MR | Zbl
[7] L. Grafakos, “Classical and Modern Fourier Analysis”, Pearson Education, Inc., Upper Saddle River, NJ, 2004. | MR | Zbl
[8] T. Iwaniec, On -integrability in PDE’s and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 301–322. | MR | Zbl
[9] T. Iwaniec, Projections onto gradient fields and -estimates for degenerated elliptic operators, Studia Math. 75 (1983), 293–312. | EuDML | MR | Zbl
[10] C. Fefferman and E. Stein, spaces of several variables, Acta Math. 129 (1972), 137–193. | MR | Zbl
[11] J. Kinnunen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations 24 (1999), 2043–2068. | MR | Zbl
[12] J. Kinnunen and S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients, Differential Integral Equations 14 (2001), 475–492. | MR | Zbl
[13] J. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32 (1983), 849–858. | MR | Zbl
[14] V. G. Maz’ya and T. O. Shaposhnikova, “Theory of Multipliers in Spaces of Differentiable Functions”, Monographs and Studies in Mathematics, Vol. 23, Pitman Publishing Co., Brooklyn, Newyork, 1985. | MR | Zbl
[15] V. G. Maz’ya and E. I. Verbitsky, Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers, Ark. Mat. 33 (1995), 81–115. | MR | Zbl
[16] V. G. Maz’ya and E. I. Verbitsky, The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Math. 188 (2002), 263–302. | MR | Zbl
[17] V. G. Maz’ya and E. I. Verbitsky, Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Invent. Math. 162 (2005), 81–136 | MR | Zbl
[18] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. | MR | Zbl
[19] N. C. Phuc, Quasilinear Riccati type equations with super-critical exponents, Comm. Partial Differential Equations 35 (2010), 1958–1981. | MR | Zbl
[20] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405. | MR | Zbl
[21] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126–150. | MR | Zbl