For every real-analytic CR-manifold we give necessary and sufficient conditions that can be realized in a suitable neighbourhood of a given point as a tube submanifold of some . We clarify the question of the ‘right’ equivalence between two local tube realizations of the CR-manifold germ by introducing two different notions of affine equivalence. One of our key results is a procedure that reduces the classification of equivalence classes to a purely algebraic manipulation in terms of Lie theory.
@article{ASNSP_2011_5_10_1_99_0, author = {Fels, Gregor and kaup, Wilhelm}, title = {Local tube realizations of {CR-manifolds} and maximal {Abelian} subalgebras}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {99--128}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {1}, year = {2011}, mrnumber = {2829317}, zbl = {1229.32020}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2011_5_10_1_99_0/} }
TY - JOUR AU - Fels, Gregor AU - kaup, Wilhelm TI - Local tube realizations of CR-manifolds and maximal Abelian subalgebras JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 99 EP - 128 VL - 10 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2011_5_10_1_99_0/ LA - en ID - ASNSP_2011_5_10_1_99_0 ER -
%0 Journal Article %A Fels, Gregor %A kaup, Wilhelm %T Local tube realizations of CR-manifolds and maximal Abelian subalgebras %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 99-128 %V 10 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2011_5_10_1_99_0/ %G en %F ASNSP_2011_5_10_1_99_0
Fels, Gregor; kaup, Wilhelm. Local tube realizations of CR-manifolds and maximal Abelian subalgebras. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 99-128. http://archive.numdam.org/item/ASNSP_2011_5_10_1_99_0/
[1] M. S. Baouendi, L. P. Rothschild and F. Treves, CR structures with group action and extendibility of CR functions, Invent. Math. 82 (1985), 359–396. | EuDML | MR | Zbl
[2] M. S. Baouendi - H. Jacobowitz and F. Treves, On the analyticity of CR mappings, Ann. of Math. 122 (1985), 365–400. | MR | Zbl
[3] M. S. Baouendi - P. Ebenfelt and L. P. Rothschild, “Real Submanifolds in Complex Spaces and Their Mappings”, Princeton Math. Series, Vol. 47, Princeton Univ. Press, 1998. | MR | Zbl
[4] M. S. Baouendi - L. Rothschild and D. Zaitsev, Equivalences of real submanifolds in complex space, J. Differential Geom. 59 (2001), 301–351. | MR | Zbl
[5] A. Boggess, “CR manifolds and the tangential Cauchy Riemann complex”, Studies in Advanced Mathematics, Boca Raton, FL: CRC Press, 1991. | MR | Zbl
[6] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta. Math. 133 (1974), 219–271. | MR | Zbl
[7] J. Dadok and P. Yang, Automorphisms of tube domains and spherical hypersurfaces, Amer. J. Math. 107 (1985), 999–1013. | MR | Zbl
[8] G. Fels, Locally homogeneous finitely nondegenerate CR-manifolds, Math. Res. Lett. 14 (2007), 693–922. | MR | Zbl
[9] G. Fels and W. Kaup, CR-manifolds of dimension 5: A Lie algebra approach, J. Reine Angew. Math. 604 (2007), 47–71. | MR | Zbl
[10] G. Fels and W. Kaup, Classification of Levi degenerate homogeneous CR-manifolds of dimension 5, Acta Math. 201 (2008), 1–82. | MR | Zbl
[11] G. Fels and W. Kaup, Classification of commutative algebras and tube realizations of hyperquadrics, arXiv:0906.5549.
[12] A. V. Isaev and M. A. Mishchenko, Classification of spherical tube hypersurfaces that have one minus in the Levi signature form, Math. USSR-Izv. 33 (1989), 441–472. | MR | Zbl
[13] A. V. Isaev, Classification of spherical tube hypersurfaces that have two minuses in the Levi signature form, Math. Notes 46 (1989), 517–523. | MR | Zbl
[14] A. V. Isaev, Global properties of spherical tube hypersurfaces, Indiana Univ. Math. J. 42 (1993), 179–213. | MR | Zbl
[15] A. V. Isaev and W. Kaup, Regularization of local CR-automorphisms of real-analytic CR-manifolds, J. Geom. Anal. (2011), to appear. | MR | Zbl
[16] W. Kaup, On the holomorphic structure of -orbits in compact hermitian symmetric spaces, Math. Z. 249 (2005), 797–816. | MR | Zbl
[17] W. Kaup, CR-quadrics with a symmetry property, Manuscripta Math. 133 (2010), 505–517. | MR | Zbl
[18] W. Kaup and D. Zaitsev, On local CR-transformations of Levi degenerate group orbits in compact Hermitian symmetric spaces, J. Eur. Math. Soc. 8 (2006), 465–490. | EuDML | MR | Zbl
[19] R. S. Palais, “A Global Formulation of the Lie Theory of Transformation Groups”, Mem. Amer. Math. Soc. 1957. | MR | Zbl
[20] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of complex variables, J. Math. Soc. Japan 14 (1962), 397–429. | MR | Zbl
[21] D. Zaitsev, On different notions of homogeneity for CR-manifolds, Asian J. Math. 11 (2007), 331–340. | MR | Zbl