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Stability of finite difference schemes
for hyperbolic initial boundary value problems II

JEAN-FRANÇOIS COULOMBEL

Abstract. We study the stability of finite difference schemes for hyperbolic
initial boundary value problems in one space dimension. Assuming `2-stability
for the discretization of the hyperbolic operator as well as a geometric regularity
condition, we show that the uniform Kreiss-Lopatinskii condition yields strong
stability for the discretized initial boundary value problem. The present work
extends the results of [4,7] to the widest possible class of finite difference schemes
by dropping the technical assumptions of our former work [4]. We give some new
examples of numerical schemes for which our results apply.

Mathematics Subject Classification (2010): 65M12 (primary); 65M06, 35L50
(secondary).

1. Introduction

The aim of this article is to study the stability of finite difference approximations
for hyperbolic initial boundary value problems. This problem was addressed in
the fundamental contributions [7, 8] for one-dimensional problems, and in [12] for
multidimensional problems. The main results of these articles characterize stability
in terms of a spectral condition, the so-called uniform Kreiss-Lopatinskii condition.
It is not so hard to see that the latter is a necessary condition for stability of the finite
difference approximation. The difficult part of the theory is to show that it is also a
sufficient condition. The approach of [7, 8, 12] is similar to the works [9, 15] which
were devoted to the analogous characterization for hyperbolic partial differential
equations. We also refer to [2, 3] for a detailed description of the theory.

In the works [7,12] some dissipation assumptions are made on the finite differ-
ence schemes, which restricts the class of numerical schemes to which the theory
applies. Moreover the underlying partial differential equation that we approximate
is not dissipative. Therefore the result we aim at is to prove that the uniform Kreiss-
Lopatinskii condition is sufficient for stability while considering the widest possible
class of numerical schemes. In particular we wish the theory to cover the case of
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38 JEAN-FRANÇOIS COULOMBEL

numerical schemes with a very low dissipation. This is of particular relevance in
several space dimensions where some problems are only weakly well-posed and nu-
merical approximations should reproduce this feature: dissipation should not damp
weak stability.

In one space dimension, the generalization of the results of [7] was initiated in
our former work [4]. However, the main result of [4] could not cover all possible
situations due to some technical restrictions which we did not fully understand at
that time. In this article we give some examples of numerical schemes that do not
enter the framework of [4], nor do they enter the framework of [7]. This makes
a generalization of [4] necessary in order to cover all possible cases. The present
article generalizes the results of [4] and gives an optimal characterization of stabil-
ity. Our result is optimal in the following sense. For finite difference schemes, the
characterization of stability by means of the uniform Kreiss-Lopatinskii condition
relies on a suitable discrete block structure. The only assumption that we make
here is that the discrete block structure is satisfied. On the opposite, the technical
assumptions of [4,7] restricted either the size or the form of the blocks. The present
article considers all possible blocks, including some for which new symmetrizers
are required. Our main contribution is the construction of symmetrizers in all possi-
ble cases, which, in our opinion, shows the full power of Kreiss’ approach. We thus
complete the stability theory for one-dimensional finite difference approximations.
We postpone the extension of our results for multidimensional problems to a future
work. Since the stability theory for numerical schemes is closely linked to the sta-
bility theory for partial differential equations, we hope that our new construction of
symmetrizers may be useful in other contexts.

No previous knowledge of our work [4] is required since the results are recalled
–though without proof– when needed.

Notation

Throughout this article, we use the notation

U := {⇣ 2 C, |⇣ | > 1} , U := {⇣ 2 C, |⇣ | � 1} ,

D := {⇣ 2 C, |⇣ | < 1} , S1 := {⇣ 2 C, |⇣ | = 1} .

We letMd,p(K) denote the set of d ⇥ p matrices with entries in K = R or C, and
we use the notationMd(K) when p = d. The group of invertible matrices of size
d is denoted Gld(K). If M 2 Md(C), sp(M) denotes the spectrum of M while
M⇤ denotes the conjugate transpose of M . The matrix (M + M⇤)/2 is called the
real part of M and is denoted Re (M). The real vector space of Hermitian matrices
of size d is denoted Hd . The vector space of real symmetric matrices of size d is
denoted Sd . We let Id denote the identity matrix of size d, without mentioning the
dimension when no confusion is possible. If H1, H2 2 Hd , the notation H1 � H2
is used when the inequality x⇤ (H1 � H2) x � 0 holds for all x 2 Cd . The norm of
a vector x 2 Cd is |x | := (x⇤ x)1/2. The corresponding norm onMd(C) is denoted
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k · k. Eventually, we let `2 denote the set of square integrable sequences, without
mentioning the indices of the sequences. Sequences may be valued in Ck for some
integer k.

2. Main result

We consider a hyperbolic initial boundary value problem in one space dimension
8><
>:

@t u + A @xu = F(t, x) , (t, x) 2 R+
⇥ R+ ,

B u(t, 0) = g(t) , t 2 R+ ,

u(0, x) = f (x) , x 2 R+ ,

(2.1)

where A 2 MN (R) is diagonalizable with real eigenvalues, and B 2 MN+,N (R)
with N+ the number of positive eigenvalues of A counted with their multiplicity.
We introduce a finite difference discretization of (2.1). Let 1x,1t > 0 denote a
space and a time step where the ratio � := 1t/1x is a fixed positive constant, and
let p, q, r, s be some integers. The solution to (2.1) is approximated by a sequence
(Un

j ) defined for n 2 N, and j 2 1�r +N. For j = 1�r, . . . , 0,Un
j approximates

the trace u(n1t, 0) on the boundary {x = 0}, and possibly the trace of normal
derivatives. The boundary meshes [ j 1x, ( j + 1)1x[, j = 1� r, . . . , 0, shrink to
{0} as1x tends to 0, so the formal continuous limit problem as1x tends to 0 is set
on the half-line R+ as for (2.1).

We consider finite difference approximations of (2.1) that read1

8>>>>>><
>>>>>>:

Un+1
j =

sX
�=0

Q� Un��
j + 1t Fnj , j � 1 , n � s ,

Un+1
j =

sX
�=�1

Bj,� Un��
1 + gn+1j , j = 1� r, . . . , 0 , n � s ,

Un
j = f nj , j � 1� r , n = 0, . . . , s ,

(2.2)

where the shift operators Q� and Bj,� are given by

Q� :=

pX
`=�r

A`,� T ` , Bj,� :=

qX
`=0

B`, j,� T ` , T `Um
k := Um

k+` . (2.3)

In (2.3), all matrices A`,� , B`, j,� belong to MN (R). They may depend on � but
are independent of 1t . We keep 1t as a free small parameter while 1x is given by
the relation 1x = 1t/�.

1 We do not focus here on the construction of such approximations and refer the reader to [6] for
some discretized boundary conditions.



40 JEAN-FRANÇOIS COULOMBEL

We recall the following definition:
Definition 2.1 (Strong stability [7]). The finite difference approximation (2.2) is
said to be strongly stable if there exists a constant C0 such that for all � > 0 and
all 1t 2 ]0, 1], the solution (Un

j ) to (2.2) with vanishing initial data ( f
0

= · · · =

f s = 0) satisfies the estimate

�

� 1t + 1
X
n�s+1

X
j�1�r

1t 1x e�2 � n1t
|Un

j |
2
+

X
n�s+1

0X
j=1�r

1t e�2 � n1t
|Un

j |
2

 C0

(
� 1t + 1

�

X
n�s

X
j�1

1t 1x e�2 � (n+1)1t
|Fnj |

2

+

X
n�s+1

0X
j=1�r

1t e�2 � n1t
|gnj |

2

)
.

For later use, we introduce the symbol (or amplification matrix) associated with the
discretization of the hyperbolic operator

8  2 C \ {0}, A() :=

0
BBB@
cQ0() . . . . . . cQs()
I 0 . . . 0

0 . . .
. . .

...
0 0 I 0

1
CCCA 2 MN (s+1)(C) ,

cQ� () :=

pX
`=�r

` A`,� .

(2.4)

The uniform power boundedness of A() for  2 S1 is a necessary and sufficient
condition for the `2-stability of the discretized Cauchy problem, see [5, Chapter
III.1] or [6, Chapter 5]. The aim of this article is to give necessary and/or sufficient
conditions on the symbol (2.4) and on the boundary conditions in (2.2) so that the
scheme (2.2) is strongly stable in the sense of Definition 2.1.

The resolvent equation is formally obtained from (2.2) by applying a Laplace
transform in time, see [7]. It reads

8>>><
>>>:

w j �

sX
�=0

z���1 Q� w j = Fj , j � 1 ,

w j �

sX
�=�1

z���1 Bj,� w1 = g j , j = 1� r, . . . , 0 ,

(2.5)

where z 2 U , (Fj ) 2 `2, and g1�r , . . . , g0 2 CN . It is convenient to rewrite the re-
solvent equation (2.5) as an evolution equation for the sequence (w j ). Assumption
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2.2 below is crucial in order to achieve this transformation. For ` = �r, . . . , p, let
us therefore define the matrices

8 z 2 C \ {0} , A`(z) := �`,0 I �

sX
�=0

z���1 A`,� , (2.6)

where �`1,`2 is the Kronecker symbol. Then as in [7], we make the following as-
sumption:
Assumption 2.2 (Discrete noncharacteristic boundary). The matrices A�r (z)
and Ap(z) are invertible for all z 2 U , or equivalently for all z in some open neigh-
borhood V of U .

We first consider the case q < p. In that case, all the w j ’s involved in the
boundary conditions for the resolvent equation (2.5) are coordinates of the aug-
mented vector2 W1 := (wp, . . . , w1�r ). Using Assumption 2.2, we can define a
matrixM(z) that is holomorphic on some open neighborhood V of U

8 z 2 V , M(z) :=

0
BBB@

�Ap(z)�1Ap�1(z) . . . . . . �Ap(z)�1A�r (z)
I 0 . . . 0

0 . . .
. . .

...
0 0 I 0

1
CCCA

2 MN (p+r)(C) .

(2.7)

Using (2.3) and (2.6), we can rewrite the resolvent equation (2.5) as an induction
relation for the augmented vector Wj := (w j+p�1, . . . , w j�r ). This induction
relation reads (

Wj+1 = M(z)Wj +
fFj , j � 1 ,

B(z)W1 = g ,
(2.8)

with some suitable source terms (fFj ), g. It is easy to check that the matrix B(z) 2

MNr,N (p+r) that encodes the boundary conditions in (2.8) depends holomorphi-
cally on z 2 C \ {0} and has maximal rank N r for all z. The exact expression of
the matrix B(z) can be easily obtained from (2.5) and (2.3) but is not very relevant
here so we omit it.

Let us now treat the case q � p. In that case, we can still write the resolvent
equation under the form of a one-step induction relation up to defining Wj :=

(w j+q , . . . , w j�r ), j � 1, and

M(z) :=

0
BBBB@

�Ap(z)�1Ap�1(z) . . . �Ap(z)�1A�r (z) 0 . . . 0
I 0 . . . 0 0

0 . . .

I 0
0 . . . 0 I 0

1
CCCCA2MN (q+r+1)(C).

2 Vectors are written indifferently in rows or columns to simplify the writing.
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The definition of B(z) 2 MNr,N (q+r+1) varies from the previous case but this
matrix keeps a maximal rank N r for all z and is still holomorphic on C \ {0}. This
equivalent form of the resolvent equation varies from what was done in [7, page
672]. In our approach, we can easily verify that the matrix B(z) has maximal rank
for all z 2 U . This is important in view of the so-called uniform Kreiss-Lopatinskii
condition defined below.

For simplicity, we shall deal from now on with the case q < p but our proofs
can be easily extended to the case q � p.

Theorem 2.3. Let Assumption 2.2 be satisfied. Assume moreover that the symbol
A defined by (2.4) satisfies the two following conditions

• Uniform power boundedness: there exists a constant C1 > 0 such that for all
 2 S1 and all n 2 N, kA()nk  C1,

• Geometric regularity of eigenvalues in S1: if  2 S1 and z 2 S1 \ sp(A()) has
algebraic multiplicity ↵, then there exist some functions �1(), . . . , �↵() that
are holomorphic in a neighborhood W of  in C and that satisfy

�1() = · · · = �↵() = z , det
�
z I � A()

�
= #(, z)

↵Y
j=1

�
z � � j ()

�
,

with # a holomorphic function of (, z) in some neighborhood of (, z) such
that #(, z) 6= 0. Furthermore, there exist some vectors E1(), . . . , E↵() 2

CN (s+1) that depend holomorphically on  2 W , that are linearly independent
for all  2 W , and that satisfy

8  2 W , 8 j = 1, . . . ,↵ , A() E j () = � j () E j () .

For z 2 U , we let Es(z) denote the generalized eigenspace associated with eigen-
values of M(z) in D. Then Es(z) has constant dimension N r for all z 2 U and Es

defines a holomorphic vector bundle over U . This vector bundle can be extended
continuously in a unique way over U . We let Es(z) denote this continuous extension
for z 2 S1(= @U).

In addition to all previous assumptions, assume that for all z 2 U we have
Es(z)\ KerB(z) = {0}. In what follows this condition is referred to as the uniform
Kreiss-Lopatinskii condition. Then the scheme (2.2) is strongly stable in the sense
of Definition 2.1.

Theorem 2.3 shows that proving stability for the numerical scheme (2.2) fol-
lows the same path as when one studies multidimensional hyperbolic initial bound-
ary value problems, see for instance [2, 3, 9, 15] and above all [11, Appendix C].
More precisely, we first make the assumption that the boundary is noncharacter-
istic. This is Assumption 2.2. Then two assumptions are made on the discretized
hyperbolic operator.
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• The uniform power boundedness of the matrices A() is a stability assump-
tion for the discretized Cauchy problem. This condition plays the same role as
hyperbolicity for the continuous problem. Let us observe that for all  2 S1,
the eigenvalues of the matrix A() necessarily belong to D [ S1. Moreover,
eigenvalues ofA() that belong to S1 are semi-simple.

• The geometric regularity assumption makes the behavior of eigenvalues and
eigenvectors precise near a point  2 S1 where the spectrum of A() meets
S1. This assumption is similar to the geometric regularity condition that charac-
terizes the block structure for continuous problems, see [11, Appendix C]. Let
us observe that the matrix

✓
1+ 7() 7()

0 1+ 7()

◆
, 7() :=

( � �1)2

4
,

is holomorphic with respect to  2 C \ {0}, and is uniformly power bounded
for  2 S1. However 1 is not a geometrically regular eigenvalue near  = 1.
Geometric regularity does not automatically follow from uniform power bound-
edness.

The assumptions onA enable us to extend the stable bundle ofM from U to U in a
unique way. As in the theory for multidimensional hyperbolic initial boundary value
problems, this result is independent of the boundary conditions that are considered
in the scheme (2.2). Once this first result is known, then strong stability for (2.2)
is encoded in the so-called uniform Kreiss-Lopatinskii condition. This condition
can be equivalently formulated as a determinant condition by choosing a basis of
Es(z) and a basis of Ker B(z). Let us observe that this characterization of strong
stability makes sense only when B(z) has maximal rank for all z 2 U , otherwise
the dimensions of Es(z) and Ker B(z) do not match.

Compared to the previous works [4, 7], Theorem 2.3 drops the technical as-
sumptions that were made on the symbol A, see [7, Assumptions 5.2 and 5.4] or
the less restrictive conditions (i), (ii), (iii) of [4, Theorem 2.7]. In particular, The-
orem 2.3 makes precise the structural assumptions that are needed to prove the
continuous extension of the stable bundle of M. As a corollary of our analysis,
if M satisfies the discrete block structure recalled in Theorem 3.1 below, then the
stable bundle ofM extends continuously from U to U .

Eventually, we observe that Theorem 2.3 is optimal if one wishes to charac-
terize strong stability by the uniform Kreiss-Lopatinskii condition. More precisely,
when the energy method is not available, showing strong stability for (2.2) requires
the construction of a so-called Kreiss symmetrizer. Such construction relies on the
discrete block structurewhich is recalled in Theorem 3.1. As proved in [4, Theorem
2.4], the discrete block structure is satisfied if and only if the structural assumptions
of Theorem 2.3 hold for A. Consequently, one could rephrase Theorem 2.3 by
assuming only that the discrete block structure holds forM.

The rest of this article is organized as follows: in Section 3, we make some
preliminary reductions which show that the proof of Theorem 2.3 reduces to the
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construction of a so-called K -symmetrizer. The arguments of Section 3 use some
results of our former work [4] which are recalled for the reader’s convenience. Then
in Sections 4-8, we give a complete construction of the K -symmetrizer. Our results
generalize the constructions in [2, 3, 9, 15] which were devoted either to the hyper-
bolic case with no dissipation or to scalar blocks. Our new construction depends
on the size of the block we consider and on its dissipation index. This notion is the
crucial novelty compared to [4] and is introduced in Section 4. We are able to con-
struct a K -symmetrizer for any dissipative block, while the construction in [4] was
restricted to some specific dissipative 2⇥ 2 blocks. Eventually, Section 9 provides
with some examples of numerical schemes that produce dissipative blocks. To our
knowledge, no existing theory was able to prove strong stability for such schemes.

Some results of matrix theory are used throughout the article, some of which
are proved in Appendix A. Eventually, the reader could reasonably ask whether new
symmetrizers are really needed to deal with the dissipative blocks considered in this
article. At first glance one might hope that the constructions in [9] would work even
though they had not been designed for this purpose. This question is discussed in
Appendix B. In particular, Appendix B shows that Kreiss’ construction does not
apply for the dissipative blocks that we consider. This makes our work both new
and relevant.

3. Preliminary reductions

3.1. The discrete block structure

We first recall the following theorem that was proved in our former work [4]:

Theorem 3.1 ([4]). Let Assumption 2.2 be satisfied and assume furthermore that
the symbol A defined by (2.4) satisfies the two conditions stated in Theorem 2.3,
that is uniform power boundedness and geometric regularity of eigenvalues in S1.

Then the matrix M defined by (2.7) satisfies the so-called discrete block struc-
ture condition:

1. for all z 2 U , sp(M(z)) \ S1 = ;,
2. for all z 2 U , there exists an open neighborhood O of z in C, there exists a
holomorphic function T defined on O with values in GlN (p+r)(C) such that

8 z 2 O , T (z)�1M(z) T (z) = diag (M1(z), . . . ,ML(z)) ,

where the number L of diagonal blocks and the size m` of each block M` do not
depend on z 2 O, and where each block satisfies one of the following properties:

• there exists " > 0 such that for all z 2 O, M`(z)⇤ M`(z) � (1+ ") I ,
• there exists " > 0 such that for all z 2 O, M`(z)⇤ M`(z)  (1� ") I ,
• m` = 1, z and M`(z) belong to S1, and z M 0

`(z)M`(z) 2 R \ {0},
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• m` � 2, z 2 S1 and M`(z) has the form

M`(z) = `

0
BBB@
1 1 0 0

0 . . .
. . . 0

...
. . .

. . . 1
0 . . . 0 1

1
CCCA , ` 2 S1 .

Moreover the lower left coefficient ↵` of M 0

`(z) is such that for all ! 2 C with
Re ! > 0, any root ⇣ of the equation ⇣m`

= ` ↵` z ! satisfies Re ⇣ 6= 0.

We refer to the blocks M` above as being of the first, second, third or fourth type.

The first point in Theorem 3.1 shows that for z 2 U , M(z) has no eigenvalue
on S1. The eigenvalues split in two groups: the stable eigenvalues belonging to D
and the unstable eigenvalues belonging to U . It is then clear that the generalized
eigenspace Es(z) associated with the stable eigenvalues has constant dimension for
all z in the connected set U . It varies holomorphically with respect to z becauseM
depends holomorphically on z. The dimension of Es(z) is computed as in [8, page
706] by letting z tend to infinity, and we obtain that the dimension equals N r .

Using the discrete block structure condition, we want to prove that Es(z) ex-
tends by continuity as z 2 U tends to the unit circle S1. Then we also want to prove
that the uniform Kreiss-Lopatinskii condition - which is defined after first extending
the stable subspace for z 2 S1 - implies strong stability for (2.2). Following [10],
it turns out that a single argument can give both results at the same time. This re-
quires the introduction of so-called K -symmetrizers, which is done in the following
paragraph.

3.2. Symmetrizers and continuity of the stable subspace

We recall the following terminology that was introduced in [4] for numerical
schemes and that is adapted from [10].
Definition 3.2 (K -symmetrizer). Let z 2 U , and let M be a function defined on
some neighborhood O of z with values inMm(C) for some integer m. Then M is
said to admit a K -symmetrizer at z if there exists a decomposition

Cm
= Es

� Eu ,

with associated projectors (⇡ s,⇡u), such that for all K � 1, there exists a neighbor-
hood OK of z, there exists a C1 function SK on OK with values inHm , and there
exists a constant cK > 0 such that the following properties hold for all z 2 OK \U :
• M(z)⇤ SK (z)M(z) � SK (z) � cK (|z| � 1)/|z| I ,
• for all W 2 Cm , W ⇤ SK (z)W � K 2 |⇡u W |

2
� |⇡ s W |

2.

The following result was also proved in [4].
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Theorem 3.3 ( [4]). Let the assumptions of Theorem 2.3 be satisfied. Assume more-
over that the matrix M defined by (2.7) admits a K -symmetrizer at all points of U
and that the dimension of the corresponding vector space Es in the decomposition
of CN (p+r) equals N r at all points of U .

Then the holomorphic vector bundle Es defined over U can be extended in a
unique way as a continuous vector bundle over U . If moreover the uniform Kreiss-
Lopatinskii condition holds, then the scheme (2.2) is strongly stable.

In order to prove Theorem 2.3, we thus only need to construct a K -symmetrizer
forM at all points z of U with a vector space Es of dimension N r . This argument
is made more precise in the following paragraph.

3.3. A sufficient result for proving Theorem 2.3

Let us first state without proof the following result which is the key point of our
work.

Theorem 3.4. Let z,  2 S1, let m � 2 be an integer. Let M be a holomorphic
function defined on a neighborhoodO of z with values inMm(C), that satisfies the
following three conditions:

• for all z 2 O \ U , sp(M(z)) \ S1 = ;,
• M(z) has the form

M(z) = 

0
BBB@
1 1 0 0

0 . . .
. . . 0

...
. . .

. . . 1
0 . . . 0 1

1
CCCA .

• The lower left coefficient ↵ of M 0(z) is such that for all ! 2 C with Re ! > 0,
any root ⇣ of the equation ⇣m =  ↵ z ! satisfies Re ⇣ 6= 0.

Then up to shrinkingO, the number of stable eigenvalues of M(z) when z 2 O \U
does not depend on z. Letting µ denote this number, M admits a K -symmetrizer at
z with a corresponding vector space Es of dimension µ.

The proof of Theorem 3.4 is detailed in Sections 4-8. We show now why the
result of Theorem 3.4 is sufficient for proving Theorem 2.3.

Proof of Theorem 2.3 using Theorem 3.4. Theorem 3.4 shows that blocks of the
fourth type in the discrete block structure admit a K -symmetrizer. Moreover, we
have already shown in our former work [4] that blocks of the first, second and third
type admit a K -symmetrizer. As a matter of fact, the analysis for these blocks is far
easier than for blocks of the fourth type and we refer to [4, page 2863] for the con-
struction of K -symmetrizers in this case. For each type of block, the dimension of
the corresponding vector space Es coincides with the number of stable eigenvalues
of the block when z belongs toO \ U .
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We now use the following two results whose proof - which is omitted here -
relies on some direct applications of Definition 3.2.

Lemma 3.5. Let z 2 U , and let M1, respectively M2, be a function defined on
some neighborhood O of z with values in Mm1(C), respectively Mm2(C), for
some integer m1, respectively m2. Assume that both matrices M1,M2 admit a K -
symmetrizer at z with vector spaces Es

1, Es
2 of dimension µ1, µ2.

Then the block diagonal matrix diag(M1,M2) 2 Mm1+m2(C) admits a K -
symmetrizer at z with a vector space Es of dimension µ1 + µ2.

Lemma 3.6. Let z 2 U , and let M be a function defined on some neighborhood
O of z with values in Mm(C) for some integer m. Assume that there exists a C1

function T defined on O with values in Glm(C) such that T�1 M T admits a K -
symmetrizer at z with a vector space eEs of dimension µ.

Then M admits a K -symmetrizer at z with a vector space Es of dimension µ.

Combining Lemma 3.5, Lemma 3.6 and Theorem 3.1 above, we obtain that the
matrix M defined by (2.7) admits a K -symmetrizer at all points z 2 U . Moreover,
the dimension of the corresponding vector space Es coincides with the number of
stable eigenvalues of M(z) when z 2 U is close to z. Therefore the dimension of
Es equals N r . We can apply Theorem 3.3 above, and the result of Theorem 2.3
follows.

The following sections are devoted to the proof of Theorem 3.4, or in other
words to the construction of a K -symmetrizer for a block of the fourth type.

4. The dissipation index

From now on, we consider a matrix M(z) 2 Mm(C) satisfying all the assumptions
of Theorem 3.4. There is no loss of generality in assuming that the neighborhood
O of z is an open disk of center z and of radius r  1. Consequently O \ U is an
open connected set. We first compute the number of stable eigenvalues, that is the
number of eigenvalues of M(z) in D when z belongs toO \ U .

For convenience, we introduce the nilpotent matrix Nm , or N in short when the
dimension is clear, which is defined by

Nm :=

0
BBB@
0 1 0
...

. . .
. . .

...
. . . 1

0 · · · · · · 0

1
CCCA 2 Mm(C) .

We warn the reader that N does not refer to the size of the matrices in (2.2) any-
longer since from now on we focus on the proof of Theorem 3.4, which is a com-
pletely independent result.
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4.1. The number of stable eigenvalues

The following result clarifies the number of stable eigenvalues.

Proposition 4.1. Under the assumptions of Theorem 3.4, the number µ of eigen-
values of M(z) in D does not depend on z 2 O \ U . If m is even, we have

µ =

m
2

,
↵ z


6= 0 and (�1)m/2 Re
✓

↵ z


◆
 0 .

If m is odd, then ↵ z/ 2 R \ {0} and

µ =

8><
>:
m + 1
2

if (�1)(m�1)/2 ↵ z/ < 0,
m � 1
2

if (�1)(m�1)/2 ↵ z/ > 0.

Proof of Proposition 4.1. When z belongs to the open connected set O \ U , the
matrix M(z) has no eigenvalue on the unit circle S1. Consequently, the number of
eigenvalues of M(z) in D does not depend on z 2 O \ U .

Let us first consider the case where m is even, and m ⌘ 2 (4). Then we know
that for all ! 2 C with Re ! > 0, (↵ z/)! does not belong to the real nonpositive
axis ]�1, 0]. Otherwise, we could find a purely imaginary m-th root of (↵ z/)!.
It is easy to see that the complex number ↵ z/ satisfies the latter property if and
only if it is non-zero and its real part is nonnegative.

In the case where m is even and m ⌘ 0 (4), we find that for all ! 2 C with
Re ! > 0, (↵ z/)! does not belong to the real nonnegative axis [0,+1[. This is
equivalent to the fact that ↵ z/ is non-zero and its real part is nonpositive. In both
cases, the real part of (�1)m/2 ↵ z/ is nonpositive.

Let us now consider the case where m is odd. Then for all ! 2 C with Re ! >
0, (↵ z/)! does not belong to the purely imaginary axis i R. This forces ↵ z/ to
be a non-zero real number.

Let us now compute the number µ of stable eigenvalues of M(z) when z 2

O \ U . We define the characteristic polynomial
8 (z, ) 2 O ⇥ C , P(z, ) := det(M(z) �  I ) .

When z = z, we have P(z, ) = ( � )m . Moreover, the form of M(z) gives the
relation

@P
@z

(z, ) = (�1)m+1 ↵ m�1 .

Consider " > 0 small enough. Then we compute the number µ by counting the
stable eigenvalues of M((1 + ") z). The characteristic polynomial of the matrix
M((1 + ") z) is P((1 + ") z, ). By using Puiseux expansions theory, for which
we refer to [1], the roots of the polynomial P((1 + ") z, ·) admit the asymptotic
expansion

`(") = 
⇣
1+ "1/m ⇣` + O("2/m)

⌘
, ` = 1, . . . ,m ,
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where the complex numbers ⇣1, . . . , ⇣m denote the m-th roots of ↵ z/ . Observe
that all these m-th roots have non-zero real part. Consequently, the number µ of
stable eigenvalues of M((1 + ") z) equals the number of m-th roots of ↵ z/ of
negative real part (use a Taylor expansion for |`(")|).

Let us consider the case where m is even. The m-th roots of ↵ z/ are simple
and invariant under the transformation (⇣ 7! �⇣ ). Therefore m/2 of these roots
have positive real part and m/2 have negative real part. Thus µ equals m/2.

Let us now consider the case where m is odd, and m ⌘ 1 (4). We know from
the analysis above that � := ↵ z/ is a non-zero real number. Let us first assume
that � is positive. Then there are exactly (m�1)/2 roots of negative real part among
all possible m-th roots of �. If � is negative, there are (m + 1)/2 roots of negative
real part among all possible m-th roots of �. Let us now assume that m is odd, and
m ⌘ 3 (4). If � is positive, then there are (m + 1)/2 roots of negative real part
among all possible m-th roots of �. If � is negative, then there are (m � 1)/2 roots
of negative real part among all possible m-th roots of �. The result of Proposition
4.1 follows.

4.2. A new formulation of Theorem 3.4 in flat coordinates

As was already pointed out in [4,7], the construction of a K -symmetrizer is tedious
in the z-space because the variable z belongs to the exterior of the curved unit
disk. We are going to reformulate the problem with a matrix depending on a new
parameter ⌧ that belongs to a half-plane.

Lemma 4.2. Under the assumptions of Theorem 3.4, let ⇠ 2 [0, 2⇡[ denote the
argument of  . Then the series

M](⌧ ) := i ⇠ I +

+1X
n=1

(�1)n�1

n

✓
1

M(z e⌧ ) � I

◆n
, (4.1)

defines a holomorphic function M] on a neighborhood V] of 0, with values in
Mm(C). For all z sufficiently close to z, we have

M(z) = expM]

✓
ln
z
z

◆
.

Moreover, M](⌧ ) has no purely imaginary eigenvalue when ⌧ 2 V] has positive
real part, and the lower left coefficient of M 0

](0) equals ↵ z/ .

Proof of Lemma 4.2. The spectral radius of the matrix M(z e⌧ )/ � I is zero when
⌧ = 0. Consequently the spectral radius of M(z e⌧ )/ � I remains smaller than
1/2 when ⌧ belongs to a small neighborhood V] of 0. Then the series (4.1) con-
verges normally and defines a holomorphic function M] on V]. The matrix M] is
a logarithm of M(z e⌧ ), see for instance [13, page 60]. When ⌧ has positive real
part, M](⌧ ) has no purely imaginary eigenvalue. Otherwise M(z e⌧ ) would have an
eigenvalue on S1 which is ruled out by the assumptions on M .
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It remains to compute the lower left coefficient of M 0

](0). We make use of the
following formula that is fully justified in [13, page 78]:

d exp
|A B :=

d
d⇣
exp(A + ⇣ B)|⇣=0 = exp(A)

+1X
⌫=0

(�1)⌫

(⌫ + 1)!
(adA)⌫ B ,

(adA) B := A B � B A .

(4.2)

Let us now differentiate the relation M(z e⌧ ) = expM](⌧ ) with respect to ⌧ , and
evaluate at ⌧ = 0. We obtain

z M 0(z) = d exp
|M](0) M

0

](0) . (4.3)

Using the relation M(z) =  (I + N ), we get

M](0) = i ⇠ I + N] , N] :=

m�1X
k=1

(�1)k�1

k
Nk .

Using (4.2), (4.3) reads

z M 0(z) �  M 0

](0) =  N M 0

](0) +  (I + N )
+1X
⌫=1

(�1)⌫

(⌫ + 1)!
(adN])

⌫ M 0

](0) . (4.4)

Observe that N] can we written as N] = N Q(N ) = Q(N ) N where Q is a poly-
nomial. Moreover, for all B 2 Mm(C), the last row of N B and the first column
of B N are zero. Consequently the lower left coefficient of (adN]) B is zero for all
matrix B. The relation (4.4) thus shows that the lower left coefficient ↵] of M 0

](0)
satisfies z ↵ =  ↵]. The proof of Lemma 4.2 is complete.

The following result is originally due to Ralston.

Lemma 4.3 (Ralston [14]). Let M] be defined by (4.1). Then up to shrinking the
neighborhood V] of 0 on which M] is defined, there exists a holomorphic function
Q defined on V] with values in Glm(C), and there exist holomorphic functions
b1, . . . , bm on V] such that for all ⌧ 2 V], there holds

M[(⌧ ) := Q(⌧ )�1 M](⌧ ) Q(⌧ ) = i ⇠ I + i N +

0
B@
b1(⌧ ) 0 · · · 0

...
...

...
bm(⌧ ) 0 · · · 0

1
CA .

Moreover, M[(⌧ ) has no purely imaginary eigenvalue when ⌧ has positive real part,
and the function bm satisfies b0

m(0) = (�i)m�1 ↵ z/ 6= 0. If m is even, then
Im b0

m(0)  0. If m is odd, then b0

m(0) 2 R.
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We refer to [14] and [3, Chapter 7] for the proof of this Lemma. The property
of b0

m(0) follows from Proposition 4.1.
The number of eigenvalues of M[(⌧ ) with negative real part does not depend

on ⌧ as long as ⌧ has positive real part. This number coincides with the number µ
of stable eigenvalues of M(z e⌧ ). Rephrasing Proposition 4.1, we have

µ =

m
2

if m is even, µ =

8><
>:
m + 1
2

if m is odd and b0

m(0) < 0,
m � 1
2

if m is odd and b0

m(0) > 0.
(4.5)

Theorem 3.4 is a consequence of the following analogous result in flat coordinates.

Theorem 4.4. Let ⇠ 2 R, let m � 2 be an integer. Let b1, . . . , bm denote some
holomorphic functions on some neighborhood V[ of 0, that vanish at 0. Let us
define a matrix M[(⌧ ) by the formula

8 ⌧ 2 V[ , M[(⌧ ) := i ⇠ I + i N +

0
B@
b1(⌧ ) 0 · · · 0

...
...

...
bm(⌧ ) 0 · · · 0

1
CA .

Let us assume that M[ satisfies the following conditions:

• for all ⌧ 2 V[ with Re ⌧ > 0, sp(M[(⌧ )) \ i R = ;,
• if m is even, b0

m(0) 6= 0 and Im b0

m(0)  0,
• if m is odd, b0

m(0) 2 R \ {0}.

Let the integer µ be defined by (4.5), and introduce the decomposition

8W 2 Cm , W =

✓
Ws

Wu

◆
, Ws

2 Cµ , Wu
2 Cm�µ .

Then for all K � 1, there exists a neighborhood V[
K of 0, there exists a C1 function

S[
K on V[

K with values in Hm , and there exists a constant c[K > 0 such that the
following properties hold:

• for all ⌧ 2 V[
K with Re ⌧ � 0, Re (S[

K (⌧ )M[(⌧ )) � c[K (Re ⌧ ) I ,
• for all ⌧ 2 V[

K and for all W 2 Cm , W ⇤ S[
K (⌧ )W � K 2 |Wu

|
2
� |Ws

|
2.

Proof of Theorem 3.4 using Theorem 4.4. Let us now show why the result of The-
orem 4.4 implies the result of Theorem 3.4. Using Theorem 4.4, we already know
that the matrix M[ defined in Lemma 4.3 admits a symmetrizer S[

K for all K � 1.
The properties satisfied by S[

K are those stated in Theorem 4.4. In the same spirit as
Lemma 3.6, one easily shows that the existence of such symmetrizers is invariant
under C1 changes of basis. More precisely, the matrix M] defined in Lemma 4.2
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equals M[ up to a smooth change of basis, see Lemma 4.3. Thus for all K � 1,
there exists a neighborhood V]

K of 0, there exists a C1 function S]
K on V]

K with
values inHm , and there exists a constant c]K > 0 such that the following properties
hold:

• for all ⌧ 2 V]
K with Re ⌧ > 0, Re (S]

K (⌧ )M](⌧ )) � c]K (Re ⌧ ) I ,
• for all ⌧ 2 V]

K and for all W 2 Cm , W ⇤ S]
K (⌧ )W � K 2 |Wu

|
2
� |Ws

|
2.

Let K � 1, and consider the function S]
K defined on a neighborhood V]

K of 0 with
values in Hm . Let z belong to a sufficiently small neighborhood OK of z so that
ln(z/z) 2 V]

K . We define SK (z) := S]
K (ln(z/z)). We are going to check that SK

defines a K -symmetrizer for the matrix M(z). We recall that in Lemma 4.2, the
matrix M] was constructed in such a way that the relation M(z) = expM](ln(z/z))
holds for z sufficiently close to z.

Let z 2 U \ OK . Then we know that SK (z) is Hermitian, and for all W 2 Cm

we have

W ⇤ SK (z)W = W ⇤ S]
K (ln(z/z))W � K 2 |Wu

|
2
� |Ws

|
2 .

Moreover, the calculations of [7, page 685] show that there exists a constant cK > 0,
possibly smaller than the constant c]K , such that

M(z)⇤ SK (z)M(z) � SK (z) � cK
|z| � 1

|z|
I .

We have thus proved that SK is a K -symmetrizer for M . The corresponding vector
space Es in the decomposition of Cm is the vector space spanned by the µ first
vectors in the canonical basis of Cm :

Es
=

⇢✓
Ws

0

◆
, Ws

2 Cµ

�
, Eu

=

⇢✓
0
Wu

◆
, Wu

2 Cm�µ

�
.

As claimed in Theorem 3.4, the dimension of Es coincides with the number of
stable eigenvalues of M(z) when |z| > 1.

It remains to prove Theorem 4.4, which is done in the following sections. Let
us already observe that the existence of the symmetrizer S[

K in Theorem 4.4 does
not depend on the real number ⇠ . More precisely, if the symmetrizer S[

K works for
one value of ⇠ , then it also works for any value of ⇠ . We shall therefore assume
from now on that ⇠ is zero, which simplifies a little bit the notation.

Theorem 4.4 is due to Kreiss [9], see also [2,3,14], in the case where all func-
tions b1, . . . , bm have purely imaginary values when ⌧ is purely imaginary. In par-
ticular, all derivatives b0

1(0), . . . , b
0

m(0) should be real, b00

1(0), . . . , b
00

m(0) should be
purely imaginary and so on. In our framework, there is no reason why b j (⌧ ) should
have purely imaginary values when ⌧ is purely imaginary. This phenomenon was



STABILITY OF FINITE DIFFERENCE SCHEMES 53

already highlighted in [4, Lemma 5.2] where we proved Theorem 4.4 in the special
case m = 2, Im b0

2(0) < 0. We extend here the result of [4] to the general frame-
work of Theorem 4.4. This is done by first classifying the matrices M[ according
to the dissipation index defined in Proposition 4.5 below. We then construct the
symmetrizer S[

K in the various possible cases depending on the size m and on the
dissipation index.

For simplicity, we omit the index or superscript [ from now on.

4.3. The dissipation index. Classification of all possible cases

This paragraph is devoted to the following result.

Proposition 4.5. Let M satisfy all the assumptions of Theorem 4.4 with ⇠ = 0.
Then there exists a unique holomorphic function ` defined on a neighborhoodW of
0 such that for all (⌧, ⇣ ) 2 V ⇥ W , there holds

det
�
M(⌧ ) � ⇣ I

�
= #(⌧, ⇣ )

�
⌧ � `(⇣ )

�
, (4.6)

where # is holomorphic and does not vanish on V ⇥ W . Furthermore, the function
` satisfies

`(0) = `0(0) = · · · = `(m�1)(0) = 0 , `(m)(0) =

m!

im�1 b0

m(0)
6= 0 , (4.7)

and one of the following two properties holds true:

• `(⇣ ) 2 i R for all ⇣ 2 i R \ W , or equivalently i⌫�1 `(⌫)(0) 2 R for all integer
⌫,

• there exists a smallest integer m0, and this integer m0 is even, and there exists a
constant c > 0 such that for all ⇠ 2 R \ W , there holds Re `(i ⇠)  �c ⇠m0 .
This condition equivalently reads

8 ⌫ = 0, . . . ,m0 � 1 , i⌫�1 `(⌫)(0) 2 R , and (�1)m0/2 Re `(m0)(0) < 0 .

In the first case, we define the dissipation index of M as +1 while in the second
case, we define the dissipation index of M as m0. The dissipation index is always
larger than or equal to m.

Proof of Proposition 4.5. The existence of the holomorphic function ` follows from
the Weierstrass preparation Theorem by simply noting that

@

@⌧
det
�
M(⌧ ) � ⇣ I

����
(⌧,⇣ )=(0,0)

= (�i)m�1 b0

m(0) 6= 0 .

Once we know that ` exists, we evaluate (4.6) at ⌧ = 0, and we obtain the relation

(�⇣ )m = det
�
M(0) � ⇣ I

�
= �#(0, ⇣ ) `(⇣ ) , #(0, 0) = (�i)m�1 b0

m(0) 6= 0 .

Differentiating m times with respect to ⇣ and evaluating at ⇣ = 0, we obtain (4.7).
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We know that for ⌧ 2 V of positive real part, M(⌧ ) has no purely imaginary
eigenvalue. This implies that for ⇣ 2 i R sufficiently small, `(⇣ ) has nonpositive
real part.

Let us consider the real function Re `(i ⇠) of the real variable ⇠ , which is de-
fined on an interval ] � ⇠0, ⇠0[. This function vanishes at 0 and has nonpositive
values. There are two possible cases: either all derivatives at 0 vanish (case 1), or
there exists a smallest integer m0 such that the derivative of order m0 is non-zero
(case 2).

In case 1, we have `(⌫)(0) 2 R if ⌫ is odd and `(⌫)(0) 2 i R if ⌫ is even. Then
we can expand `(i ⇠) in power series for small ⇠ because ` is holomorphic, and we
find that `(i ⇠) 2 i R for all small real ⇠ . In case 2, the integer m0 is necessarily
even because 0 is a maximum of Re `(i ⇠). Then we find that the m0-th derivative
of Re `(i ⇠) at 0 is negative because the function is nonpositive, and the conclusion
follows from a Taylor expansion.

The terminology for the dissipation index may be a little confusing. We warn
the reader that the lower is the dissipation index, the more dissipative the block will
be. The case where the dissipation index is infinite corresponds to a non-dissipative
block (in some sense a hyperbolic block). Our terminology is similar to the notion
of dissipative scheme for the Cauchy problem, see [6, Definition 5.2.1].

There are now four cases to consider for the proof of Theorem 4.4. The con-
struction of the symmetrizer varies from one case to the other.

• Case I: m is even and the dissipation index m0 equals m.
• Case II: m is even and the dissipation index m0 is larger than m but finite.
• Case III: m is odd and the dissipation index m0 is finite.
• Case IV: the dissipation index is infinite (m is either even or odd).

We are now going to construct a symmetrizer for each case. For the reader’s conve-
nience, we present the proofs with an increasing degree of difficulty. This implies
some repeated arguments from time to time but we hope that it will clarify the con-
struction. The proof in Section 5 for case I is a generalization of [4, Theorem 2.7]
where we dealt with the case m = m0 = 2. It is also important to understand the
construction of the symmetrizer in case I in view of the more involved cases II and
III. The latter have never been considered in the literature so far.

Case IV is somehow simpler since it can be treated with the standard Kreiss
symmetrizers of [9]. In particular, we shall see that in case IV, M(i �) has purely
imaginary coefficients while in cases I, II and III, M(i �) does not have purely
imaginary coefficients.

5. Construction of a symmetrizer: case I

We recall for clarity that we consider a function M that is holomorphic on a neigh-
borhood V of 0 with values in Mm(C), m � 2, and whose expression is given
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by

8 ⌧ 2 V, M(⌧ ) = i Nm +

0
B@
b1(⌧ ) 0 · · · 0

...
...

...
bm(⌧ ) 0 · · · 0

1
CA , Nm =

0
BBB@
0 1 0
...

. . .
. . .

...
. . . 1

0 · · · · · · 0

1
CCCA . (5.1)

All functions b1, . . . , bm vanish at 0. Case I corresponds to a function bm that
satisfies Im b0

m(0) < 0, see Proposition 4.5. In particular, bm(i �) is not purely
imaginary for small real �. A numerical scheme that produces a block of case I with
arbitrarily large m is constructed in Section 9. We also recall that we have m = 2µ,
see (4.5), and that any vector W 2 Cm is decomposed as W = (Ws,Wu) where
Ws

2 Cµ is the vector formed by the µ first coordinates of W , while Wu
2 Cµ is

the vector formed by the µ last coordinates of W .
In the analysis of all cases I-IV, the construction of the symmetrizer SK (⌧ ) is

based on the following observation. Writing ⌧ = � + i �, we first expand M(⌧ ) as

M(⌧ ) = M(i �) + � M 0(0) + � r(⌧ ) ,

where r is continuous with respect to ⌧ 2 V and r(0) = 0. Then we choose the
symmetrizer SK (⌧ ) under the form

SK (⌧ ) = S(�) + � H , (5.2)

where S(�) is Hermitian and H is a constant Hermitian matrix. The following
Lemma is based on the above expansion of M(⌧ ). Its elementary proof is omit-
ted.

Lemma 5.1. Assume that for all K � 1, we can construct a C1 function S on
some interval ] � �K , �K [ with values in Hm , and a matrix H 2 Hm such that the
following properties hold:

i) for all � 2 ] � �K , �K [, Re (S(�)M(i �)) � 0,
ii) for all W 2 Cm , W ⇤ S(0)W � (K 2 + 1/2) |Wu

|
2
� |Ws

|
2/2,

iii) Re (S(0)M 0(0) + i H Nm) is positive definite.

Then the result of Theorem 4.4 holds with the symmetrizer SK in (5.2).

The construction of S varies from one case to the other, because the behavior of
the functions b j when ⌧ is purely imaginary is encoded in the dissipation index m0.
In particular, the choice in [9] of a real symmetricmatrix S(�) such that S(�)M(i �)
is skew-Hermitian is not convenient in cases I, II and III (see Appendix B). How-
ever, we shall see in the analysis of cases II and III that the larger the dissipation
index m0 is, the more our construction mimics Kreiss’ choice.
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Let K � 1, and let us construct a matrix S(�) satisfying conditions i) and ii) of
Lemma 5.1 in case I. We decompose the matrix M(i �) as follows:

M(i �) = i
✓
Nµ

eNµ

0 Nµ

◆
+

✓
� �1(�) 0

i �B1 + �2 �2(�) 0

◆
, (5.3)

where each block in (5.3) represents a matrix of size µ = m/2. The coefficients
of the matrix eNµ vanish, except the lower left coefficient that equals 1. When m
equals 2, we use the convention N1 = 0, eN1 = 1. Moreover, B1 is a constant matrix
defined by

B1 :=

0
B@
b0

µ+1(0) 0 · · · 0
...

...
...

b0

m(0) 0 · · · 0

1
CA 2 Mµ(C) . (5.4)

The matrices �1(�),�2(�) 2 Mµ(C) depend analytically on � but we have no
information about their coefficients. In case I, the only piece of information we
have is on the lower left coefficient of B1: Im b0

m(0) < 0.
We choose the symmetrizer S(�) under the following form3:

S(�) :=

✓
�2A2 C0 + �C1

C⇤

0 + �C⇤

1 D0

◆
, (5.5)

where A2,D0 belong to Hµ, and C0,C1 belong to Mµ(C). We shall first fix C0,
then D0, then C1 and eventually A2. Computing the product of S(�) in (5.5) with
M(i �) in (5.3) and taking the real part, we obtain

Re (S(�)M(i �)) = 
� Re (i C0 B1)+�2 Re (i A2 Nµ+i C1 B1+C0�2(0)) ?

i
2
(C⇤

0Nµ�N⇤

µC⇤

0)+
i�
2

(C⇤

1 Nµ � N⇤

µC⇤

1+D0B1�iC
⇤

0�1(0)) Re (iD0Nµ+iC⇤

0
eNµ)

!

+

✓
O(�3) ?

O(�2) O(�)

◆
, (5.6)

where ? denotes here and from now the only possible matrix such that the whole
m ⇥ m matrix is Hermitian. As in [9], see also [3, Chapter VII.5], we shall use
repeatedly the following fact:
Lemma 5.2. Let ⌫ � 1 be an integer. A matrix S 2 M⌫(C) satisfies S N⌫ = N⇤

⌫ S
if and only if S has the form

S =

0
BBB@
0 · · · 0 s1
... 0 s1 s2
0 s1 s2

...
s1 s2 · · · s⌫

1
CCCA . (5.7)

3 The reader will observe that this choice is similar to the form we had used in [4], and is com-
pletely different from the choice in [9].
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In particular, S 2 H⌫ satisfies Re (i S N⌫) = 0 if and only if S is a real symmetric
matrix of the form (5.7).

We first fix the matrix C0.

Lemma 5.3. Let the numbers ⇢2, . . . , ⇢µ 2 C be determined as the solution to the
triangular system

0
B@

b0

m(0) 0
...

. . .

b0

µ+2(0) · · · b0

m(0)

1
CA
0
B@

⇢2
...

⇢µ

1
CA = �b0

m(0)

0
B@
b0

m�1(0)
...

b0

µ+1(0)

1
CA .

Let the matrix C0 2 Mµ(C) be defined by

C0 :=

0
BBBB@

0 · · · 0 b0

m(0)
... 0 b0

m(0) ⇢2

0 b0

m(0) ⇢2
...

b0

m(0) ⇢2 · · · ⇢µ

1
CCCCA . (5.8)

Then the matrix C0 satisfies Re (i C0 B1) = 0, C⇤

0 Nµ = N⇤

µC⇤

0, and the upper left
coefficient of Re (i C⇤

0
eNµ) is positive.

The proof of Lemma 5.3 follows from straightforward algebraic manipulations,
from Lemma 5.2, and from the fact that b0

m(0) has negative imaginary part. The
details are left to the reader. In view of our choice (5.5) and of the relation (5.6),
we now wish to construct a matrix D0 2 Hµ that is positive definite - in order to
satisfy condition ii) in Lemma 5.1 - and such that the real part of i (D0 Nµ+C⇤

0
eNµ)

is positive definite. The construction of D0 is based on the following general result
that is proved in Appendix A.

Lemma 5.4. Let C1,C2 2 R, let c > 0, and let ⌫ � 1 be an integer. Then there
exists a matrix H 2 H⌫ such that for all W = (W1, . . . ,W⌫) 2 C⌫ , the following
inequalities hold true

W ⇤ H W � C1 |W |
2 ,

W ⇤ Re (i H N⌫)W � �c |W1|2 + C2
⌫X
j=2

|Wj |
2 .

Corollary 5.5. Let ⌫ � 1 be an integer and let H1 2 H⌫ . If the upper left coefficient
of H1 is positive, then there exists H2 2 H⌫ such that Re (i H2 N⌫)+ H1 is positive
definite.
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Since the upper left coefficient of Re (i C⇤

0
eNµ) is positive (see Lemma 5.3),

Young’s inequality shows that there exists a constant c̃ > 0 such that

8W 2 Cµ , W ⇤ Re (i C⇤

0
eNµ)W � 2 c̃ |W1|2 �

1
c̃

µX
j=2

|Wj |
2 . (5.9)

We apply Lemma 5.4 with C1 := K 2 + 1/2+ 2 kC0k2, C2 := c̃+ 1/c̃, and c := c̃.
We obtain that there exists D0 2 Hµ such that

8W 2 Cµ , W ⇤D0W �

✓
K 2 +

1
2

+ 2 kC0k2
◆

|W |
2 , (5.10)

W ⇤ Re (i D0 Nµ)W � �c̃ |W1|2 +

✓
c̃ +

1
c̃

◆ µX
j=2

|Wj |
2 . (5.11)

If we combine (5.9) and (5.11), we already see that the lower right block in the
right-hand side of (5.6) satisfies

Re (i D0 Nµ + i C⇤

0
eNµ) � c̃ I .

Moreover, (5.10) shows that we have the following inequality for all W 2 Cm :

W ⇤S(0)W =(Wu)⇤D0Wu
+2Re

�
(Ws)⇤C0Wu�

�

✓
K 2 +

1
2

◆
|Wu

|
2
�

1
2

|Ws
|
2 .

Condition ii) of Lemma 5.1 is thus satisfied. Our choice of C0 and of D0 yields
some simplification in (5.6):

Re (S(�)M(i �)) �

 
�2 Re (i A2 Nµ + i C1 B1 + C0 �2(0)) ?

i �
2

(C⇤

1 Nµ � N⇤

µC⇤

1 + D0 B1 � i C⇤

0 �1(0)) c̃ I

!

+

✓
O(�3) ?

O(�2) O(�)

◆
.

(5.12)

It remains to fix the matrices C1 and A2 such that condition i) in Lemma 5.1 holds.
Let us first of all choose C1 of the form given in Lemma 5.2, so that C1 satisfies
C⇤

1 Nµ = N⇤

µC⇤

1. Applying Young’s inequality in (5.12) shows that there exists a
constant C̃ > 0, that does not depend on C1 nor on A2, such that

Re (S(�)M(i �)) �

0
@�2

�
Re (i A2 Nµ + i C1 B1) � C̃ I

�
0

0
c̃
2
I

1
A

+

✓
O(�3) ?

O(�2) O(�)

◆
.

(5.13)

Let us now fix the matrices C1 and A2.
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Lemma 5.6. For all C3 2 R, there exists a matrix E 2 Mµ(C) and there exists a
matrix H 2 Hµ that satisfy

E Nµ = N⇤

µ E , Re (i H Nµ + i E B1) � C3 I .

Proof of Lemma 5.6. We first choose the matrix E 2 Mµ(R) of the form

E =

0
@0 e

e
e 0

1
A , e 2 R ,

so that E Nµ = N⇤

µ E . Then we compute the upper left coefficient of Re (i E B1).
This coefficient equals e |Im b0

m(0)|. We thus fix e 2 R such that the upper left
coefficient of Re (i E B1) equals C3 + 1. Then there exists a constant C4 > 0 such
that for all W 2 Cµ there holds

W ⇤ Re (i E B1)W �

✓
C3 +

1
2

◆
|W1|2 � C4

µX
j=2

|Wj |
2 .

It remains to apply Lemma 5.4 above with c := 1/2, C2 := C3 + C4 and with an
arbitrary C1 (take for instance C1 = 0) to construct the Hermitian matrix H .

Applying Lemma 5.6 in (5.13), we can pick a matrix C1 2 Mµ(C) that satis-
fies C⇤

1 Nµ = N⇤

µC⇤

1, and a matrix A2 2 Hµ such that

Re (i A2 Nµ + i C1 B1) �

✓
C̃ +

c̃
2

◆
I .

Consequently, (5.13) reduces to

Re (S(�)M(i �))�
c̃
2

✓
�2 I 0
0 I

◆
+

✓
O(�3) ?

O(�2) O(�)

◆
�

c̃
2

✓
�2 I 0
0 I

◆
+

✓
O(�3) 0
0 O(�)

◆
,

where we have used Young’s inequality in the end. Choosing � small enough, we
have thus constructed a matrix S(�) of the form (5.5) and that satisfies conditions
i) and ii) of Lemma 5.1. Moreover, the matrix C0 in the decomposition (5.5) is
defined by (5.8).

We now construct the Hermitian matrix H such that condition iii) in Lemma
5.1 is satisfied. Using the expression (5.8) of C0, the upper left coefficient of the
matrix Re (S(0)M 0(0)) equals |b0

m(0)|2 > 0. Corollary 5.5 shows that there exists a
matrix H 2 Hm such that Re (S(0)M 0(0) + i H Nm) is positive definite. Condition
iii) in Lemma 5.1 is thus satisfied, which shows that Theorem 4.4 holds in case I.

The analysis of cases II and III below follows the same strategy as for case I.
The most difficult part is to guess the form and construct the Hermitian matrix S(�).
The construction of H 2 Hm always follows from Corollary 5.5. For clarity, we
rephrase and simplify Lemma 5.1 in order to take the result of Corollary 5.5 into
account.
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Lemma 5.7. Assume that for all K � 1, we can construct a C1 function S on some
interval ] � �K , �K [ with values in Hm such that the following properties hold:

i) for all � 2 ] � �K , �K [, Re (S(�)M(i �)) � 0,
ii) for all W 2 Cm , W ⇤ S(0)W � (K 2 + 1/2) |Wu

|
2
� |Ws

|
2/2,

iii) the upper left coefficient of Re (S(0)M 0(0)) is positive.

Then the result of Theorem 4.4 holds with a symmetrizer SK of the form (5.2).

6. Construction of a symmetrizer: case II

In this section, we consider a matrix M(⌧ ) of the form (5.1) where m is an even
number, and where the dissipation index m0 defined in Proposition 4.5 is larger
than m. The dissipation index gives some information on the holomorphic function
`. First of all, we are going to convert this information on ` into some information
on the derivatives b(q)

j (0). This is done in Proposition 6.1 below. According to the
values of m0 with respect to m, we shall construct a symmetrizer. Observe that
since both m and m0 are even numbers, the Euclidean division of m0 by m reads

m0 = q0m + 2µ0 , q0 � 1 , 0  µ0  µ � 1 . (6.1)

6.1. What does the dissipation condition mean?

The following proposition gives some information on the derivatives b(q)
j (0).

Proposition 6.1. Let M satisfy the assumptions of Theorem 4.4, where without loss
of generality ⇠ = 0, and correspond to case II (m0 > m, m is even). Let the
dissipation index m0 satisfy (6.1). Then the following properties hold:

• b0

m(0) 2 R \ {0},
• for all q = 1, . . . , q0 � 1 and for all j = 1, . . . ,m, iq�1 b(q)

j (0) 2 R,
• for all j = 0, . . . , 2µ0 � 1, iq0�1 b(q0)

m� j (0) 2 R,
• if q0 is even, b0

m(0) Im (iq0�1 b(q0)
m�2µ0

(0)) < 0,
• if q0 is odd, Im (iq0�1 b(q0)

m�2µ0
(0)) < 0.

Proposition 6.1 shows in particular that bm�2µ0(i �) is not a purely imaginary num-
ber for all small real �. Hence M(i �) does not have purely imaginary coefficients
for small real � in case II. The same property holds in case III, see Proposition 7.1
below.
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Proof of Proposition 6.1. We recall that there exists a unique holomorphic function
` satisfying (4.6). In case II, this function satisfies (4.7) and

im�1 `(m)(0) 2 R \ {0} ,

8 ⌫ = m + 1, . . . ,m0 � 1 , i⌫�1 `(⌫)(0) 2 R , (6.2)
(�1)m0/2 Re `(m0)(0) < 0 .

If we use the form (5.1) of the matrix M(⌧ ) together with the relation (4.6), we get

0 = det
�
M(`(⇣ )) � ⇣ I

�
= (�1)m

(
⇣m �

mX
j=1

i j�1 b j (`(⇣ )) ⇣m� j

)
.

Defining the functions

è(!) :=

1
i

`(i !) , eb j (✓) :=

1
i
b j (i ✓) , (6.3)

we obtain the relation

!m
=

mX
j=1

eb j⇣è(!)
⌘

!m� j . (6.4)

The latter equality holds for all ! 2 C sufficiently close to 0. We recall that the
functionseb1, . . . ,ebm, èare holomorphic on a neighborhood of 0.

The proof of Proposition 6.1 then consists in expanding the functionseb1, . . . ,ebm, ènear 0, and in identifying the powers of !. Let us perform this argument in
detail. First of all we assume q0 = 1, and therefore µ0 > 0. Using (4.7), we have
the Taylor expansions

è(!) =

è(m)(0)
m!

!m
+ · · · +

è(2m�1)(0)
(2m � 1)!

!2m�1
+ O(!2m) ,

eb j⇣è(!)
⌘

=
eb0

j (0)
2m�1X
⌫=m

è(⌫)(0)
⌫!

!⌫
+ O(!2m) .

We use the latter expansion in (6.4) and obtain

!m
=

mX
j=1

eb0

j (0)!m� j
2m�1X
⌫=m

è(⌫)(0)
⌫!

!⌫
+ O(!2m) .
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Identifying the powers !m,!m+1, . . . ,!m+2µ0 , we obtain

eb0

m(0)
è(m)(0)
m!

= 1 , (6.5)

eb0

m(0)
è(m+1)(0)
(m + 1)!

+
eb0

m�1(0)
è(m)(0)
m!

= 0 ,

...

eb0

m(0)
è(m+2µ0)(0)
(m + 2µ0)!

+ · · · +
eb0

m�2µ0
(0)

è(m)(0)
m!

= 0 . (6.6)

The definition (6.3) gives the relation è(⌫)(0) = i⌫�1 `(⌫)(0). Using the properties
(6.2), we obtain inductively

eb0

m(0) 2 R \ {0} , eb0

m�1(0), . . . ,eb0

m�2µ0+1(0) 2 R .

Then we multiply (6.6) by the real numbereb0

m(0), take the imaginary part, use (6.5)
and (6.2). We find

Imeb0

m�2µ0
(0) < 0 .

We then obtain the result of Proposition 6.1 by using the relations eb0

j (0) = b0

j (0),
j = 1, . . . ,m.

Let us now consider the case q0 � 2. We follow the same strategy as above
and use the following expansions in (6.4):

è(!) =

(q0+1)m�1X
⌫=m

è(⌫)(0)
⌫!

!⌫
+ O(!(q0+1)m) ,

eb j (✓) =

q0X
q=1

eb(q)
j (0)
q!

✓q + O(✓q0+1) .

We obtain the relation

!m
=

mX
j=1

!m� j
q0X
q=1

eb(q)
j (0)
q!

 
(q0+1)m�1X

⌫=m

è(⌫)(0)
⌫!

!⌫

!q
+ O(!(q0+1)m) . (6.7)

We first identify the terms !m, . . . ,!2m�1 on either side of (6.7). Following the
same argument as in the case q0 = 1 yields

eb0

m(0) 2 R \ {0} , eb0

m�1(0), . . . ,eb0

1(0) 2 R .

Then we identify the terms !2m,!2m+1 and so on, up to !q0 m+2µ0�1. We obtain

eb00

m(0), . . . ,eb00

1(0) 2 R , . . . , eb(q0�1)
m (0), . . . ,eb(q0�1)

1 (0) 2 R ,

eb(q0)
m (0), . . . ,eb(q0)

m�2µ0+1(0) 2 R .
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Let us now identify the term !q0 m+2µ0
= !m0 on either side of (6.7) and get

0 =

mX
j=1

eb0

j (0)
1!

è((q0�1)m+2µ0+ j)(0)
((q0 � 1)m + 2µ0 + j)!

+

mX
j=1

q0�1X
q=2

eb(q)
j (0)
q!

(q0+1)m�1X
⌫1,...,⌫q=m

⌫1+···+⌫q=(q0�1)m+2µ0+ j

è(⌫1)(0)
⌫1!

. . .
è(⌫q )(0)

⌫q !

+

mX
j=m�2µ0

eb(q0)
j (0)
q0!

(q0+1)m�1X
⌫1,...,⌫q0=m

⌫1+···+⌫q0=(q0�1)m+2µ0+ j

è(⌫1)(0)
⌫1!

. . .
è(⌫q0 )(0)

⌫q0 !
.

Taking the imaginary part of either side gives

0 =
eb0

m(0)
Im è(m0)(0)

m0!
+

Imeb(q0)
m�2µ0

(0)
q0!

 è(m)(0)
m!

!q0
.

The conclusion foreb(q0)
m�2µ0

(0) immediately follows (use (6.5) when q0 is odd). We
have thus proved all the relations stated in Proposition 6.1.

Our aim is to construct a symmetrizer S(�) 2 Hm that satisfies the properties i),
ii), iii) of Lemma 5.7. It turns out that the construction of S(�) depends on the inte-
gers q0, µ0 in the Euclidean division (6.1). More precisely we shall distinguish the
following four possible cases, which correspond to an increasing level of difficulty.

• Case IIa: µ0 = 0, q0 is even.
• Case IIb: µ0 = 0, q0 is odd. (This implies q0 � 3.)
• Case IIc: 1  µ0  µ � 1, q0 is even. (This implies m � 4.)
• Case IId: 1  µ0  µ � 1, q0 is odd. (Same remark as for case IIc.)

6.2. Case IIa

We shall repeatedly use the following result. We recall that S⌫ denotes the vector
space of real symmetric matrices of size ⌫.

Lemma 6.2. Let ⌫ � 1 be an integer, and let 9 be the linear mapping defined by

9 : S⌫ �! H⌫

S 7�! Re (i S N⌫) .

The kernel of 9 is made of all matrices S 2 S⌫ of the form (5.7), and the image of
9 is H⌫ \ i M⌫(R).
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Proof of Lemma 6.2. The dimension of S⌫ is ⌫ (⌫ + 1)/2. Moreover, Lemma 5.2
shows that the kernel of 9 is made of all matrices S 2 S⌫ of the form (5.7). Thus
the kernel of 9 has dimension ⌫, and the image of 9 has dimension ⌫ (⌫ � 1)/2.

If S 2 S⌫ , then Re (i S N⌫) is a Hermitian matrix with purely imaginary coef-
ficients. Consequently, the image of9 is included inH⌫ \ i M⌫(R). Moreover, the
dimension ofH⌫ \ i M⌫(R) is ⌫ (⌫ � 1)/2 so the claim of Lemma 6.2 holds.

We decompose the matrix M(i �) as follows:

M(i �) = i Nm + i
q0X
q=1

�q Bq + O(�q0+1) , (6.8)

where the matrices B1, . . . , Bq0 are given by4

8 q = 1, . . . , q0 , Bq :=

iq�1

q!

0
B@
b(q)
1 (0) 0 . . . 0

...
...

...

b(q)
m (0) 0 . . . 0

1
CA 2 Mm(C) . (6.9)

In case IIa, Proposition 6.1 shows that B1, . . . , Bq0�1 have real coefficients. Some
coefficients of Bq0 are complex.

Let K � 1. We choose the symmetrizer S under the form

S(�) :=

q0X
q=0

�q Sq , S0, . . . ,Sq0�1 2 Sm , Sq0 2 Hm . (6.10)

Computing the product of S(�) in (6.10) with M(i �) in (6.8), then taking the real
part, we first get

Re
�
S(�)M(i �)

�
= Re (i S0 Nm)

+

q0X
q=1

�q Re

 
i Sq Nm + i

q�1X
p=0
Sp Bq�p

!
+ O(�q0+1) .

(6.11)

The choice of the real symmetric matrix S0 is the same as in [9].

Lemma 6.3 ( [9]). Let c > 0 and let C 2 R. If m is even, there exists a matrix
S0 2 Sm of the form (5.7) with s1 = b0

m(0), and that satisfies

8W 2 Cm , W ⇤ S0W � C |Wu
|
2
� c |Ws

|
2 .

4 We feel free to use the notation B1 even though it does not denote the same matrix as in (5.4).
We hope this does not create any confusion.
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For the sake of clarity, we reproduce the proof of Lemma 6.3 in Appendix A. The
main reason for doing so is that in case IId, we shall need a refined version of
Lemma 6.3. We hope that the proof of this refined version will be more clear once
the reader is familiar with the classical proof of Lemma 6.3.

We choose S0 2 Sm by applying Lemma 6.3 with c := 1/2 andC := K 2+1/2.
It is straightforward to check that the symmetrizer S(�) in (6.10) already satisfies
the properties ii), iii) of Lemma 5.7. It thus remains to fix S1, . . . ,Sq0 such that
property i) of Lemma 5.7 holds.

We wish to choose the matrix S1 2 Sm such that the coefficient of �1 in the
right-hand side of (6.11) vanishes. In other words, we are looking for a matrix
S1 2 Sm that satisfies

9(S1) = �Re (i S0 B1) . (6.12)

Recall that the linear mapping 9 is defined in Lemma 6.2. The matrix Re (i S0 B1)
is Hermitian and has purely imaginary coefficients because both S0 and B1 belong to
Mm(R). Applying Lemma 6.2, we can thus choose S1 2 Sm such that (6.12) holds.
Applying repeatedly Lemma 6.2, we can choose somematrices S2, . . . ,Sq0�1 2 Sm
that satisfy

8 q = 2, . . . , q0 � 1 , 9(Sq) + Re

 
i
q�1X
p=0
Sp Bq�p

!
= 0 .

Our construction of S0, . . . ,Sq0�1 yields the following simplification in (6.11):

Re
�
S(�)M(i �)

�
= �q0 Re

 
i Sq0 Nm + i

q0�1X
p=0

Sp Bq0�p

!
+ O(�q0+1) . (6.13)

We wish to make the coefficient of �q0 in (6.13) positive definite by suitably choos-
ing Sq0 2 Hm . In view of Corollary 5.5, it is sufficient to check that the upper left
coefficient of the matrix

Re

 
i
q0�1X
p=0

Sp Bq0�p

!
= Re (i S0 Bq0) + Re

 
i
q0�1X
p=1

Sp Bq0�p

!

is positive. Observing that the upper left coefficient of a matrix inHm \ i Mm(R)
is zero, we compute

Re

 
i
q0�1X
p=0

Sp Bq0�p

!

1,1

= Re (i S0 Bq0)1,1 =

�b0

m(0) Im
�
iq0�1 b(q0)

m (0)
�

q0!
.

The latter quantity is positive thanks to the result of Proposition 6.1. (Recall that
in case IIa, q0 is even and µ0 = 0.) Applying Corollary 5.5, there exists a matrix



66 JEAN-FRANÇOIS COULOMBEL

Sq0 2 Hm such that the coefficient of �q0 in (6.13) is positive definite. Choosing �
small enough, the symmetrizer S(�) satisfies

Re
�
S(�)M(i �)

�
� c �q0 I ,

for a suitable constant c > 0. Hence property i) of Lemma 5.7 is satisfied and the
result of Theorem 4.4 holds. Let us turn to case IIb.

6.3. Case IIb

In case IIb, we use the refined expansion

M(i �) = i Nm + i
q0X
q=1

�q Bq + �q0+1 � + O(�q0+2) . (6.14)

The matrices B1, . . . , Bq0 are defined in (6.9), while � belongs to Mm(C). Using
Proposition 6.1, we know that B1, . . . , Bq0�1 have real coefficients. Moreover the
lower left coefficient of Bq0 has negative imaginary part. We recall that q0 is an odd
number, with q0 � 3.

Let K � 1. We choose the symmetrizer S under the form

S(�) :=

q0+1X
q=0

�q Sq , S0, . . . ,Sq0�2 2 Sm , Sq0�1,Sq0,Sq0+1 2 Hm . (6.15)

Computing the product of S(�) in (6.15) with M(i �) in (6.14), then taking the real
part, we first get

Re
�
S(�)M(i �)

�
= Re (i S0 Nm) +

q0X
q=1

�q Re

 
i Sq Nm + i

q�1X
p=0
Sp Bq�p

!

+ �q0+1 Re

 
i Sq0+1 Nm + i

q0X
p=1
Sp Bq0+1�p + S0 �

!

+ O(�q0+2) .

(6.16)

We start as in the analysis of case IIa. We first fix S0 2 Sm by applying Lemma 6.3
with c := 1/2 and C := K 2 + 1/2. Then we choose S1, . . . ,Sq0�2 2 Sm such that
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the coefficients of �1, . . . , �q0�2 in (6.16) vanish. We thus get

Re
�
S(�)M(i �)

�
= �q0�1 Re

 
i Sq0�1 Nm + i

q0�2X
p=0

Sp Bq0�1�p

!

+ �q0 Re

 
i Sq0 Nm + i

q0�1X
p=0

Sp Bq0�p

!

+ �q0+1 Re

 
i Sq0+1 Nm + i

q0X
p=1
Sp Bq0+1�p + S0 �

!

+ O(�q0+2) .

(6.17)

Let us now fix the matrix Sq0�1.
Lemma 6.4. There exists a matrix Sq0�1 2 Hm that satisfies

Re

 
i Sq0�1 Nm + i

q0�2X
p=0

Sp Bq0�1�p

!
=

✓
0 0
0 Hq0�1

◆
,

where Hq0�1 2 Hµ is positive definite. Furthermore, the upper left µ ⇥ µ block of
the matrix

q0�1X
p=0

Sp Bq0�p (6.18)

vanishes.

Proof of Lemma 6.4. Applying Lemma 6.2, we first choose a matrix S]
q0�1 2 Sm

that satisfies

Re

 
i S]

q0�1 Nm + i
q0�2X
p=0

Sp Bq0�1�p

!
= 0 .

We decompose Sq0�1 as Sq0�1 = S]
q0�1 + S[

q0�1, and we are going to construct
S[
q0�1. We look for S

[
q0�1 under the form

S[
q0�1 :=

✓
0 Cq0�1

C⇤

q0�1 Dq0�1

◆
, Cq0�1 2 Mµ(C) , Dq0�1 2 Hµ .

The matrixCq0�1 is fixed first. Namely let us chooseCq0�1 of the form (5.7), that is

Cq0�1 :=

0
BBB@
0 · · · 0 ↵1
... 0 ↵1 ↵2

0 ↵1 ↵2
...

↵1 ↵2 · · · ↵µ

1
CCCA .
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We compute

Re

 
i Sq0�1 Nm + i

q0�2X
p=0

Sp Bq0�1�p

!
= Re (i S[

q0�1 Nm)

=

✓
0 0
0 Re (i Dq0�1 Nµ + i C⇤

q0�1
eNµ)

◆
,

where the matrix eNµ is the same as in the decomposition (5.3). Let us also compute
the upper left µ ⇥ µ block of the matrix (6.18). The matrices S0, . . . ,Sq0�2,S

]
q0�1

as well as the matrices B1, . . . , Bq0�1 have real coefficients. Moreover, S0 has the
form (5.7) with s1 = b0

m(0). The upper left µ ⇥ µ block of the matrix (6.18) thus
reads

Cq0�1 ⇥

0
B@
b0

µ+1(0) 0 . . . 0
...

...
...

b0

m(0) 0 . . . 0

1
CA+

0
B@

�1 0 . . . 0
...

...
...

�µ 0 . . . 0

1
CA , (6.19)

where �1, . . . ,�µ are some complex numbers that only depend on S0, . . . ,Sq0�2.
The crucial observation for what follows is that �1 satisfies

�1 � b0

m(0)
iq0�1 b(q0)

m (0)
q0!

2 R . (6.20)

The matrix (6.19) vanishes if and only if the coefficients ↵1, . . . ,↵µ solve the linear
system 0

B@
b0

m(0) 0
...

. . .

b0

µ+1(0) . . . b0

m(0)

1
CA
0
B@

↵1
...

↵µ

1
CA = �

0
B@

�1
...

�µ

1
CA .

This system has a unique solution, which determines the matrix Cq0�1 2 Mµ(C).
In particular, (6.20) and Proposition 6.1 show that ↵1 = ��1/b0

m(0) has positive
imaginary part.

It remains to fix the matrix Dq0�1 2 Hµ. Using the expression above for
the matrix Cq0�1, the upper left coefficient of Re (i C⇤

q0�1
eNµ) equals Im ↵1 > 0.

Consequently we can apply Corollary 5.5 and find Dq0�1 2 Hµ such that

Re (i Dq0�1 Nµ + i C⇤

q0�1
eNµ)

is positive definite. This completes the proof of Lemma 6.4.

We now fix the matrices Sq0 and Sq0+1. We choose Sq0 2 Hm of the form

Sq0 :=

✓
0 Cq0
C⇤

q0 0

◆
, Cq0 :=

0
@0 c

c
c 0

1
A 2 Mµ(C) ,
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and we choose Sq0+1 2 Hm of the form

Sq0+1 :=

✓
Aq0+1 0
0 0

◆
, Aq0+1 2 Hµ .

We compute

Re (i Sq0 Nm) =

✓
0 0
0 Re (i C⇤

q0
eNµ)

◆
.

Using the latter relation as well as Lemma 6.4 yields some simplifications in (6.17).
At this stage, we have

Re
�
S(�)M(i �)

�
= �q0�1

✓
0 0
0 Hq0�1

◆
+ �q0

✓
0 Hq0
H⇤

q0 0

◆

+ �q0+1
✓
Re
�
i Sq0+1 Nm + i

Pq0
p=1 Sp Bq0+1�p + S0 �

�
1...µ,1...µ 0

0 0

◆

+

✓
O(�q0+2) O(�q0+1)
O(�q0+1) O(�q0)

◆
,

where Hq0�1 2 Hm is positive definite, and Hq0 2 Mm(C) does not depend on c
nor on Aq0+1.

Following the same strategy as in the proof of Lemma 5.6, we can choose
c 2 C and Aq0+1 2 Hµ such that the block

⇣
Re (i Sq0+1 Nm) + Re (i Sq0 B1)

⌘
1...µ,1...µ

is positive definite as large as we wish. We can now conclude as in the analysis of
case I. Applying Young’s inequality and choosing � small enough, the symmetrizer
S(�) satisfies

Re
�
S(�)M(i �)

�
� c

✓
�q0+1 Iµ 0
0 �q0�1 Iµ

◆
, c > 0 .

Hence S(�) satisfies properties i), ii), iii) of Lemma 5.7, and the result of Theorem
4.4 holds. Let us now turn to the more involved case IIc.

6.4. Case IIc

The following result is similar to Lemma 6.2 and will be used in the analysis below.

Lemma 6.5. Let ⌫ � 1 be an integer, and let 8 be the linear mapping defined by

8 : H⌫ �! H⌫

S 7�! Re (i S N⌫) .
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The kernel of 8 is made of all matrices S 2 S⌫ of the form (5.7). If ⌫ is even,
the image of 8 is made of all matrices H 2 H⌫ that satisfy

8 j = 1, . . . ,
⌫

2
,

1
2
Hj, j + Re

 j�1X
k=1

Hj�k, j+k

!
= Re

 j�1X
k=0

Hj�k, j+k+1

!
= 0 .

(6.21)
If ⌫ is odd, the image of 8 is made of all matrices H 2 H⌫ that satisfy

8 j = 1, . . . ,
⌫ + 1
2

,
1
2
Hj, j + Re

 j�1X
k=1

Hj�k, j+k

!
= 0 , (6.22)

8 j = 1, . . . ,
⌫ � 1
2

, Re

 j�1X
k=0

Hj�k, j+k+1

!
= 0 . (6.23)

Proof of Lemma 6.5. The dimension of the (real) vector space H⌫ is ⌫2. Lemma
5.2 shows that the kernel of8 is made of all matrices S 2 S⌫ of the form (5.7), and
thus coincides with the kernel of 9. Consequently the rank of 8 is ⌫2 � ⌫.

It is not so difficult to check that if ⌫ is even, then any matrix H in the image
of 8 satisfies the conditions (6.21). Moreover, the Hermitian matrices that satisfy
(6.21) form a subspace of H⌫ of dimension ⌫2 � ⌫. The same arguments yield the
characterization of the image of 8 when ⌫ is odd.

We shall also need the following rectangular version of Lemma 5.2. The proof
is completely elementary and therefore omitted.

Lemma 6.6. Let ⌫1 � 1 and ⌫2 > ⌫1 be some integers. A matrix S 2 M⌫1,⌫2(C)
satisfies S N⌫2 = N⇤

⌫1 S if and only if S has the form

S =

0
BBB@
0 . . . 0 0 · · · 0 s1
...

...
... 0 s1 s2

...
... 0 s1 s2

...
0 . . . 0 s1 s2 · · · s⌫1

1
CCCA . (6.24)

Let us now construct a symmetrizer S(�) in case IIc. We recall that q0 is even and
the remainder µ0 in the Euclidean division (6.1) satisfies 1  µ0  µ � 1. In
particular there holds µ � 2, that is m � 4. We expand M(i �) as

M(i �) = i Nm + i
q0X
q=1

�q Bq + �q0+1 �1 + �q0+2 �2 + O(�q0+3) . (6.25)

The matrices B1, . . . , Bq0 are defined in (6.9), while the matrices �1,�2 belong
to Mm(C) and have the same form as B1, . . . , Bq0 (only the first column is non-
zero). Applying Proposition 6.1, we know that B1, . . . , Bq0�1 have real coefficients.
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Moreover the coefficients of Bq0 satisfy

iq0�1 b(q0)
m (0), . . . , iq0�1 b(q0)

m�2µ0+1(0) 2 R , b0

m(0) Im
�
iq0�1 b(q0)

m�2µ0
(0)
�

< 0 .

(6.26)
We have absolutely no information on b(q0)

m�2µ0�1(0), . . . , b
(q0)
1 (0), nor on �1,�2.

Let K � 1. We seek the symmetrizer S under the form

S(�) :=

q0+2X
q=0

�q Sq , S0, . . . ,Sq0�1 2 Sm , Sq0,Sq0+1,Sq0+2 2 Hm . (6.27)

Computing the product of S(�) in (6.27) with M(i �) in (6.25) and taking the real
part yields

Re
�
S(�)M(i �)

�
=Re (i S0 Nm) +

q0X
q=1

�q Re

 
i Sq Nm + i

q�1X
p=0
Sp Bq�p

!

+ �q0+1 Re

 
i Sq0+1 Nm + i

q0X
p=1
Sp Bq0+1�p + S0 �1

!

+ �q0+2 Re

 
i Sq0+2 Nm + i

q0+1X
p=2

Sp Bq0+2�p + S1 �1 + S0 �2

!

+ O(�q0+2) .

(6.28)

The starting point is the same as in cases IIa and IIb. We choose S0 2 Sm by
applying Lemma 6.3 with c := 1/2 and C := K 2 + 1/2. Properties ii), iii) of
Lemma 5.7 are satisfied. Then we apply Lemma 6.2 and choose S1, . . . ,Sq0�1 2

Sm such that the coefficients of �1, . . . , �q0�1 in the right-hand side of (6.28) vanish.
The choice of the matrix Sq0 is more delicate.

Lemma 6.7. There exists a matrix Sq0 2 Hm that satisfies

Re

 
i Sq0 Nm + i

q0�1X
p=0

Sp Bq0�p

!
=

✓
0 0
0 Hq0

◆
, (6.29)

whereHq0 2 Hm�µ0 is positive definite. Furthermore, the upper left µ0⇥µ0 block
of the matrix

q0X
p=1
Sp Bq0+1�p � i S0 �1 (6.30)

vanishes.
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Proof of Lemma 6.7. The difficulty lies in the fact that the product S0 Bq0 appears
in the left-hand side of (6.29) and we do not know how all the coefficients of Bq0
look like. More precisely, we know that Bq0 has the form (6.9) and its coefficients
satisfy (6.26). The matrix S0 has the form (5.7) with s1 = b0

m(0). Therefore we
compute

Re (i S0 Bq0) =

1
2

0
BB@
0 �i �2 . . . �i �m
i �2 0 . . . 0
...

...
...

i �m 0 . . . 0

1
CCA . (6.31)

The numbers �2, . . . ,�m in (6.31) satisfy

�2, . . . ,�2µ0 2 R , Im �2µ0+1 < 0 . (6.32)

We have no information on �2µ0+2, . . . ,�m . We decompose the matrix in (6.31) as

Re (i S0 Bq0) = H0 + H1 , H0 :=

1
2

0
BBBBBBBBB@

0 �i �2 . . . �i �2µ0 0 . . . 0
i �2
...

i �2µ0 0
0
...
0

1
CCCCCCCCCA

.

(6.33)
In particular, the matrix H0 is Hermitian with purely imaginary coefficients.

Using Lemma 6.2, we first choose a matrix S]
q0 2 Sm that satisfies

Re

 
i S]

q0 Nm + i
q0�1X
p=1

Sp Bq0�p

!
+ H0 = 0 . (6.34)

This is possible because the matrices S1, . . . ,Sq0�1, B1, . . . , Bq0�1 have real coef-
ficients.

The Hermitian matrix H1 is the difference between the matrix Re (i S0 Bq0)
whose expression is given in (6.31), and the matrix H0 whose expression is given in
(6.33). At this stage, the reader can check that H1 does not belong to the image of
the linear mapping 8 (see the conditions (6.21) that characterize the image of 8).
Let us construct a matrix H2 2 Hm such that H1 � H2 belongs to the image of 8.
We choose H2 of the form

H2 :=

✓
0 0
0 eH2

◆
, eH2 2 Hm�µ0 .

The matrix eH2 2 Hm�µ0 is defined in the following way:

8 j = 1, . . . , µ � µ0 ,

(
(eH2) j, j := �Re (i �2µ0+2 j�1) ,

(eH2) j, j+1 = (eH2) j+1, j := �i �2µ0+2 j/2 .
(6.35)
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All other coefficients in eH2 vanish. Straightforward computations show that H1 �

H2 satisfies conditions (6.21) and thus belongs to the image of 8. Moreover, the
upper left coefficient of eH2 is positive (use (6.35) and (6.32)). We can choose
S[
q0 2 Hm that satisfies

8(S[
q0) + H1 � H2 = 0 . (6.36)

It remains to choose Sq0 under the form

Sq0 := S]
q0 + S[

q0 + S\
q0 ,

where the matrix S\
q0 has the structure

S\
q0 :=

✓
0 Cq0
C⇤

q0 Dq0

◆
, Cq0 2 Mµ0,m�µ0(C) , Dq0 2 Hm�µ0 . (6.37)

The matrix Cq0 is chosen of the form (6.24), that is

Cq0 :=

0
BBB@
0 . . . 0 0 · · · 0 21
...

...
... 0 21 22

...
... 0 21 22

...
0 . . . 0 21 22 · · · 2µ0

1
CCCA 2 Mµ0,m�µ0(C) .

The upper left µ0 ⇥ µ0 block of the matrix (6.30) then reads5

Cq0 ⇥

0
B@
b0

µ0+1(0) 0 . . . 0
...

...
...

b0

m(0) 0 . . . 0

1
CA

| {z }
2Mm�µ0,µ0 (R)

+

0
B@

71 0 . . . 0
...

...
...

7µ0 0 . . . 0

1
CA

| {z }
2Mµ0 (C)

,

where the coefficients 71, . . . ,7µ0 are determined by the matrices S0, . . . ,Sq0�1,
S]
q0,S

[
q0 which have already been fixed. It is clear that there exists a unique choice

of the coefficients 21, . . . ,2µ0 such that this upper left block vanishes. These
coefficients are determined by solving an invertible linear system of dimension µ0.

It remains to fix Dq0 such that (6.29) holds with a positive definite Hq0 . Let us
compute the matrix in the left-hand side of (6.29) by using the relations (6.34) and

5 We recall that only the first column of the matrices B1, . . . , Bq0 ,�1 does not vanish.
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(6.36). We have

Re

 
iSq0Nm + i

q0�1X
p=0

SpBq0�p

!

= Re (i S\
q0 Nm) + H2

+ Re (i S[
q0 Nm) + H1 � H2

+ Re (i S]
q0 Nm) + H0 + Re

 
i
q0�1X
p=1

Sp Bq0�p

!

= Re (i S\
q0 Nm) + H2.

(6.38)

Following the block decomposition (6.37) of S\
q0 , we introduce the block decompo-

sition of Nm , that is

Nm =

✓
Nµ0

eNµ0,m�µ0
0 Nm�µ0

◆
.

Going back to (6.38), we compute the real part of i S\
q0 Nm by applying Lemma 6.6.

We thus obtain

Re

 
iSq0Nm + i

q0�1X
p=0

SpBq0�p

!
=

✓
0 0
0 eH2+Re �iC⇤

q0
eNµ0,m�µ0 + iDq0Nm�µ0

�◆ .

The first row of C⇤

q0 is zero so the upper left coefficient of Re (i C⇤

q0
eNµ0,m�µ0)

is zero. Consequently, the upper left coefficient of eH2 + Re (i C⇤

q0
eNµ0,m�µ0) is

positive. Applying Corollary 5.5, we can choose Dq0 2 Hm�µ0 such that the lower
right block in (6.29) is positive definite.

It remains to fix the matrices Sq0+1 and Sq0+2. We first choose Sq0+1 of the
form

Sq0+1 :=

✓
0 Cq0+1

C⇤

q0+1 0

◆
, Cq0+1 2 Mµ0,m�µ0(C) ,

and Sq0+2 of the form

Sq0+2 :=

✓
Aq0+2 0
0 0

◆
, Aq0+2 2 Hµ0 .

We choose Cq0+1 of the form (6.24). Lemma 6.6 shows that the coefficient of �q0+1
in (6.29) has the form ✓

0 Hq0+1
H⇤

q0+1 ?

◆
,



STABILITY OF FINITE DIFFERENCE SCHEMES 75

where Hq0+1 2 Mµ0,m�µ0(C) does not depend on Cq0+1. To conclude the con-
struction of S, it remains to observe that we can choose Cq0+1 of the form (6.24)
and Aq0+2 2 Hµ0 so that the upper left µ0 ⇥ µ0 block of

Re
�
i Sq0+2 Nm + i Sq0+1 B1

�
is positive definite as large as we wish. (The argument is entirely similar to Lemma
5.6 so we do not repeat it.) Young’s inequality and the argument already used for
case I and case IIb show that we can achieve the estimate

Re
�
S(�)M(i �)

�
� c

✓
�q0+2 Iµ0 0

0 �q0 Im�µ0

◆
, c > 0 ,

provided that � is small enough. The symmetrizer S(�) thus satifies all properties
of Lemma 5.7 and Theorem 4.4 holds. We now turn to case IId, which still requires
some new arguments.

6.5. Case IId

In this paragraph, q0 is odd and µ0 satisfies 1  µ0  µ � 1. In particular,
we have µ � 2. The case q0 = 1 has to be dealt with separately from the case
q0 � 3 because the value of the symmetrizer S at the origin is different. Let us
therefore deal first with the case q0 = 1. Applying Proposition 6.1, we know that
b0

m(0), . . . , b0

m�2µ0+1(0) are real numbers while b
0

m�2µ0
(0) has negative imaginary

part. We expand M(i �) as

M(i �) = i Nm + i � B1 + �2 � + O(�3) , B1 :=

0
B@
b0

1(0) 0 . . . 0
...

...
...

b0

m(0) 0 . . . 0

1
CA , (6.39)

and we choose the symmetrizer S under the form

S(�) = S0 + � S1 + �2 S2 , S0,S1,S2 2 Hm . (6.40)

We fix a constant K � 1. As usual, the matrix S0 is determined first.

Lemma 6.8. There exists a matrix S0 2 Hm that satisfies

• for all W 2 Cm , W ⇤ S0W � (K 2 + 1/2) |Wu
|
2
� |Ws

|
2/2,

• the upper left coefficient of Re (S0 M 0(0)) is positive,
• the matrix Re (i S0 Nm) has the form

✓
0 0
0 H0

◆
, H0 2 Hµ�µ0 ,

where H0 is positive definite,
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• the upper left (µ + µ0) ⇥ (µ + µ0) block of Re (i S0 B1) has purely imaginary
coefficients.

Proof of Lemma 6.8. The idea consists in “interpolating” between the construction
of S(0) in case I and the classical construction by Kreiss (see Lemma 6.3 whose
proof is reproduced in Appendix A). More precisely, let us consider some real
numbers c1, . . . , c2µ0 , some complex numbers c2µ0+1, . . . , cµ+µ0 and a matrixeD0 2 Hµ�µ0 to be fixed later on. We choose S0 of the form

S0 :=

✓
0 C0
C⇤

0 D0

◆
,

where the matrices C0 2 Mµ(C) and D0 2 Hµ are defined as follows:

C0 :=

0
BBB@
0 · · · 0 c1
... 0 c1 c2
0 c1 c2

...
c1 c2 · · · cµ

1
CCCA , D0 :=

0
BBBBBB@

c2 . . . cµ0+1 cµ0+2 . . . cµ+1
. . .

...
...

...
c2µ0 c2µ0+1 . . . cµ+µ0

? eD0

1
CCCCCCA

.

The ? symbol in the definition of D0 stands for the unique coefficients that make D0
a Hermitian matrix.

For a vector W = (W1, . . . ,Wm) 2 Cm , we recall that Ws denotes the vector
(W1, . . . ,Wµ), Wu denotes the vector (Wµ+1, . . . ,Wm). We also introduce the
notation eW to denote the vector (Wµ+µ0+1, . . . ,Wm) 2 Cµ�µ0 . We compute

W ⇤S0W =

2µ0X
k=1

ck
mX
j=k

W jWm+k� j+
µ+µ0X

k=2µ0+1

mX
j=k

j<m+k� j

2Re (ckW jWm+k� j )+eW ⇤eD0eW .

We first choose c1 := b0

m(0) so the upper left coefficient of Re (S0 M 0(0)) equals
b0

m(0)2 > 0. Following the proof of Lemma 6.3, we also choose c3 = · · · =

c2µ0�1 := 0. Using the same arguments as in the proof of Lemma 6.3 (see Ap-
pendix A), we can choose inductively c2, . . . , c2µ0 > 0 sufficiently large such that,
for a certain constant C0 > 0, there holds

W ⇤ S0W � �

1
4

|Ws
|
2
+ (K 2 + 1)

µ0X
k=1

|Wµ+k |
2
� C0 |

eW |
2

+

mX
j=k

j<m+k� j

2Re (ck W j Wm+k� j ) +
eW ⇤ eD0 eW .

(6.41)

The constant C0 in (6.41) depends on K and b0

m(0) but it does not depend on
c2µ0+1, . . . , cµ+µ0 nor on eD0.
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We now choose the coefficients c2µ0+1, . . . , cµ+µ0 as the unique solution to
the triangular linear system0

B@
b0

m(0) 0
...

. . .

b0

µ+µ0+1(0) · · · b0

m(0)

1
CA
0
B@
c2µ0+1

...
cµ+µ0

1
CA

= �

0
B@
c1 b0

m�2µ0
(0) + · · · + c2µ0 b0

m�1(0)
...

c1 b0

µ�µ0+1(0) + · · · + c2µ0 b0

µ+µ0(0)

1
CA .

This choice has two consequences. First, c2µ0+1 has positive imaginary part. Sec-
ond, the reader can check that the upper left (µ+µ0)⇥(µ+µ0) block of Re (iS0 B1)
has purely imaginary coefficients.

Let us now go back to the estimate (6.41). Since c2µ0+1, . . . , cµ+µ0 are fixed,
we wish to apply Young’s inequality for the cross products in the right-hand side of
(6.41). More precisely, let us consider a product ck W j Wm+k� j with k = 2µ0 +

1, . . . , µ + µ0 and j � k, j < m + k � j . Then at least one of the indices j ,
m + k � j is strictly larger than µ + µ0. It may happen that both are strictly larger
than µ + µ0. Consequently, we need to derive a lower bound for terms of the
form |Ws

| |
eW |, |(Wµ+1, . . . ,Wµ+µ0)| |

eW | or |
eW |
2. We apply Young’s inequality

in (6.41) and obtain

W ⇤ S0W � �

1
2

|Ws
|
2
+

✓
K 2 +

1
2

◆ µ0X
k=1

|Wµ+k |
2
+
eW ⇤ (eD0 � C1 I ) eW ,

where C1 > C0 is a new constant that does not depend on eD0.
With our choice of S0, we can compute

Re (i S0 Nm) =

✓
0 0
0 Re (i eD0 Nµ�µ0) +

eH0
◆

.

The upper left coefficient of eH0 equals Im c2µ0+1 > 0. Applying Lemma 5.4, we
can choose a matrix eD0 2 Hµ�µ0 that satisfies

eD0 �

✓
C1 + K 2 +

1
2

◆
I ,

and such that Re (i eD0 Nµ�µ0) +
eH0 is positive definite. We have thus constructed

a matrix S0 2 Hm that satisfies all the properties stated in Lemma 6.8.

We now need to fix the matrices S1,S2. The choice of S0 yields

Re (i S(�)M(i �)) =

✓
0 0
0 H0

◆
+ �

✓
Re (i S1 Nm) +

✓
H1 H2
H⇤

2 0

◆◆

+ �2 Re (i S2 Nm + i S1 B1 + S0 �) + O(�3),

(6.42)
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where H1 2 Hµ+µ0 has purely imaginary coefficients. Let us first choose S
]
1 2 Sm

such that

Re (i S]
1 Nm) +

✓
H1 0
0 0

◆
= 0 . (6.43)

We choose S1 := S]
1+S

[
1 where S

[
1 2 Hm still needs to be determined. Using (6.43)

in (6.42) eliminates the upper left block H1 in the coefficient of �. Moreover, the
matrix H2 2 Mµ+µ0,µ�µ0(C) only depends on S0 which has already been fixed.
We can thus apply Young’s inequality in (6.42). For appropriate positive constants
c0 and C0, we obtain

Re(iS(�)M(i �))�
✓
0 0
0 2 c0 Iµ�µ0

◆

+ � Re (i S[
1 Nm) + �2

⇣
Re (i S2 Nm + i S[

1 B1) � C0 I
⌘

+ O(�3) .

(6.44)

At this point, it would seem natural to seek S[
1 such that only the lower right (µ �

µ0) ⇥ (µ � µ0) block of Re (i S[
1 Nm) is non-zero. However, this would lead to a

disaster since with such a matrix S[
1, the upper left coefficient of Re (i S[

1 B1) would
be zero (this is because, opposite to case I, b0

m(0) is now a real number). There
would be no way to make the coefficient of �2 positive definite.

The following choice turns out to work:

S[
1 :=

0
BBBB@

0 . . . 0 �i b0

m(0) s
0 . . . 0 0
...

...
0 0

i b0

m(0) s 0 . . . 0

1
CCCCA , s 2 R . (6.45)

This may seem desperate at first glance because s should be so large that the upper
left coefficient of �2 in (6.44) is positive. However, choosing s large will introduce
a large O(�) cross term in (6.44). Let us show in detail why the choice (6.45) is
appropriate. The upper left coefficient of Re (i S[

1 B1) is b
0

m(0)2 s. We thus choose
s large enough such that the upper left coefficient of the matrix

Re (i S[
1 B1) � C0 I

equals 1. With this choice of S[
1, we compute

��W ⇤ Re (i S[
1 Nm)W

��
=

��b0

m(0) sRe (W2Wm)
��
 c0 |Wm |

2
+ C1 |W2|2 ,
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where c0 > 0 is the constant that appears in (6.44). Using the latter inequality in
(6.44) and assuming that |�| is not larger than 1, we get

Re (iS(�)M(i �)) �

✓
0 0
0 c0 Iµ�µ0

◆

+ �2
✓
Re (i S2 Nm) + Re (iS[

1B1) � C0 I � C1
✓
0 0
0 Im�1

◆◆

+ O(�3).

(6.46)

Corollary 5.5 shows that we can find a matrix S2 2 Hm such that the coefficient of
�2 in (6.46) is positive definite. Choosing � small, we thus end up with the estimate

Re (i S(�)M(i �)) � c
✓

�2 Iµ+µ0 0
0 Iµ�µ0

◆
.

The symmetrizer S(�) satisfies properties i), ii), iii) of Lemma 5.7 so Theorem 4.4
holds.

The analysis of case IId with q0 � 3 is somehow simpler. The symmetrizer
S(�) is chosen of the form

S(�) :=

q0+1X
q=0

�q Sq , S0, . . . ,Sq0�2 2 Sm , Sq0�1,Sq0,Sq0+1 2 Hm .

The matrix S0 is fixed by applying Lemma 6.3. We then choose S0, . . . ,Sq0�2 by
applying Lemma 6.2. The construction of the matrices Sq0�1,Sq0,Sq0+1 follows
the arguments that we have just developed above for case IId with q0 = 1. We
leave the details to the reader. The final estimate is

Re (S(�)M(i �)) � c
✓

�q0+1 Iµ+µ0 0
0 �q0�1 Iµ�µ0

◆
,

which yields the conclusion of Theorem 4.4.

6.6. Some remarks

The symmetrizer construction is probably better understood if, for a fixed even
integer m, one starts with m0 = m and increases m0. The situation m0 = m
corresponds to case I treated in Section 5. The final estimate is

Re (S(�)M(i �)) � c
✓

�2 Iµ 0
0 Iµ

◆
, c > 0 , |�| ⌧ 1 .

Each time m0 increases of 2 with m < m0  2m, the final estimate is weakened
as follows: a coefficient 1 on the diagonal is replaced by a �2, starting with the
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(µ + 1)-th coefficient and ending with the m-th coefficient. Since � is small, the
estimate is weaker. When m0 reaches m0 = 2m, that is when q0 = 2 and µ0 = 0,
the diagonal is filled only with �2. Then we increase m0 with 2m < m0  3m.
Each time m0 increases of 2, one �2 coefficient on the diagonal is replaced by a �4.
The process goes on and on. We conjecture that such estimates are optimal.

Compared to case IV below which was already treated by Kreiss [9], dissi-
pation helps! More precisely, the matrix Re (S(�)M(i �)) is positive definite for
� 6= 0 in cases I and II. At the opposite, Kreiss’ construction in case IV yields a
symmetrizer that satisfies Re (S(�)M(i �)) = 0. Here, the higher the dissipation is,
the weaker the estimate will be.

Eventually, we observe that in all cases I, IIa,. . . ,IId, the symmetrizer S(�) is
a Hermitian matrix and not a real symmetric matrix (except possibly at the origin).
Our construction thus differs from Kreiss’ choice. In Appendix B we determine
necessary conditions for the application of Kreiss’ choice. In particular, we show
that Kreiss’ choice can not work for cases I, II and III. We also observe that as
m0 gets larger and larger, our symmetrizer S(�) tends more and more to become a
symmetric matrix and thus to mimic Kreiss’ choice.

7. Construction of a symmetrizer: case III

In this section, we consider a matrix M(⌧ ) of the form (5.1) where m � 3 is an
odd number. The dissipation index m0 defined in Proposition 4.5 is even so it is
necessarily larger than m. We construct in Section 9 a numerical scheme which
gives rise to a block of size 3 with a dissipation index equal to 4. The Euclidean
division of m0 by m reads

m0 = q0m + ⌫0 , q0 � 1 , 0  ⌫0  m � 1 . (7.1)

The integers q0 and ⌫0 are simultaneously even or odd. The analogue of Proposition
6.1 is the following result whose proof is omitted. The arguments used to prove
Proposition 6.1 work exactly in the same way.

Proposition 7.1. Let M satisfy the assumptions of Theorem 4.4 and correspond to
case III. Let the dissipation index m0 satisfy (7.1). Then the following properties
hold:

• b0

m(0) 2 R \ {0},
• for all q = 1, . . . , q0 � 1 and for all j = 1, . . . ,m, iq�1 b(q)

j (0) 2 R,
• for all j = 0, . . . , ⌫0 � 1, iq0�1 b(q0)

m� j (0) 2 R,
• if q0 is even, b0

m(0) Im (iq0�1 b(q0)
m�⌫0(0)) < 0,

• if q0 is odd, Im (iq0�1 b(q0)
m�⌫0(0)) < 0.

Our aim is to construct a symmetrizer S(�) 2 Hm that satisfies the properties i), ii),
iii) of Lemma 5.7. As for case II, the construction of S(�) depends on the integers
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q0, ⌫0 in the Euclidean division (7.1). We shall consider the following three possible
cases.

• Case IIIa: ⌫0 = 0, q0 is even.
• Case IIIb: 1  ⌫0  m � 1, q0 is even. (Hence ⌫0 is also even.)
• Case IIIc: 1  ⌫0  m � 1, q0 is odd. (Hence ⌫0 is also odd.)

We recall that the integer µ is given by (4.5). In particular, µ depends on the sign
of b0

m(0).

7.1. Case IIIa

The construction of the symmetrizer follows very closely the analysis in case IIa.
We use the expansion (6.8) for M and choose S of the form (6.10). The matrix S0
is chosen by applying the following analogue of Lemma 6.3.

Lemma 7.2 ( [9]). Let c > 0 and let C > 0. If m is odd, there exists a matrix
S0 2 Sm of the form (5.7) that satisfies

8W 2 Cm , W ⇤ S0W � C |Wu
|
2
� c |Ws

|
2 .

Moreover, the coefficient s1 satisfies s1 b0

m(0) > 0.

The construction of S0 in Lemma 7.2 depends on the sign of b0

m(0) because
the size of Ws and Wu depend on b0

m(0). However, the upper left coefficient of
Re (S0 M 0(0)) is always positive.

For K � 1, we fix S0 by applying Lemma 7.2 with c := 1/2 and C :=

K 2 + 1/2. Then the construction of the matrices S1, . . . ,Sq0 follows by apply-
ing exactly the same arguments as in case IIa. Indeed Proposition 7.1 shows that
B1, . . . , Bq0�1 have real coefficients and the lower left coefficient of Bq0 satisfies
b0

m(0) Im (iq0�1 b(q0)
m (0)) < 0 as in case IIa. The final estimate reads

Re (S(�)M(i �)) � c �q0 I ,

which yields the conclusion of Theorem 4.4.

7.2. Case IIIb

For the sake of clarity, we assume that b0

m(0) is positive. The relation (4.5) shows
that m equals 2µ + 1. Since q0 is even, we can write ⌫0 = 2µ0 with 1  µ0  µ.
We follow the analysis of case IIc, and choose the symmetrizer S of the form (6.27).
We also use the expansion (6.25) of M(i �) and recall that the relations (6.26) hold,
see Proposition 7.1.

Given K � 1, the matrix S0 is fixed by applying Lemma 7.2. Then the matrices
S1, . . . ,Sq0�1 are chosen in Sm such that the powers �, . . . , �q0�1 in (6.28) vanish
(use Lemma 6.2). The construction of Sq0 follows from Lemma 6.7. There is a
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slight subtlety here. The proof of Lemma 6.7 was made for the case m ⌘ 0(2).
Here m is odd and Lemma 6.5 shows that the image of 8 is characterized by the
relations (6.22), (6.23). When proving Lemma 6.7 for m odd, we need to adapt the
definition (6.35) of the matrix eH2 by adding one more coefficient on the diagonal.
Anyway, this modification is harmless and the conclusion of Lemma 6.7 still holds.

Eventually, the construction of Sq0+1,Sq0+2 follows from the same arguments
as in case IIc. The final estimate satisfied by Re (S(�)M(i �)) is identical to case
IIc. We skip the details.

When b0

m(0) is negative, the analysis of case IIIb follows the same lines.
Lemma 6.7 still holds, provided the modification indicated above, because b0

m(0)
and the coefficient s1 in the matrix S0 have the same sign (in particular (6.32) holds
again and the rest of the proof follows).

7.3. Case IIIc

It remains to consider the case when m is odd, q0 is odd and therefore ⌫0 is also
odd. For the sake of clarity, we shall assume b0

m(0) > 0, so m = 2µ + 1. The
integer ⌫0 is written as ⌫0 := 2µ0 + 1 with 0  µ0  µ � 1.

First of all we consider the case q0 = 1. Let K � 1. We use the expansion
(6.39) for M(i �) and choose the symmetrizer S of the form (6.40). The matrix S0
is fixed by applying the analogue of Lemma 6.8.

Lemma 7.3. There exists a matrix S0 2 Hm that satisfies

• for all W 2 Cm , W ⇤ S0W � (K 2 + 1/2) |Wu
|
2
� |Ws

|
2/2,

• the upper left coefficient of Re (S0 M 0(0)) is positive,
• the matrix Re (i S0 Nm) has the form✓

0 0
0 H0

◆
, H0 2 Hµ�µ0 ,

where H0 is positive definite,
• the upper left (µ + 1 + µ0) ⇥ (µ + 1 + µ0) block of Re (i S0 B1) has purely
imaginary coefficients.

Proof of Lemma 7.3. We indicate the form of the matrix S0:

S0 :=

✓
0 C0
C⇤

0 D0

◆
,

where the matrices C0 2 Mµ,µ+1(C) and D0 2 Hµ+1 are defined as follows:

C0 :=

0
BBB@
0 0 · · · 0 c1
...

... 0 c1 c2
0 0 c1 c2

...
0 c1 c2 · · · cµ

1
CCCA , D0 :=

0
BBBBBB@

c1 . . . cµ0+1 cµ0+2 . . . cµ+1
. . .

...
...

...
c2µ0+1 c2µ0+1 . . . cµ+µ0+1

? eD0

1
CCCCCCA

.
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The idea is to choose first c2 = · · · = c2µ0 = 0. Then we choose inductively
c1, . . . , c2µ0+1 > 0 sufficiently large. Then we choose c2µ0+2, . . . , cµ+µ0+1 2 C
so that the upper left (µ + 1+ µ0) ⇥ (µ + 1+ µ0) block of Re (i S0 B1) has purely
imaginary coefficients. Eventually, we choose eD0 2 Hµ�µ0 positive definite large
enough in such a way that the block H0 is positive definite (the existence of eD0 is
ensured by Lemma 5.4). The details are similar to the proof of Lemma 6.8.

Once S0 is fixed, the construction of S1 and S2 follows the method used in case
IId. This completes the proof of Theorem 4.4 in case III.

8. Construction of a symmetrizer: case IV

First of all, we make the assumption on the dissipation index more explicit.

Proposition 8.1. Let M satisfy the assumptions of Theorem 4.4 and correspond to
case IV. Then b0

m(0) is a non-zero real number, and there holds

8 q � 1 , 8 j = 1, . . . ,m , iq�1 b(q)
j (0) 2 R .

In particular M(i �) has purely imaginary coefficients when � 2 R is sufficiently
small.

The method used in the proof of Proposition 6.1 applies and the process has
no end (because all the derivatives i⌫�1 `(⌫)(0) are real). To show that M(i �) has
purely imaginary coefficients, one expands M(i �) in power series. This is possible
because the functions b j are holomorphic.

Since M(i �) has purely imaginary coefficients for real �, Kreiss’ construction
in [9] applies.

Theorem 8.2 ( [9]). For all K � 1, there exists an open interval IK that contains
0 and there exists a C1 function S defined on IK with values in Sm that satisfies

• for all � 2 IK , Re (S(�)M(i �)) = 0,
• for all W 2 Cm , W ⇤ S(0)W � (K 2 + 1/2) |Wu

|
2
� |Ws

|
2/2,

• the upper left coefficient of Re (S(0)M 0(0)) is positive.

In particular, Lemma 5.7 shows that the conclusion of Theorem 4.4 holds. We have
therefore proved Theorem 4.4 in all possible cases.

We refer to Appendix B for a converse result of Theorem 8.2.

9. Examples of dissipative blocks

9.1. An example of large size block for case I

We are going to show on an example that blocks of the fourth type and of arbitrarily
large size can occur in the discrete block structure. In the example below, such
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blocks correspond to case I. We consider the scalar transport equation

@t u + @xu = 0 . (9.1)

We recall that A() denotes the symbol defined by (2.4). For scalar equations
and one-step schemes (s = 0), A() is a complex number so the uniform power-
boundedness and geometric regularity of eigenvalues reduce to the inequality
|A()|  1 for all  2 S1 (the well-known Von Neumann condition).

Let us consider an integer J 2 N that is fixed once and for all. Then we define
the numbers

8 j = 0, . . . , J , q j :=

1
22 J+1

✓
2 J + 1
J � j

◆
1

2 j + 1
. (9.2)

Using these numbers, we define the following finite difference operator (the opera-
tor is an approximation of the space derivative @x , as shown below):

Q :=

JX
j=0

q j
�
T 1+2 j � T�1�2 j� .

Following [6, Chapter 6], we consider the Runge-Kutta scheme of order 3 that is
obtained after using the operator Q for the spatial discretization (� still denotes the
Courant number 1t/1x)

Un+1
j =

3X
`=0

(�� Q)`

`!
Un
j . (9.3)

We compute

A() =

3X
`=0

�
� � bQ()

�`
`!

, bQ() =

JX
j=0

q j
�
1+2 j � �1�2 j� . (9.4)

For the scheme (9.3), we have r = p = 3 (1+ 2 J ) and

8 z 2 C \ {0} , A�r (z) =

�3 q3J
6 z

, Ap(z) = �A�r (z) .

Assumption 2.2 is thus satisfied. We now check the `2-stability of the scheme (9.3)
and compute

��A(ei ⇠ )
��2

= 1�

�4

12
h(⇠)4

 
1�

�2

3
h(⇠)2

!
, h(⇠) :=

JX
j=0
2 q j sin((2 j + 1) ⇠) .

(9.5)
The main properties of the function h are summarized below.
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Lemma 9.1. Let the numbers q j be defined by (9.2) and let h be defined by (9.5).
Then h is odd and satisfies

8 ⇠ 2 R , h0(⇠) = cos2 J+1 ⇠ .

The function h vanishes exactly for ⇠ 2 Z ⇡ . The maximum of h on R, that we
denote �J , is positive and is attained when ⇠ 2 ⇡/2+ Z 2⇡ .

The scheme (9.3) is `2-stable and geometrically regular if and only if6 � 
p

3/�J . Moreover, the scheme (9.3) is consistent with the transport equation (9.1).

Proof of Lemma 9.1. It is clear that h is odd, and we now differentiate h using the
expression (9.2) of the q j ’s, obtaining

h0(⇠) =

1
22 J

JX
j=0

✓
2 J + 1
J � j

◆
cos((2 j + 1) ⇠)

=

1
22 J

JX
j=0

✓
2 J + 1

j

◆
cos((2 J + 1� 2 j) ⇠)

=

1
22 J+1

2 J+1X
j=0

✓
2 J + 1

j

◆
cos((2 J + 1� 2 j) ⇠)

= Re
✓
ei ⇠ + e�i ⇠

2

◆2 J+1
= cos2 J+1 ⇠ ,

where we have first changed j for J� j , and then used the symmetry of the binomial
coefficients.

It follows that h behaves exactly as the sine function: h vanishes at 0, is in-
creasing on [0,⇡/2], attains its maximum at ⇡/2, is decreasing on [⇡/2, 3⇡/2]
and vanishes at ⇡ , attains its minimum at 3⇡/2, and so on.

We see on the relation (9.5) that |A(ei ⇠ )| is bounded by 1 for all ⇠ 2 R if and
only if � maxR |h| 

p

3, which is equivalent to � 

p

3/�J .
It remains to prove that the scheme (9.3) is consistent with the transport equa-

tion (9.1). We have

A(ei ⇠ ) = 1�

�2

2
h(⇠)2 � i � h(⇠)

 
1�

�2

6
h(⇠)2

!
.

Since h(0) = 0 and h0(0) = 1, we have h(⇠) ⇠ ⇠ for small ⇠ , and we obtain

A(ei ⇠ ) = 1� i � ⇠ + O(⇠2) = e�i � ⇠
+ O(⇠2) .

Applying Theorem 5.2.5 in [6], the scheme (9.3) is consistent with (9.1).

6 The value of �J is the Wallis integral
R ⇡/2
0 cos2 J+1 ⇠ d⇠ , that is 22 J (J !)2/(2 J + 1)!. Since

�J tends to 0 as J tends to +1, the range of stability for the scheme (9.3) is getting larger and
larger with J going to +1.



86 JEAN-FRANÇOIS COULOMBEL

We analyze the behavior ofA()when it touches the unit circle S1. We assume
that the CFL condition is chosen in an optimal way, that is � =

p

3/�J . According
to (9.5) and to Lemma 9.1, we have A() 2 S1 if and only if  2 {±1,±i}. More
precisely, we haveA(±1) = 1, andA(±i) = �1/2⌥ i

p

3/2.
Differentiating A(ei ⇠ ) with respect to ⇠ and using the properties of h, we

obtain A0(±1) = ⌥� 6= 0. The point 1 which is attained for ⇠ 2 Z ⇡ on the
parametrized curve {A(ei ⇠ ), ⇠ 2 R} is a regular point, see Figure 9.1.

−
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− 0.8

Figure 9.1. The parametrized curve {A(ei ⇠ ), ⇠ 2 R} for J = 1 in dots, with A(ei ⇠ )
given by (9.4). The unit circle is plotted in black line.

Let us now study the function A(ei ⇠ ) in the neighborhood of ⇠ = ⇡/2. Using
Lemma 9.1, we have h0(⇡/2) = · · · = h(2 J+1)(⇡/2) = 0, and h(2 J+2)(⇡/2) =

�(2 J + 1)!. Performing a Taylor expansion, we obtain

A(ei ⇠ ) = �

1
2

� i
p

3
2

+

� (
p

3� i/2)
2 J + 2

(⇠ � ⇡/2)2 J+2 + O(⇠ � ⇡/2)2 J+3.

This expansion has two consequences. First, we obtainA0(i)= . . .= A(2 J+1)(i) =

0, A(2 J+2)(i) 6= 0. The points �1/2 ± i
p

3/2 on the curve {A(ei ⇠ ), ⇠ 2 R} are
singular points, see Figure 9.1. In the block reduction ofM(e±i 2⇡/3), the existence
of such singular points gives rise to blocks of the fourth type and of size 2 J + 2,
see [4, Section 3]. Moreover, we also obtain

��A(ei ⇠ )
��2

= 1�

�
p

3
4 (J + 1)

(⇠ � ⇡/2)2 J+2 + O(⇠ � ⇡/2)2 J+3 ,

which corresponds to a dissipation of order 2 J + 2.
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When the CFL condition is satisfied in an optimal way, the scheme (9.3) gives
an example of a block of the fourth type of size 2 J + 2 with a dissipation index
m0 = 2 J + 2. The symmetrizer construction for this block corresponds to case I.

It does not seem so obvious to find a one-step scheme (s = 0) that produces
a block of size m � 2 for which the dissipation index is larger than m (case II or
case III). In the following paragraph, we construct a two-step scheme (s = 1) that
produces a block of size 3 and that corresponds to case III.

9.2. An example of block for case III

We still consider the transport equation (9.1). The space derivative is discretized
first by means of a finite difference operator, leading to the ordinary differential
equation

U̇ j =

1
1x

Q Uj , j 2 Z .

Then we apply the Adams-Bashforth quadrature rule of order 2. The numerical
scheme thus reads

Un+1
j = Un

j + �

✓
3
2
QUn

j �

1
2
QUn�1

j

◆
. (9.6)

We choose the finite difference operator Q of the form

Q =

4X
`=�3

q` T ` ,

where the real numbers q�3, . . . , q4 are defined as the solution to the linear system0
BBBBBBBBB@

1 1 1 1 1 1 1 1
�3 �2 �1 0 1 2 3 4
9 4 1 0 1 4 9 16

�1 1 �1 1 �1 1 �1 1
3 �2 1 0 �1 2 �3 4

�9 4 �1 0 �1 4 �9 16
27 �8 1 0 �1 8 �27 64

�81 16 �1 0 �1 16 �81 256

1
CCCCCCCCCA

0
BBBBBBBBB@

q�3
q�2
q�1
q0
q1
q2
q3
q4

1
CCCCCCCCCA

=

0
BBBBBBBBB@

0
�1
1

�1
0
0

�1
1

1
CCCCCCCCCA

. (9.7)

The reader can easily check on a computer that the matrix of the above linear system
is invertible so the scheme (9.6) is well-defined. In this case, we have s = 1, r = 3,
p = 4, and

8 z 2 C \ {0} , A�r (z) =

� q�3
2 z

✓
1
z

� 3
◆

, Ap(z) =

� q4
2 z

✓
1
z

� 3
◆

.

It follows from (9.7) that q�3 and q4 are non-zero so Assumption 2.2 is satisfied.
We now try to verify the assumptions of Theorem 2.3: `2-stability and geometric
regularity of eigenvalues. The proof of the following Lemma is a straightforward
verification and is thus omitted.



88 JEAN-FRANÇOIS COULOMBEL

Lemma 9.2. Let the q`’s be defined by (9.7). Then the function

⇠ 2 R 7�! q(⇠) :=

4X
`=�3

q` ei ` ⇠ ,

satisfies

q(0) = 0 , q 0(0) = �i , q 00(0) = �1 ,

q(⇡) = �1 , q 0(⇡) = q 00(⇡) = 0 , q(3)(⇡) = i , q(4)(⇡) = 1 . (9.8)

In particular, the scheme (9.6) is consistent with the transport equation (9.1).
The amplification matrixA(ei ⇠ ) associated with the scheme (9.6) is

A(ei ⇠ ) =

 
1+

3 �

2
q(⇠) �

�

2
q(⇠)

1 0

!
. (9.9)

We wish to determine the CFL parameters � for which A satisfies the assumptions
of Theorem 2.3. More precisely, we are going to show that for � 2 ]0, 1], the am-
plification matrix A(ei ⇠ ) satisfies the stability and geometric regularity conditions
of Theorem 2.3.

We shall need the following result.
Lemma 9.3. The mapping

 2 S1 7�!

2  ( � 1)
3  � 1

,

is injective and thus defines a closed simple curve C ⇢ C ' R2. The interior I of
C is a strictly convex region.
Proof of Lemma 9.3. We consider the mapping

✓ 2 [�⇡,⇡] 7�!

2 ei ✓
�
ei ✓ � 1

�
3 ei ✓ � 1

= x(✓) + i y(✓) .

Direct computations yield y(0) = y(±⇡) = 0, and ±y(✓) > 0 if ±✓ 2 ]0,⇡[.
Furthermore, x is increasing on [�⇡, 0] and decreasing on [0,⇡]. These properties
imply that C is a simple closed curve (see Figure 9.2 for a representation of C).
The reader can also check that (x 0)2 + (y0)2 does not vanish so every point of C is
regular.

The interior of C is well-defined thanks to Jordan’s Theorem. It is strictly
convex provided that the curvature of C is nonnegative and vanishes at finitely many
points. This amounts to proving that x 0 y00

� x 00 y0 is nonnegative and vanishes at
finitely many points. We compute

x 0(✓) y00(✓) � x 00(✓) y0(✓) =

6 (1� X) (3 X2 � 3 X + 4)
(5� 3 X)3

���
X=cos ✓

� 0 ,

so I is strictly convex.
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Figure 9.2. The curve C (black line), and the curve {� q(⇠) , ⇠ 2 R} for � = 1/4,
� = 1/2 and � = 1 (dots). The crosses represent the points �2/9± i 4

p

2/9.

The curve C is relevant for the following reason: the amplification matrix A(ei ⇠ )
in (9.9) has an eigenvalue on the unit circle S1 if and only if � q(⇠) 2 C. More
precisely, we have:

• If � q(⇠) 2 I, then both eigenvalues of A(ei ⇠ ) belong to D (examine the case
� q(⇠) = �1/2 and use a connectedness argument).

• If � q(⇠) belongs to the exterior of C, then A(ei ⇠ ) has one eigenvalue in D and
one eigenvalue in U (examine the case � q(⇠) = 1 and use a connectedness
argument).

• If � q(⇠) 2 C, A(ei ⇠ ) has one eigenvalue on S1 and one eigenvalue in D (use
Lemma 9.3).

Eventually, it is straightforward to check thatA(ei ⇠ ) has a double eigenvalue if and
only if � q(⇠) = �2/9 ± i 4

p

2/9. These two points are marked by crosses on
Figure 9.2.

Let us consider the case � = 1. For ⇠ = 0, Lemma 9.2 shows that A(1) has
the eigenvalues 1 and 0. For ⇠ 2 R close to 0, we make a Taylor expansion for the
eigenvalue !1(⇠) ofA(ei ⇠ ) close to 1. Using Lemma 9.2, we obtain

!0

1(0) 6= 0 ,
��!1(⇠)

��2
= 1� ⇠2 + o(⇠2) .

In particular, q(0) 2 C and q(⇠) 2 I for ⇠ 6= 0 sufficiently small.
For ⇠ = ⇡ , Lemma 9.2 shows that A(�1) has the eigenvalues �1 and 1/2.

For ⇠ 2 R close to ⇡ , we make another Taylor expansion for the eigenvalue !2(⇠)
ofA(ei ⇠ ) close to �1. Using Lemma 9.2 again, we obtain

!0

2(⇡) = !00

2(⇡) = 0 , !
(3)
2 (⇡) 6= 0 ,

��!2(⇠)
��2

= 1�

(⇠ � ⇡)4

9
+ o((⇠ �⇡)4) .
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In particular, q(⇡) 2 C and q(⇠) 2 I for ⇠ � ⇡ 6= 0 sufficiently small. In the block
reduction forM(�1), the behavior of!2 yields a 3⇥3 block with a dissipation index
equal to 4. Figure 9.2 gives numerical evidence that for ⇠ 62 Z ⇡ , q(⇠) belongs to
I the interior of C. The Von Neumann condition is thus satisfied for � = 1. We
refer to Figure 9.3 for a representation of the spectrum7 ofA(ei ⇠ ) when � equals 1.
Since the eigenvalues of A(±1) are simple, eigenvalues and eigenvectors of A()
depend holomorphically on  for  close to ±1. The combination of geometric
regularity and of the Von Neumann condition implies that A satisfies the uniform
power boundedness condition of Theorem 2.3.

When � 2 ]0, 1[, the strict convexity of I implies that � q(⇠) belongs to I for
⇠ 62 Z 2⇡ . Hence the eigenvalues of A(ei ⇠ ) belong to D. For ⇠ = 0, we have
� q(⇠) = 0 andA(1) has the eigenvalues 1 and 0. A Taylor expansion gives

!0

1(0) 6= 0 ,
��!1(⇠)

��2
= 1� � ⇠2 + o(⇠2) .

The Von Neumann condition is satisfied as well as the geometric regularity con-
dition. Up to admitting that q(⇠) belongs to I for ⇠ 62 Z ⇡ (the latter property
being clearly verified on Figure 9.2), we have proved that A satisfies all assump-
tions of Theorem 2.3 when � 2 ]0, 1]. Furthermore, the case � = 1 provides with
an example of 3⇥ 3 block for case III.

Figure 9.3. The eigenvalues of {A(),  2 S1} for � = 1 (dots), and the unit circle
(black line).

7 Observe that the eigenvalues do not cross because the curve {q(⇠) , ⇠ 2 R} does not meet the
points �2/9± i 4

p

2/9.
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A. Some results about matrices

A.1. Proof of Lemma 5.4

For the reader’s convenience, we recall the statement of Lemma 5.4.

Lemma A.1. Let C1,C2 2 R, let c > 0, and let ⌫ be an integer. Then there exists
a matrix H 2 H⌫ such that for all W = (W1, . . . ,W⌫) 2 C⌫ , there holds

W ⇤ H W � C1 |W |
2 , (A.1)

W ⇤ Re (i H N⌫)W � �c |W1|2 + C2
⌫X
j=2

|Wj |
2 . (A.2)

Lemma 5.4 is a refined version of Lemma 5.7 in [3, Chapter VII] where it is shown
that there exists a Hermitian matrix H satisfying (A.2). Here we want to satisfy
(A.1) and (A.2) simultaneously.

Proof of Lemma 5.4. There is nothing to prove if ⌫ = 1 since N1 = 0, and it is
therefore sufficient to choose H = C1. We thus assume ⌫ � 2 in what follows. We
choose the matrix H of the form

H :=

0
B@
a1 0

. . .

0 a⌫

1
CA� i

0
BBB@
0 �g1 0

g1
. . .

. . .

. . .
. . . �g⌫�1

0 g⌫�1 0

1
CCCA ,

where a1, . . . , a⌫, g1, . . . , g⌫�1 are real numbers to be fixed appropriately. We com-
pute the following relations for all vector W 2 C⌫ :

W ⇤ H W =

⌫X
j=1

a j |Wj |
2
� 2

⌫�1X
j=1

g j Im
�
Wj Wj+1

�
, (A.3)

W ⇤ Re (i H N⌫)W =

⌫X
j=2

g j�1 |Wj |
2
�

⌫�1X
j=1

a j Im
�
Wj Wj+1

�
(A.4)

�

⌫�2X
j=1

g j Re
�
Wj Wj+2

�
.

The idea is to choose first a1, then g1, then a2, then g2 and so on, and in the end
to choose a⌫ . More precisely, it follows from an easy induction argument using
Young’s inequality that for all J = 1, . . . , ⌫ � 1, there exist some real numbers
a1, g1, . . . , aJ , gJ such that the inequalities

JX
j=1

a j |Wj |
2
� 2

J�1X
j=1

g j Im
�
Wj Wj+1

�
� C1

J�1X
j=1

|Wj |
2
+ (C1+ 1) |WJ |

2 , (A.5)
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and
J+1X
j=2

g j�1 |Wj |
2
�

JX
j=1

a j Im
�
Wj Wj+1

�
�

J�1X
j=1

g j Re
�
Wj Wj+2

�

� �c |W1|2 + C2
JX
j=2

|Wj |
2
+ (C2 + 1) |WJ+1|

2 , (A.6)

hold for all W 2 C⌫ .
We can therefore fix some real numbers a1, g1, . . . , a⌫�1, g⌫�1 such that (A.5)

and (A.6) hold with J = ⌫ � 1. Using (A.6) in (A.4), we already find that the
inequality (A.2) is satisfied by H . This inequality does not involve the coefficient
a⌫ . If we use (A.5) in (A.3), we obtain

W ⇤ H W � a⌫ |W⌫ |
2
� 2 g⌫�1 Im

�
W⌫�1W⌫

�
+ |W⌫�1|

2
+ C1

⌫�1X
j=1

|Wj |
2 .

Applying Young’s inequality and choosing a⌫ large enough, we can construct the
matrix H such that (A.1) holds. The proof of Lemma 5.4 is now complete.

A.2. Proof of Lemma 6.3

We first recall the statement of Lemma 6.3.
Lemma A.2 ([9]). Let a 2 R. Let c > 0 and let C 2 R. If m is even, there exists a
matrix S 2 Sm of the form (5.7) with s1 = a, and that satisfies

8W 2 Cm , W ⇤ S W � C |Wu
|
2
� c |Ws

|
2 .

Proof of Lemma 6.3. Consider the case m = 2. We wish to choose s2 2 R suffi-
ciently large such that the inequality

�
W1 W2

� ✓0 a
a s2

◆ ✓
W1
W2

◆
� C |W2|2 � c |W1|2

holds for all W 2 C2. The result is clear and is based on Young’s inequality.
The proof of Lemma 6.3 in the case m � 4 follows the same lines. More

precisely, we consider a real symmetric matrix S of size m = 2µ and of the form
(5.7). The first coefficient s1 is fixed by choosing s1 := a. It remains to choose
the coefficients s2, s3, . . . , s2µ appropriately. We first make the choice s3 = s5 =

· · · = s2µ�1 := 0. We compute

W ⇤ S W = 2 a
µX
k=1

Re
�
Wk Wm+1�k

�
+

µX
k=1

s2 k |Wµ+k |
2

+

µ�1X
k=1

2 s2 k
µ+k�1X
j=2 k

Re
�
Wj Wm+2 k� j

�
.
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We apply Young’s inequality for the first term in the right-hand side. There exists a
constant C0 > 0, that only depends on a and c such that

W ⇤ S W � �

c
2µ�1 |Ws

|
2
+

µX
k=1

(s2 k � C0) |Wµ+k |
2

+

µ�1X
k=1

2 s2 k
µ+k�1X
j=2 k

Re
�
Wj Wm+2 k� j

�
.

(A.7)

The following property is proved by induction on J = 1, . . . , µ � 1: there exist
some coefficients s2, . . . , s2 J > 0 and there exists a constant CJ > 0 that only
depend on a, c,C such that the inequality

JX
k=1

(s2 k � C0) |Wµ+k |
2
+

JX
k=1

2 s2 k
µ+k�1X
j=2 k

Re
�
Wj Wm+2 k� j

�

�

✓
C +

1
2J

◆ JX
k=1

|Wµ+k |
2
� c

✓
1

2µ�1�J �

1
2µ�1

◆
|Ws

|
2

� (CJ � C0)
µX

k=J+1
|Wµ+k |

2 ,

(A.8)

holds for all W 2 Cm . We use the inequality (A.8) with J = µ � 1 in (A.7). This
yields

W ⇤ S W � �c |Ws
|
2
+

✓
C +

1
2µ�1

◆ µ�1X
k=1

|Wµ+k |
2
+ (s2µ � Cµ�1) |W2µ|

2 .

It remains to choose s2µ := C + Cµ�1 and the inequality

W ⇤ S W � �c |Ws
|
2
+ C |Wu

|
2

holds.

B. When does Kreiss’ construction apply?

In this appendix, we clarify when Kreiss’ symmetrizer construction works. We
show that it actually works only in case IV. We recall that we consider a matrix
M(⌧ ) that depends holomorphically on a complex variable ⌧ 2 V , where V is a
neighborhood of 0. Moreover, the expression of M(⌧ ) is given, as in (5.1), by

M(⌧ ) = i N +

0
B@
b1(⌧ ) 0 · · · 0

...
...

...
bm(⌧ ) 0 · · · 0

1
CA , N :=

0
BBB@
0 1 0
...

. . .
. . .

...
. . . 1

0 · · · · · · 0

1
CCCA . (B.1)
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Our result is the following.

Theorem B.1. Let m � 2 and let M be given by (B.1) where the functions
b1, . . . , bm are holomorphic on a neighborhood of 0 and vanish at 0. Assume that
there exists an integer µ 2 {1, . . . ,m � 1} such that the following property holds:

For all K � 1, there exist two constants ↵K > 0, cK > 0, and there exists
a C1 function SK defined on ] � ↵K ,↵K [⇥ ] � ↵K ,↵K [ with values in Hm that
satisfies

(i) for all � 2 ] � ↵K ,↵K [ and all � 2 [0,↵K [, Re (SK (� , �)M(� + i �)) �

cK � I ,
(ii) for all � 2 ] � ↵K ,↵K [, SK (0, �) 2 Sm ,
(iii) for allW 2Cm ,W ⇤SK (0, 0)W �K 2 |Wu

|
2
� |Ws

|
2 withWs

:=(W1, . . . ,Wµ)
and Wu

:= (Wµ+1, . . . ,Wm).

Then M(i �) has purely imaginary coefficients for all � 2 R sufficiently small.

Theorem B.1 shows that the choice SK (0, �) 2 Sm that was made in [9], see
also [2,3], is convenient only in case IV. When the dissipation index is finite, it fol-
lows from Proposition 4.5, Proposition 6.1 or Proposition 7.1 that M(i �) does not
have purely imaginary coefficients for all small �. One therefore needs to consider
a symmetrizer SK (0, �) with complex coefficients, that is a Hermitian matrix and
not a real symmetric matrix. Thus our new construction of the symmetrizer in cases
I, II, III was necessary.

Proof of Theorem B.1. We adopt some similar notation to what was introduced in
the proof of Theorem 4.4. More precisely, we introduce the matrices Bq 2 Mm(C)
defined by

8 q � 1 , Bq :=

iq�1

q!

0
B@
b(q)
1 (0) 0 . . . 0

...
...

...

b(q)
m (0) 0 . . . 0

1
CA 2 Mm(C) . (B.2)

Using the holomorphy of M , we can expand M(i �) as a power series, and get

M(i �) = i N + i
+1X
q=1

�q Bq .

In order to prove Theorem B.1, it is sufficient to show that all matrices Bq have real
coefficients. (The condition is not only sufficient but also necessary.) This property
will be shown below by an induction argument on q.

For K � 1, we also introduce the notation SK (�) := SK (0, �), and

8 q 2 N , Sq,K :=

1
q!

@q SK
@�q

(0, 0) 2 Sm ,

where we have used the property (ii) of Theorem B.1.
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Let K � 1. Then S0,K is a real symmetric matrix such that Re (i S0,K N ) is
nonnegative (use property (i) of Theorem B.1 at ⌧ = 0). We feel the following
Lemma can be used without proof since it is elementary.

Lemma B.2. Let m � 2 and let H 2 Hm satisfy H � 0 and

8 j = 2, . . . ,m , Hj, j = 0 .

Then Hj,k = 0 if max( j, k) � 2. In particular if H 2 Hm \ i Mm(R) satisfies
H � 0, then H = 0.

The matrix Re (i S0,K N ) has purely imaginary coefficients, and we have seen
that it is nonnegative. Lemma B.2 thus gives Re (i S0,K N ) = 0. Applying Lemma
5.2, we find that S0,K has the form (5.7), that is

S0,K =

0
BBBB@

0 · · · 0 sK1
... 0 sK1 sK2
0 sK1 sK2

...

sK1 sK2 · · · sKm

1
CCCCA 2 Sm . (B.3)

Let us show that the coefficient sK1 in (B.3) is non-zero. We use property (i) of
Theorem B.1 for � = 0, and make a Taylor expansion for small � > 0. Using the
relation Re (i S0,K N ) = 0 that we have just found, the Taylor expansion gives

Re
✓
SK (0, 0)M 0(0) + i

@SK
@�

(0, 0) N
◆

� cK I .

In particular, the upper left coefficient of Re (S0,K M 0(0)) is non-zero. In view of
the form (B.3) of S0,K and of the form (B.2) of B1 = M 0(0), this yields sK1 6= 0.

Our goal is to show by induction on q that the matrices Bq in (B.2) have real
coefficients. Let us first show that B1 has real coefficients. We perform another
Taylor expansion, but here we use property (i) with � = 0 and expand with respect
to �. We obtain

Re (SK (�)M(i �)) = � Re (i S1,K N + i S0,K B1) + O(�2) � 0 .

The latter inequality implies

Re (i S1,K N + i S0,K B1) = 0 ,

because � can be either positive or negative. In particular, Re (i S0,K B1) is a Hermi-
tian matrix with purely imaginary coefficients. Using the form (B.3) of S0,K , with
sK1 6= 0, together with the expression (B.2) of B1, we obtain that all coefficients of
B1 are real.
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Showing that B2 has real coefficients is a little more difficult. Expanding
M(i �) and SK (�) at second order in � and using property (i), we obtain

Re (i S2,K N + i S1,K B1 + i S0,K B2) � 0 .

Using the form (B.2) of B2 and the form (B.3) of S0,K , the matrix Re (i S0,K B2)
reads

Re (i S0,K B2) =

0
BBB@

⇤ . . . . . . ⇤

... 0 . . . 0

...
...

...
⇤ 0 . . . 0

1
CCCA ,

where the ⇤ symbols denote some complex numbers. In particular, the ( j, j) ele-
ment of the matrix Re (i S0,K B2) vanishes for j � 2. We also know that the matrix
Re (i S2,K N + i S1,K B1) belongs toHm \ i Mm(R) so its diagonal elements are
zero. We can thus apply Lemma B.2 and derive

Re (i S2,K N + i S1,K B1 + i S0,K B2) =

0
BBB@
d 0 . . . 0

0 0
...

...
...

0 . . . . . . 0

1
CCCA , d � 0 . (B.4)

The coefficient d in (B.4) equals�sK1 Im b00

m(0). If we can show that d is zero, then
the matrix Re (i S0,K B2) will have purely imaginary coefficients. Consequently
B2 will have real coefficients (use again the form (B.3) of S0,K ). Let us argue by
contradiction and assume that d is non-zero. In other words, let us assume that
b00

m(0) is not a real number (observe that this assumption is independent of K ). The
matrix in (B.4) is the sum of a matrix with purely imaginary coefficients and of
Re (i S0,K B2). For all j = 2, . . . ,m, the coefficient Re (i S0,K B2)1, j is a purely
imaginary number since it must compensate the (1, j) element of Re (i S2,K N +

i S1,K B1). We thus have

8 j = 2, . . . ,m ,
⇣
Re (i S0,K B2)

⌘
1, j

2 i R .

Using (B.2) and (B.3), these m � 1 relations can be recast as a triangular linear
system

0
B@
Re (i b00

m(0)) 0
...

. . .

Re (i b00

2(0)) . . . Re (i b00

m(0))

1
CA
0
B@
sK2
...

sKm

1
CA = �sK1

0
B@
Re (i b00

m�1(0))
...

Re (i b00

1(0))

1
CA .
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In particular, there exists some real numbers �2, . . . , �m that can be computed from
the matrix B2 and are independent of K , such that0

B@
sK2
...

sKm

1
CA = sK1

0
B@

�2
...

�m

1
CA .

The expression (B.3) of S0,K reduces to

S0,K = sK1

0
BBB@
0 · · · 0 1
... 0 1 �2

0 1 �2
...

1 �2 · · · �m

1
CCCA .

Let us now consider the vector W := (��m/2, 0, . . . , 0, 1) that does not depend on
K . We use the property (iii) of Theorem B.1 and derive

0 = W ⇤ S0,K W � K 2 |Wu
|
2
� |Ws

|
2

= K 2 �

� 2m
4

.

Since K can be arbitrarily large and �m is fixed, we are led to a contradiction.
We have therefore obtained d = 0 in (B.4). As explained before, this gives first
Re (i S0,K B2) 2 Hm \ i Mm(R), which implies B2 2 Mm(R) because of the
form of B2. We have also obtained the relations:

8 q = 1, 2 , Re

 
i Sq,K N + i

q�1X
p=0
Sp,K Bq�p

!
= 0 .

An induction argument then shows that for all integer Q � 1, the matrices
B1, . . . , B2 Q have real coefficients, and that the relations

8 q = 1, . . . , 2 Q , Re

 
i Sq,K N + i

q�1X
p=0
Sp,K Bq�p

!
= 0 .

hold. Theorem B.1 is proved.
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Verlag, 1985.

[2] S. BENZONI-GAVAGE and D. SERRE, “Multidimensional Hyperbolic Partial Differential
Equations”, Oxford Mathematical Monographs, Oxford University Press, 2007.



98 JEAN-FRANÇOIS COULOMBEL
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