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Maximizers for the Strichartz norm
for small solutions of mass-critical NLS

THOMAS DUYCKAERTS, FRANK MERLE AND SVETLANA ROUDENKO

Abstract. Consider the mass-critical nonlinear Schrödinger equations in both
focusing and defocusing cases for initial data in L2 in space dimension N . By
Strichartz inequality, solutions to the corresponding linear problem belong to a
global L p space in the time and space variables, where p = 2 + 4

N . In 1D and
2D, the best constant for the Strichartz inequality was computed by D. Foschi
who has also shown that the maximizers are the solutions with Gaussian initial
data.

Solutions to the nonlinear problem with small initial data in L2 are globally
defined and belong to the same global L p space. In this work we show that the
maximum of the L p norm is attained for a given small mass. In addition, in 1D
and 2D, we show that the maximizer is unique and obtain a precise estimate of
the maximum. In order to prove this we show that the maximum for the linear
problem in 1D and 2D is nondegenerated.

Mathematics Subject Classification (2010): 35Q55 (primary); 35P25, 35B50,
35B45 (secondary).

1. Introduction

We study the L2-critical nonlinear Schrödinger (NLS) equation in space dimension
N ≥ 1: {

i∂t u + 1
2 �u + γ |u| 4

N u = 0, (t, x) ∈ R × RN ,

u�t=0 = f ∈ L2(RN ).
(1.1)

We will consider both focusing (γ = +1) and defocusing (γ = −1) equations.
Let us first recall some properties of the linear problem:

i∂t u + 1

2
�u = 0, u�t=0 = f. (1.2)
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Denote by u = ei t
2 � f the solution to (1.2). The mass ‖u(t)‖2

L2 of the solution
is conserved. Solutions to the linear problem satisfy the Strichartz inequality (see
[24]):

∀ f ∈ L2,

∥∥∥ei t
2 � f

∥∥∥
L

4
N +2

t,x

≤ C‖ f ‖L2, (1.3)

where

‖u‖
L

4
N +2

t,x

=
(∫∫

R×RN
|u(t, x)| 4

N +2 dt dx

) 1
4
N +2

.

By standard profile decomposition arguments, one can easily show that the maxi-
mum for the Strichartz inequality is attained. The best constant and maximizers for
the Strichartz estimates were computed by D. Foschi [11] (see also [13] for another
proof) for N = 1, 2. Before stating this result, we first recall some symmetries of
the equations (1.1) and (1.2).

The following group of transformations leaves the solutions invariant under the
nonlinear and linear Schrödinger evolution. If {θ0, ρ0, t0, ξ0, x0} ∈ R× (0, +∞) ×
R × RN × RN , then if u is a solution to (1.1) (respectively (1.2)), so is

eiθ0ρ
N
2

0 eix ·ξ0e−i t
2 |ξ0|2u

(
ρ2

0 t + t0, ρ0

(
x − t

2
ξ0

)
+ x0

)
. (1.4)

This includes phase invariance, scaling, time-translation, Galilean transformation
and space-translation. Another transformation of (1.1) and (1.2) is the pseudo-
conformal inversion (see [25]):

1

t N/2
exp

(
i |x |2

2t

)
u

(
−1

t
,

x

t

)
. (1.5)

Note that all the preceding transformations leave the mass and the L
4
N +2
t,x norm of

the solutions invariant. The linear equation is of course also invariant under the
multiplication by a scalar: if u(t, x) is a solution, so is c0 u(t, x), c0 ∈ R.

Consider the following normalized Gaussian:

G0(x) = 1

π N/4
e− |x |2

2 , thus,
∫
RN

|G0|2dx = 1,

and its linear evolution:

G(t, x) = e
1
2 i t�G0 = 1

π N/4

1

(1 + i t)N/2
e− |x |2

2(1+i t) . (1.6)

Theorem A (Foschi). For all f ∈ L2(RN ), N = 1, 2,

∥∥∥ei t
2 � f

∥∥∥ 4
N +2

L
4
N +2

t,x

≤ CS ‖ f ‖
4
N +2

L2(RN )
, CS =


1√
3
, N = 1

1

2
, N = 2.
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Furthermore, the equality holds if and only if ei t
2 � f is, up to the symmetries (1.4)

of the equation, one of the solutions c0G, c0 ∈ C.

Let us mention that the effect of the pseudo-conformal transformation (1.5)
on G may be expressed only with the invariances (1.4) and we can omit it from
consideration in Theorem A.

The Strichartz estimate (1.3) is the key ingredient to prove that the Cauchy
problem (1.1) is locally wellposed in L2 (see [8]). For small data, the solution is

also globally wellposed and the global L
4
N +2
t,x norm is finite, which implies that the

solution scatters in L2. This was extended to large radial data in the defocusing
case γ = −1, in [30] for N ≥ 3 and in [16] for N = 2 (in this last work, the
focusing case γ = 1 below the mass of the ground-state is also treated). The
proofs are mainly based on technics developed for the energy-critical NLS (see
e.g. [1, 2, 26, 29] and [15]).

In all these studies, a global Strichartz norm (in the mass-critical case, the

L
4
N +2 norm) appears as the relevant norm to control. In this work we consider

I (δ) = sup
‖ f ‖L2(RN )

=δ

∫∫
R×RN

|u(t, x)| 4
N +2 dt dx,

where δ > 0 is small and u is the solution to (1.1). The results cited above imply
that I (δ) is finite for small δ, and, in the defocusing case with N ≥ 2, for large
δ if we restrict the maximum to radial solutions. A natural extension to Theorem
A would be to show that this maximum is achieved by a unique solution (up to
symmetries) of (1.1) and give a precise estimate of I (δ).

Our main result is the following:

Theorem 1.1. Fix γ ∈ {−1, +1}. There exists a δ0 > 0 such that for all δ in
(0, δ0), the maximum I (δ) is attained: there exists a solution uδ of (1.1) with initial
condition fδ such that

‖ fδ‖L2 = δ, I (δ) =
∫∫

R×RN
|uδ(t, x)| 4

N +2 dt dx .

If N = 1 or N = 2, the maximizer uδ is unique up to the transformations (1.4),
(1.5) of the equation. Furthermore, as δ → 0,

I (δ) = CSδ
4
N +2 + γ DN δ

8
N +2 + O

(
δ

12
N +2

)
, (1.7)

where D1 = 1

π

∑
k≥1

(2k)!
k 9k (k!)2

≈ 0.0867 and D2 = 1

2π
ln

4

3
≈ 0.0458.

Remark 1.2. In particular, in the focusing case in 1D and 2D, the maximum of the
Strichartz norm is, for small data, higher than in the linear case. In the defocusing
case, the effect of the nonlinearity is to lower this maximum.
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Remark 1.3. The constant DN may be expressed as

DN =−
(

2+ 4

N

)
Im

∫∫
|G(t)| 4

N G(t)
∫ t

0
ei (t−s)

2 �
(
|G(s)| 4

N G(s)
)

ds dt dx . (1.8)

Remark 1.4. The proof also shows that in 1D and 2D, the initial condition of
any maximizer with small mass δ is (after transformations) close to δG0, where
G0 is the normalized Gaussian. See Proposition 3.3 and Remark 3.4 for a precise
statement.

Estimates of Strichartz norms for critical nonlinear problems are only known
in a few cases. Super-exponential bounds were obtained by T. Tao for radial defo-
cusing energy-critical equations: Schrödinger equation in space dimension higher
than 3 [26], and wave equation in 3D [27]. An equivalent of the maximizum is
given in [9] for the energy-critical focusing Schrödinger and wave equations (in
space dimensions 3, 4 and 5), close to the energy threshold given by the stationary
solution.

The fact that the maximum of the Strichartz norm is attained is new for a non-
linear equation. The proof of this result is based on time-dependent adaptation
to concentration-compactness arguments (see e.g. [18]) and on a super-additivity
property of I (δ) which we show by general estimates on small solutions of (1.1).
As stated in Proposition 2.12, the proof would extend to larger data provided the
scattering of all solutions and the super-additivity properties are shown for those
data also. This proof is flexible and should also easily adapt to other equations, e.g.
the energy-critical NLS and wave equations for small data and (together with the
methods of [9]) close to the energy threshold.

On the other hand, the proof of the uniqueness of the maximizer and of the
estimate (1.7) is specific to the mass-critical problem, and strongly relies on the
results of [11] and [13]. A key element is the nondegeneracy of the Gaussian for
the nonlinear problem, in the orthogonal space of the null directions related to the
invariances of the equation:

Theorem 1.5. Assume N = 1, 2. There exists c > 0 such that if ϕ ∈ L2 satisfies
the following orthogonality properties (x ∈ RN )∫

ϕ G0 =
∫

ϕ |x |2G0 = 0,

∫
ϕ xG0 = 0RN , (1.9)

then
Q(ϕ) ≥ c‖ϕ‖2

L2,

where Q is the quadratic form associated to the second derivative of the mapping

f 
→ CS

(∫
| f |2 dx

)1+ 2
N −

∫∫ ∣∣∣ei t
2 � f

∣∣∣2+ 4
N

dt dx

from L2 to [0, ∞), at the critical point f = G0.
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We refer to (3.3) for an expression of Q. This result is an analogue, for the
Strichartz estimate, to the non-degeneracy of the maximizer 1

(1+|x |2) N−2
2

for the

Sobolev imbedding Ḣ1(RN ) ↪→ L
2N

N−2 (RN ) (see [21]).
To show Theorem 1.5, we apply a lens transform ([4, 20, 22]), related to the

pseudo-conformal inversion, to the solutions of (1.1), which turns the Laplace op-
erator into the harmonic operator −� + |x |2. The result then follows from explicit
computations and a formula of Wei-Min Wang [33] on products of eigenfunctions
for the harmonic oscillator.

The outline of the paper is as follows. In Section 2 we show that the maximizer
is attained and in Section 3 we prove the estimate on I (δ). In Section 4 we show
the uniqueness of the maximizer. Section 5 is devoted to the proof of Theorem 1.5.

ACKNOWLEDGEMENTS. The authors would like to thank Keith Rogers for pointing
out the article [33]. Part of the project was done at the Institut Henri Poincaré
in Paris during the special trimester Ondes non-linéaires et dispersion (April-July
2009).

2. Existence of a maximizer

In this section, where there is no restriction on the dimension N ≥ 1, we show the
first part of Theorem 1.1:

Proposition 2.1. There exists δ0 > 0 such that if δ ∈ (0, δ0), then there exists a
solution uδ of (1.1), with initial condition fδ such that

‖ fδ‖L2(RN ) = δ and
∫∫

R×RN
|uδ| 4

N +2 dt dx = I (δ). (2.1)

After some preliminaries (Section 2.1) we show in Section 2.2 a crucial super-
additivity property of I (δ), which relies on rough estimates of I (δ) and its growth
rate. In Section 2.3 we use this property to prove Proposition 2.1 by concentration-
compactness arguments.

2.1. Profile decomposition

We recall here from [19] a profile decomposition adapted to the Strichartz estimate
for the linear equation (1.2). We start with a long time perturbation result for the
equation (1.1).

Lemma 2.2 (Long time perturbation). Let A > 0. There exists C = C(A) > 0
and a small δ0 = δ0(A) > 0 such that the following holds: Let u ∈ C0(R, L2

x ) and
solves

i∂t u + 1

2
�u + γ |u| 4

N u = 0.
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Let ũ = ũ(x, t) ∈ C0(R, L2
x ) and define

e = i∂t ũ + 1

2
�ũ + γ |ũ| 4

N ũ.

Assume ‖ũ‖
L

4
N +2

t,x

≤ A, and for some ε < δ0

‖e‖
L

2(N+2)
N+4

t,x

≤ ε and

∥∥∥∥ei
(t−t0)

2 �(u(t0) − ũ(t0))

∥∥∥∥
L

4
N +2

t,x

≤ ε,

then
‖u − ũ‖

L
4
N +2

t,x

≤ C ε.

We skip the proof of Lemma 2.2. We refer to [2, 6, 15, 29] for similar result for the
energy-critical case, [12] for a subcritical case and [31, Lemma 3.1] for a statement
close to Lemma 2.2 in the mass-critical case.

We next turn to the profile decomposition. If �0 ={ρ0, t0, ξ0, x0} ∈ (0, +∞)×
R × RN × RN , and u is a function of space and time, we will denote by �0(u) the
function

�0(u) = ρ
N
2

0 eix ·ξ0e−i t
2 |ξ0|2u

(
ρ2

0 t + t0, ρ0

(
x − t

2
ξ0

)
+ x0

)
. (2.2)

As we have seen in the introduction, if u is a solution to the linear equation (1.2)
(respectively, to the nonlinear equation (1.1)), then �0(u) is also a solution to (1.2)
(respectively, to (1.1)). We say that two sequences of transformations

{
�1

n

}
n and{

�2
n

}
n are orthogonal when

lim
n→∞

ρ1
n

ρ2
n

+ ρ2
n

ρ1
n

+
∣∣ξ1

n − ξ2
n

∣∣
ρ1

n
+

∣∣∣t1
n − t2

n

∣∣∣ +
∣∣∣∣∣ t1

n

2

ξ1
n − ξ2

n

ρ1
n

+ x1
n − x2

n

∣∣∣∣∣ = +∞. (2.3)

We recall from [19, Theorem 2] (see [14] in space dimension 1, [3] for general
space dimension) , the following profile decomposition result:

Lemma 2.3. Let { fn} be a bounded sequence in L2(RN ). Then there exists a sub-
sequence of { fn} (still denoted by { fn}), a family {U j } j≥1 of solutions to (1.2), and

sequences of parameters {� j
n }n, such that if j �= k,

{
�

j
n

}
n

is orthogonal to
{
�k

n

}
n

and for all J ,

fn(x) =
J∑

j=1

�
j
n

(
U j

)
(0, x) + h J

n (x), (2.4)

where
lim

J→+∞ lim sup
n→∞

∥∥∥ei t
2 �h J

n

∥∥∥
L

4
N +2

t,x

= 0.
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Remark 2.4. As a consequence of the orthogonality of the transformations �
j
n , the

following Pythagorean expansions hold for all J ≥ 1:

‖ fn‖2
L2 −

J∑
j=1

∥∥∥U j (0)

∥∥∥2

L2
−

∥∥∥h J
n

∥∥∥2

L2
−→

n→+∞ 0, (2.5)

∥∥∥ei t
2 � fn

∥∥∥ 4
N +2

L
4
N +2

t,x

−
J∑

j=1

∥∥∥U j
∥∥∥ 4

N +2

L
4
N +2

t,x

−
∥∥∥ei t

2 �h J
n

∥∥∥ 4
N +2

L
4
N +2

t,x

−→
n→+∞ 0. (2.6)

Let { fn}n be a sequence in L2 and assume that the corresponding solution to (1.1) is
globally defined and satisfies ‖ fn‖

L
4
N +2

t,x

< ∞. Consider the profile decomposition

given by Lemma 2.3. Let V j be the nonlinear profile associated to {U j , t j
n }n , that

is the unique solution of (1.1) such that

lim
n→∞

∥∥∥U j
(

t j
n

)
− V j

(
t j
n

)∥∥∥
L2

= 0.

Assume also that the V j ’s are globally defined and such that ‖V j‖
L2+ 4

N
is finite

for all j . Combining Lemmas 2.2 and 2.3, one gets a nonlinear version of the
decomposition (2.4):

Corollary 2.5. Let { fn}n is as above and {un}n be the sequence of solutions to (1.1)
with initial conditions { fn}n. Then

un(t, x) =
J∑

j=1

�
j
n

(
V j

)
(t, x) + h J

n (t, x) + r J
n (t, x) (2.7)

with

lim
J→+∞ lim

n→+∞

(∥∥∥r J
n

∥∥∥
L

4
N +2

t,x

+ sup
t∈R

∥∥∥r J
n (t)

∥∥∥
L2

)
= 0.

Remark 2.6. Using the orthogonality of the sequences of transformations {� j
n }n , it

is easy to check that

lim
J→∞ lim sup

n→∞

∣∣∣∣∣‖un‖
4
N +2

L
4
N +2

t,x

−
J∑

j=1

∥∥∥V j
∥∥∥ 4

N +2

L
4
N +2

t,x

∣∣∣∣∣ = 0. (2.8)

2.2. A superadditivity property of the maximum

In this paragraph we give various estimates on I (δ). The main result is the follow-
ing proposition, which is one of the steps (along with a concentration-compactness
argument) in showing that the maximizer is attained:



434 THOMAS DUYCKAERTS, FRANK MERLE AND SVETLANA ROUDENKO

Proposition 2.7. There exists δ0 > 0 such that if 0 <
√

α2 + β2 < δ0, then

I (α) + I (β) < I

(√
α2 + β2

)
.

Remark 2.8. Superadditivity (or subadditivity for minimizers) conditions are clas-
sical in this context (see [17, Subsection I.2]).

The proof of Proposition 2.7 relies on two estimates on I (δ) that we treat in
Lemmas 2.9 and 2.11 below.

Lemma 2.9. There exists a constant C0 > 0 such that for small δ > 0,∣∣∣I (δ) − CSδ
4
N +2

∣∣∣ ≤ C0δ
8
N +2, (2.9)

where CS is the best constant for the Strichartz inequality∫∫ ∣∣∣ei t
2 � f

∣∣∣ 4
N +2

dt dx ≤ CS‖ f ‖
4
N +2

L2 . (2.10)

Before proving this lemma, we start by a straightforward consequence of the small
data well-posedness theory for equation (1.1) (see [8]).

Claim 2.10. There exists a constant C > 0 such that if ‖ f ‖L2 is small, then∥∥∥ei t
2 � f − u

∥∥∥
L

4
N +2

t,x

≤ C‖ f ‖
4
N +1

L2 ,

where u is the solution of (1.1) with initial condition f .

Sketch of proof. The Cauchy problem theory for (1.1) implies that for small initial
data

‖u‖
L

4
N +2

t,x

≤ 2‖ f ‖L2 .

Since

u(t) = ei t
2 � f + iγ

∫ t

0
e

i
2 (t−s)�|u(s)| 4

N u(s)ds,

the claim follows from Theorem A and the Strichartz estimate∥∥∥∥∫ t

0
e

i
2 (t−s)�ϕ(s)ds

∥∥∥∥
L

4
N +2

t,x

≤ C‖ϕ‖
L

2(N+2)
N+4

t,x

.
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Proof of Lemma 2.9. Let u be a solution of (1.1) with initial condition f such that
‖ f ‖L2(RN ) = δ. Then∣∣∣∣∫∫ ∣∣∣ei t

2 � f (x)

∣∣∣ 4
N +2

dt dx −
∫∫

|u(t, x)| 4
N +2 dt dx

∣∣∣∣
≤ C

∣∣∣∣∣ ∥∥∥ei t
2 � f

∥∥∥
L

4
N +2

t,x

− ‖u‖
L

4
N +2

t,x

∣∣∣∣∣
(∥∥∥ei t

2 � f
∥∥∥ 4

N +1

L
4
N +2

t,x

+ ‖u‖
4
N +1

L
4
N +2

t,x

)
≤ C

∥∥∥ei t
2 � f − u

∥∥∥
L

4
N +2

t,x

δ
4
N +1 ≤ Cδ

8
N +2,

where the last line follows from the triangle inequality and then from Claim 2.10.
Applying the previous inequality to the initial data f = δF0, where F0 is the initial
condition of a maximizer for Strichartz estimate (2.10), and then to a sequence

{ fn}n such that ‖ fn‖L2 = δ and
∫∫ |un| 4

N +2 → I (δ), we obtain (2.9).

We next estimate the rate of growth of I (δ).

Lemma 2.11. If δ is small and ε ≤ 1
2δ, then

I (δ) + c1 δ
4
N +1ε ≤ I (δ + ε) ≤ I (δ) + C1 δ

4
N +1 ε, (2.11)

where c1 = 4
N CS and C1 = 2

(
4
N + 2

)
CS.

Proof. Step 1. We first show that there exist C2, ε0 > 0 such that if f ∈ L2 with
‖ f ‖L2 + ε ≤ ε0, u is the solution of (1.1) with the initial condition f , and vε is the
solution of (1.1) with the initial condition (1 + ε) f , then∣∣∣∣(1 + ε)

4
N +2

∫∫ ∣∣u∣∣ 4
N +2 −

∫∫ ∣∣vε

∣∣ 4
N +2

∣∣∣∣ ≤ C2 ε ‖ f ‖
8
N +2

L2 .

First, observe that uε = (1 + ε)u is a solution to the equation

i∂t uε + 1

2
�uε + 1

(1 + ε)
4
N

|uε | 4
N uε = 0, uε�t=0 = (1 + ε) f.

We rewrite the above equation as

i∂t uε + 1

2
�uε + |uε | 4

N uε =
(

1 − 1

(1 + ε)
4
N

)
|uε | 4

N uε,

noting that for small ε, Strichartz estimate implies∥∥∥∥(
1 − 1

(1 + ε)
4
N

)
|uε | 4

N uε

∥∥∥∥
L

2(N+2)
N+4

t,x

≤ C ε

∥∥∥|uε |1+ 4
N

∥∥∥
L

2(N+2)
N+4

t,x

= C ε‖uε‖1+ 4
N

L
4
N +2

t,x

≤ Cε‖ f ‖1+ 4
N

L2 .
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Since vε is a solution of

i∂tvε + 1

2
�vε + |vε | 4

N vε = 0, vε�t=0 = (1 + ε) f,

by the long time perturbation Lemma 2.2, we get

‖uε − vε‖
L

4
N +2

t,x

≤ Cε‖ f ‖
4
N +1

L2 .

Hence,∣∣∣∣∫∫
|uε | 4

N +2 dt dx −
∫∫

|vε | 4
N +2 dt dx

∣∣∣∣ ≤ C ‖uε − vε‖
L

4
N +2

t,x

‖ f ‖
4
N +1

L2

≤ Cε‖ f ‖
8
N +2

L2 ,

which concludes Step 1.

Step 2. Let ε, δ > 0. First, we show the lower bound of I (δ + ε). Let f ∈ L2(RN )

be such that

‖ f ‖L2 = δ and
∫∫

|u(t, x)| 4
N +2 dt dx ≥ I (δ) − δ

8
N +1ε, (2.12)

where u is the corresponding solution of (1.1) and we used the supremum property
of I (δ). Let uε be the solution of (1.1) with the initial condition

(
1 + ε

δ

)
f . Then

‖uε(0)‖L2 = δ + ε. By Step 1,

I (δ + ε) ≥
∫∫

|uε(t, x)| 4
N +2 dt dx

≥
(

1 + ε

δ

) 4
N +2

∫∫
|u(t, x)| 4

N +2 − C2
ε

δ
δ

8
N +2.

By (2.12), we get

I (δ + ε) ≥
[

1 +
(

4

N
+ 2

)
ε

δ

] (
I (δ) − δ

8
N +1ε

)
− C2δ

8
N +1ε.

Lemma 2.9 implies I (δ) ≥ CSδ
4
N +2 − C0δ

8
N +2, hence,

I (δ + ε) ≥ I (δ) + CS

(
4

N
+ 2

)
δ

4
N +1ε

−
[(

4

N
+ 2

)
C0 +

(
1 +

(
4

N
+ 2

)
ε

δ

)
+ C2

]
δ

8
N +1ε.
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Now if ε < 1
2δ and

δ <

(
CS

4 + 6C0 + C2

)N/4

,

the last term in the expression above will be less than 2CSδ
4
N +1ε, and thus, the right

side in (2.11) follows with c1 = 4
N CS .

The upper bound on I (δ + ε) follows similarly from Step 1 and Lemma 2.9,

obtaining the left side in (2.11) with C1 = 2CS

(
4
N + 2

)
.

We next prove Proposition 2.7.

Proof. Without loss of generality, we can assume 0 < α ≤ β.

Step 1. We first show that there exists a large constant C3 > 0 such that the conclu-
sion of the proposition holds if

C3β
2
N +1 ≤ α ≤ β. (2.13)

By Lemma 2.9,

I (α) + I (β) ≤ CSα
4
N +2 + CSβ

4
N +2 + 2C0β

8
N +2,

and CS

(
α2 + β2

) 2
N +1 ≤ I

(√
α2 + β2

)
+ 2C0β

8
N +2.

There is a constant κN > 0 such that 1+ x
2
N +1 +κN x ≤ (1+ x)

2
N +1 for x ∈ [0, 1].

As a consequence, α
4
N +2 + β

4
N +2 + κN β

4
N α2 ≤ (

α2 + β2
) 2

N +1
. Combining with

the previous estimates, we get

I (α) + I (β) + CS κN β
4
N α2 − 4C0β

8
N +2 ≤ I

(√
α2 + β2

)
,

which yields the announced result if C3 is chosen large in (2.13).

Step 2. We next show that the conclusion of the Proposition still holds if

0 < α < C3β
2
N +1, (2.14)

where C3 is the constant defined in Step 1. Choosing δ0 small enough, β ≤ δ0 and
(2.14) imply

α2

4β
≤

√
α2 + β2 − β ≤ β

2
.

By Lemma 2.11, with δ = β and ε = √
α2 + β2 − β,

I (β)≤ I

(√
α2 + β2

)
−c1β

4
N +1

(√
α2 + β2 − β

)
≤ I

(√
α2 + β2

)
− c1

4
β

4
N α2.



438 THOMAS DUYCKAERTS, FRANK MERLE AND SVETLANA ROUDENKO

Combining with Lemma 2.9 we get, taking a smaller δ0 if necessary,

I (α) + I (β) ≤ I

(√
α2 + β2

)
− c1

4
β

4
N α2 + 2CSα

4
N +2

≤ I

(√
α2 + β2

)
+ α2β

4
N

(
2CSC

4
N

3 β
8

N2 − c1

4

)
,

which shows that the conclusion of the proposition holds also in this case, provided
δ0 > 0 is small enough.

2.3. Proof of the existence of the maximizer

Let us show Proposition 2.1. We will prove the following more general result:

Proposition 2.12. Assume that there exists a constant A > 0 such that

i. Scattering: for all f ∈ L2 such that ‖ f ‖L2 ≤ A, the solution u of (1.1) with
initial condition f is globally defined and

δ ≤ A =⇒ I (δ) < ∞.

ii. Superadditivity: if 0 <
√

α2 + β2 = A, and α, β > 0, then

I (α) + I (β) < I (A) .

Then there exists a solution u A of (1.1) with initial condition f A ∈ L2 such that

‖ f A‖L2 = A,

∫∫
|u A|2+ 4

N = I (A).

In view of the small data global well-posedness theory and Proposition 2.7, Propo-
sition 2.12 implies Proposition 2.1. Let us prove Proposition 2.12.

Let {un}n be a sequence of solutions to (1.1) with initial data fn such that

‖ fn‖L2(RN ) = A, lim
n→∞

∫∫
RN

|un| 4
N +2 = I (A).

We will show that there exist a subsequence of {un}n and a sequence {�n}n of trans-
formations such that {�n(un)}n converges strongly in L2. Consider, after extraction,
a profile decomposition of the sequence { fn}n:

fn =
J∑

j=1

�
j
n

(
U j

)
�t=0

+ h J
n . (2.15)

It is sufficient to show that U j = 0 except for one j and that limn→∞ ‖h J
n ‖L2 = 0,

which we will do in two steps.
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Step 1: no dichotomy. First assume that there are at least two nonzero profiles, say
U 1 �= 0 and U 2 �= 0. Let V 1 be the nonlinear profiles associated to {U 1, t1

n } and
Vn the solution of (1.1) given by

Vn = �1
n(V 1).

Let Wn be the sequence of solutions to (1.1) with initial condition

Wn(0) = fn − Vn(0).

Let rn = un − Vn − Wn . By assumption (2.12), all the nonlinear profiles V j scatter.
Thus, one can use Corollary 2.5, showing

lim
n→∞ sup

t∈R
‖rn(t)‖L2 = 0.

Furthermore, (see (2.5) and Remark 2.6)∫
| fn|2 =

∫
|Vn(0)|2 +

∫
|Wn(0)|2 + on(1) (2.16)∫∫

|un| 4
N +2 =

∫∫
|Vn| 4

N +2 +
∫∫

|Wn| 4
N +2 + on(1). (2.17)

Let ε = ‖U 1(0)‖L2 . Then for all n, ε = ‖Vn(0)‖L2 . By (2.16),

‖Wn(0)‖2
L2 = A2 − ε2 + on(1).

By our assumptions, ε > 0 (otherwise, U 1 would be zero) and A2 − ε2 > 0

(otherwise, U 2 would be zero). Using that
∫∫ |un| 4

N +2 tends to I (A) as n → ∞,

and that by Lemma 2.2, lim supn

∫ |Wn| 4
N +2 ≤ I (

√
A2 − ε2), we get by (2.17)

I (A) ≤ I (ε) + I
(√

A2 − ε2
)

. (2.18)

This contradicts assumption (2.12), concluding Step 1.

Step 2: non vanishing and the end of the proof. There must be one nonzero profile
in (2.15). If not, then

lim
n→∞

∫∫
|un| 4

N +2 = 0,

showing that I (A) = 0, a contradiction. It remains to show that the remainder
hn = h J

n in (2.15) tends to 0 in L2. Denote by

ε = lim
n→∞ ‖hn‖L2,

then, using again Lemma 2.2, we get I (A) ≤ I (
√

A2 − ε2), which shows by as-
sumption (2.12) that ε = 0.
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Denoting by U 1 the only nonzero profile in (2.15), we have shown that (�1
n)−1(un)

tends to U 1 in L2, and therefore,

‖U 1‖L2 = A,

∫∫
|U 1| 4

N +2 = I (A),

concluding the proof of the proposition.

3. Estimate of the maximum of the Strichartz norm

In the remainder of the paper, we restrict ourselves to 1D and 2D. In this section
we prove the second part of Theorem 1.1:

Proposition 3.1. Assume that N = 1 or N = 2. Then as δ → 0,

I (δ) =
∫∫

|uδ|2+ 4
N = CSδ

2+ 4
N + γ DN δ2+ 8

N + O
(
δ2+ 12

N

)
,

where D1 = 1

π

∑
k≥1

(2k)!
k 9k (k!)2

≈ 0.0867 and D2 = 1

2π
ln

4

3
≈ 0.0458.

Before proving Proposition 3.1, we define the quadratic form associated to the
maximum of the Strichartz estimate that appears in Theorem 1.5. By Theorem A,
if G is the Gaussian solution defined by (1.6) and ϕ ∈ L2, then

CS

(∫
|G0 + ϕ|2

)1+ 2
N −

∫∫ ∣∣∣G + ei t
2 �ϕ

∣∣∣2+ 4
N ≥ 0.

Expanding the above inequality and using that G is a maximizer, we obtain that the
linear part vanishes, i.e.,

∀ϕ ∈ L2, CS Re
∫

G0ϕ = Re
∫∫

|G| 4
N G ei t

2 �ϕ. (3.1)

The expansion at second order in ϕ yields

CS

(∫
|G0 + ϕ|2

)1+ 2
N −

∫∫ ∣∣∣G + ei t
2 �ϕ

∣∣∣2+ 4
N = Q(ϕ) + O

(
‖ϕ‖3

L2

)
, (3.2)

where Q is a (real) nonnegative symmetric quadratic form on L2 defined by

Q(ϕ) = CS

[
N + 2

N

∫
|ϕ|2 + 4(N + 2)

N 2

(
Re

∫
G0ϕ

)2
]

− (N + 2)2

N 2

∫∫
|G| 4

N

∣∣∣ei t
2 �ϕ

∣∣∣2

− 2(N + 2)

N 2
Re

∫∫
|G| 4

N −2 G
2
(

ei t
2 �ϕ

)2
.

(3.3)
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By the transformations of the linear equation (respectively, multiplication by a real
number, phase shift, space translation, Galilean invariance, scaling and time trans-
lation), we have

Q(G0) = Q(iG0) = Q(xG0) = Q(i xG0) = Q(x2G0) = Q(i x2G0) = 0, (3.4)

if N = 1 and

Q(G0)= Q(iG0)= Q(x j G0)= Q(i x j G0)= Q(|x |2G0)= Q(i |x |2G0)=0, (3.5)

(where j = 1, 2) if N = 2. Theorem 1.5, which will be proved in Section 5 states
that Q is positive definite in the subspace of functions in L2 that are orthogonal to
the directions in (3.4) or (3.5). This non-degeneracy property is crucial in the proof
of Proposition 3.1, which is divided in two parts.

3.1. Choice of the maximizer

We first give a corollary to the linear profile decomposition that will be needed in
the proof. Recall from (1.6) the definition of the normalized Gaussian G .

Lemma 3.2. Let { fn}n be a sequence in L2(RN ) such that

lim
n→∞ ‖ fn‖L2 = 1, (3.6)

and

lim
n→∞

∫∫ ∣∣∣ei t
2 � fn

∣∣∣ 4
N +2

dt dx = CS. (3.7)

Then there exist a subsequence of { fn}n (still denoted by { fn}n), a phase θ0 and a
sequence {�n}n of transformations of the form (2.2) such that

lim
n→∞

∥∥∥ fn − eiθ0�n(G)

∥∥∥
L2

= 0, (3.8)

where G is the normalized Gaussian solution defined in (1.6).

Proof. This is an application of Lemma 2.3 and the uniqueness result of Foschi [11].
After extraction of a subsequence, the sequence { fn}n admits a profile decom-

position of the form (2.4). At least one of the profiles is nonzero. Indeed, if it was

not the case,
∥∥∥ei t

2 � fn

∥∥∥
L

4
N +2 would tend to 0, a contradiction with (3.7). Reordering

the profiles, we may assume that U 1 �= 0. By the Pythagorean expansion (2.6) and
by (3.7)

CS + on(1) =
∫∫ ∣∣∣ei t

2 � fn

∣∣∣ 4
N +2

dt dx ≤ CS

(∥∥∥U 1
∥∥∥ 4

N +2

L2
+

∥∥∥w1
n

∥∥∥ 4
N +2

L2

)
+ on(1).
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Using that by (2.5),
∥∥w1

n

∥∥2
L2 = 1 − ∥∥U 1

∥∥2
L2 + on(1), we obtain from the previous

expression that

1 ≤
(∥∥∥U 1

∥∥∥2

L2

) 4
N +2

+
(

1 −
∥∥∥U 1

∥∥∥2

L2

) 4
N +2

,

which shows that ‖U 1‖L2 = 1 (we already excluded the case ‖U 1‖L2 = 0), and by
(2.5) again

lim
n→∞ ‖ fn − �1

n(U 1)(0)‖L2 = 0.

By our assumptions on fn we obtain, passing to the limit, that ‖U 1(0)‖L2 = 1

and ‖U 1‖
4
N +2

L
4
N +2

= CS , which shows by Theorem A that U 1(0) = G0 up to the

symmetries of the equation (i.e., the transformations of the form (2.2) and the mul-
tiplication by a phase eiθ0 ), which completes the proof.

Proposition 3.3. There exists δ0 > 0 such that if
{
u∗

δ

}
0<δ<δ0

is a family of maxi-
mizers, i.e. u∗

δ satisfies (2.1), then for all δ ∈ (0, δ0) there exists a transformation
uδ of u∗

δ such that fδ = uδ(0, x) satisfies:

fδ = αδG0 + ϕδ, lim
δ→0+

αδ

δ
= 1,

with ϕδ satisfying the orthogonality properties (1.9) and

∀δ ∈ (0, δ0), ‖ϕδ‖L2 ≤ Cδ1+ 2
N . (3.9)

By “transformation” we mean a symmetry of (1.1) which is a combination of trans-
formations of the form (1.4) and (1.5).

Remark 3.4. We will later improve the estimates on ϕδ and αδ and obtain (see
(3.22), (3.24)):

∀δ ∈ (0, δ0), ‖ϕδ‖L2 ≤ Cδ1+ 4
N and |αδ − δ| ≤ Cδ1+ 4

N .

Proof. The proof is divided into three steps.

Step 1. Closeness to G0. In this step we show that if δ is small enough, there exists
a transformation vδ of u∗

δ which satisfies the maximizer equations (2.1) and

lim
δ→0

δ−1‖gδ − δG0‖L2 = 0, where gδ(x) = vδ(0, x). (3.10)

Arguing by contradiction, we see that it is sufficient to show that for any sequence
δn → 0 there exists (after extraction of a subsequence) a sequence of solutions{
vδn

}
n that are obtained as transformations of u∗

δn
and satisfy (3.10).



STRICHARTZ NORM ESTIMATES FOR NLS 443

By Claim 2.10 and Lemma 2.9, there exists a constant C > 0 such that∣∣∣∣∫∫
|ei t

2 � f ∗
δn

|2+ 4
N dt dx − CSδ

2+ 4
N

n

∣∣∣∣ ≤ Cδ
2+ 8

N
n .

By Lemma 3.2, we obtain after extraction of subsequences that there exist θ0 ∈ R
and a sequence of transformations {�n} such that

lim
n→∞ δ−1

n

∥∥∥ f ∗
δn

− δneiθ0�n(G)�t=0

∥∥∥
L2

= 0. (3.11)

Note that, by (1.6),

�n(G)�t=0 = ρ
N
2

n eix ·ξn G (tn, ρnx + xn) = ρ
N
2

n eix ·ξn

π N/4(1 + i tn)N/2
e− |ρn x+xn |2

2(1+i tn ) .

And thus, by the change of variable y = ρn x+xn√
1+t2

n
,

∥∥∥ f ∗
δn

(x) − δneiθ0�n (G)�t=0

∥∥∥2

L2

=
∫ ∣∣∣∣∣∣eiτn+i tn |y|2

2 +i

√
1+t2n y−xn

ρn
·ξn

(
1 + t2

n

) N
4

ρ
N
2

n

f
∗
δn

(√
1 + t2

n y − xn

ρn

)
− δne− |y|2

2

π
N
4

∣∣∣∣∣∣
2

dy,

where eiτn =
(√

1+t2
n

1+i tn

) N
2

. Consider the solution wδn of (1.1) with initial condition

hδn (x) = eiτn+i

√
1+t2n y−xn

ρn
·ξn

(
1 + t2

n

) N
4

ρ
N
2

n

f
∗
δn

(√
1 + t2

n y − xn

ρn

)
,

and the solution vδn of (1.1) with initial condition gδn = ei tn |y|2
2 hδn . Then wδn is

an image of u∗
δn

by phase, scaling, space translation and Galilean transformation
(see (1.4)). Furthermore, vδn is obtained from wδn with a combination of pseudo-
conformal transformation and time translation. Namely:

vδn (t, x) = t N/2
n

(t2
n t + tn)N/2

e
itn |x |2

2(tn t+1) wδn

(
t

1 + tnt
,

tnx

t2
n t + tn

)
.

All these transformations preserve the L2 norm and the global space-time L2+ 4
N

norm, which shows that∥∥gδn

∥∥
L2 = δn,

∫∫ ∣∣vδn

∣∣ 4
N +2 = I (δn).
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By (3.11),

lim
n→∞

1

δn

∥∥gδn − δnG0
∥∥

L2 = 0,

concluding the first step.

Step 2. Orthogonality conditions. We next show that the statement of the proposi-
tion holds if (3.9) is replaced by the weaker condition

lim
δ→0

δ−1‖ϕδ‖L2 = 0. (3.12)

For this we must show that there exists a transformation uδ of vδ such that ϕδ satis-
fies the orthogonality conditions (1.9). Consider the unit ball

BL2(G0, 1) =
{

f ∈ L2, ‖ f − G0‖L2 < 1
}

,

and define, for small δ > 0, a differentiable mapping

�δ : R × (0, +∞) × R × RN × RN × BL2(G0, 1) −→ R × R × RN × RN × R

as follows. If θ0 ∈ R, �0 ∈ (0, +∞) × R × RN × RN , f ∈ BL2(G0, 1), ũδ is the
solution of (1.1) with initial condition δ f and

Uδ(x) = δG0 − eiθ0�0 (ũδ)�t=0 = δG0 − eiθ0ρ
N
2

0 eix ·ξ0 ũδ (t0, ρ0x + x0) ,

then �δ(θ0, �0, f ) = (�1
δ , �

2
δ , �

3
δ , �

4
δ , �

5
δ) is defined by

�1
δ = 1

δ
Im

∫
Uδ G0, �2

δ = 1

δ
Re

∫
Uδ

(
|x |2 − N

2

)
G0, �3

δ = 1

δ
Im

∫
Uδx G0,

�4
δ = 1

δ
Re

∫
Uδx G0, �5

δ = 1

δ
Im

∫
Uδ

(
|x |2 − N

2

)
G0.

Denote by �id =(1,0,0,0) the identical transformation. Note that �δ(0, �id, G0)=
0. Then:

Claim 3.5. For small δ, there exist (θ, �) close to (0, �id) such that

�δ

(
θδ, �δ,

1

δ
gδ

)
= 0,

where gδ is the initial condition of the maximizer vδ defined in Step 1.

We refer to Appendix A for the proof of Claim 3.5 which is based on a standard
application of the implicit function theorem.

Let uδ be the solution of (1.1) with initial condition

fδ = eiθδ�δ (vδ)�t=0 .
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Then by (3.10),
lim

δ→∞ δ−1 ‖ fδ − δG0‖L2 = 0. (3.13)

Furthermore, from the invariance of the L2 and L
2+ 4

N
t,x norms by the transformations

of the equation, uδ satisfies the maximizer equations (2.1).
The fact that �δ

(
θδ, �δ, δ

−1gδ

) = 0 means that fδ satisfies the orthogonality
conditions

Im
∫

( fδ − δG0) G0 = 0,

∫
( fδ − δG0) x G0 = 0, (3.14)∫

( fδ − δG0)

(
|x |2 − N

2

)
G0 = 0. (3.15)

Let αδ = Re
∫

fδG0 and ϕδ = fδ − αδG0, so that Re
∫

ϕδG0 = 0. By (3.14) and
(3.15), ϕδ satisfies the orthogonality conditions (1.9). By (3.13), limδ→0 αδ/δ = 1,
which concludes Step 2.

Step 3. Proof of the estimate (3.9). In this step we conclude the proof of Proposition
3.3 using the coercivity of Q (Theorem 1.5). To simplify notations, we will omit
the index δ and write u, f , ϕ and α instead of uδ , fδ , ϕδ and αδ . All estimates stated
hold for small δ > 0.

By Claim 2.10,∣∣∣∣∫∫
|u|2+ 4

N dt dx −
∫∫ ∣∣∣ei t

2 � f dt dx
∣∣∣2+ 4

N

∣∣∣∣
≤ Cδ1+ 4

N

∥∥∥u − ei t
2 � f

∥∥∥
L

2+ 4
N

t,x

≤ Cδ2+ 8
N .

Recalling that 1
α

f = G0(x) + 1
α
ϕ and using the expansion of the Strichartz norm,

we obtain∫∫
|u|2+ 4

N dt dx = α2+ 4
N

∫∫ ∣∣∣∣ei t
2 � 1

α
f

∣∣∣∣2+ 4
N

dt dx + O
(
δ2+ 8

N

)
= CS

(∫
| f |2 dx

)1+ 2
N − α2+ 4

N Q

(
1

α
ϕ

)
+ α2+ 4

N O
(

1

α3
‖ϕ‖3

L2

)
+ O

(
δ2+ 8

N

)
= CSδ

2+ 4
N − α

4
N Q (ϕ) + O

(
α

4
N −1 ‖ϕ‖3

L2

)
+ O

(
δ2+ 8

N

)
.

Using that u satisfies (2.1), we get∫∫
|u|2+ 4

N dt dx = I (δ) = CSδ
2+ 4

N + O
(
δ2+ 8

N

)
,
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and thus,

α
4
N Q (ϕ) = O

(
α

4
N −1‖ϕ‖3

L2

)
+O

(
δ2+ 8

N

)
=O

(
α

4
N ‖ϕ‖2

L2

‖ϕ‖L2

α

)
+O

(
δ2+ 8

N

)
.

By Theorem 1.5, ‖ϕ‖2
L2 � Q (ϕ), and thus, using that 1

α
‖ϕ‖L2 → 0 as δ → 0,

α
4
N ‖ϕ‖2

L2 = O
(
δ2+ 8

N

)
,

which shows (3.9).

3.2. Proof of the estimate on the maximum

The idea of the proof of Proposition 3.1 is to compare I (δ) with the L2+ 4
N norm of

Hδ , the solution to the nonlinear equation (1.1) with the Gaussian initial data δG0.
We have ∫∫

|uδ|2+ 4
N dt dx = I (δ) ≥

∫∫
|Hδ|2+ 4

N dt dx .

The global L2+ 4
N of Hδ may be estimated as follows:

Lemma 3.6. Let

DN =−
(

2 + 4

N

)
Im

∫∫
|G(t)| 4

N G(t)
∫ t

0
ei (t−s)

2 �
(
|G(s)| 4

N G(s)
)

ds dt dx . (3.16)

Then for small δ > 0,∫∫
|Hδ|2+ 4

N dt dx = δ2+ 4
N

∫∫
|G|2+ 4

N dt dx+γ DN δ2+ 8
N +O

(
δ2+ 12

N

)
. (3.17)

The exact value of the constant DN will be computed in Appendix B (dimension 1)
and Appendix C (dimension 2).

Proof of Lemma 3.6. Since G is the linear evolution of G0, we have

Hδ = δG + iγ
∫ t

0
ei (t−s)

2 �|Hδ(s)| 4
N Hδ(s)ds.

We approximate Hδ by vδ:

vδ(t, x) = δ
(

G(t, x) + γ δ
4
N r(t, x)

)
,

where

r(t, x) = i
∫ t

0
ei (t−s)

2 �|G(s)| 4
N G(s) ds, (3.18)
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in other words, vδ solves

i∂tvδ + 1

2
�vδ + γ δ

4
N +1|G| 4

N G = 0, vδ(0, x) = δG0(x),

and r solves

i∂t r + 1

2
�r + |G| 4

N G = 0, r(0, x) = 0.

Since by Claim 2.10

∥∥∥|Hδ| 4
N Hδ − δ

4
N +1|G| 4

N G
∥∥∥

L
2(N+2)

N+4
t,x

≤ C ‖Hδ − δG‖
L

2+ 4
N

t,x

(
‖Hδ‖

4
N

L
2+ 4

N
t,x

+ ‖δG‖
4
N

L
2+ 4

N
t,x

)
≤ Cδ

8
N +1,

by Strichartz estimates, we have

‖Hδ − vδ‖
L

2+ 4
N

t,x

≤ Cδ1+ 8
N ,

and thus,∣∣∣∣ ∫∫
|Hδ|2+ 4

N dt dx −
∫∫

|vδ|2+ 4
N dt dx

∣∣∣∣ � ‖Hδ −vδ‖
L

2+ 4
N

t,x

‖δG0‖1+ 4
N

L2 � δ2+ 12
N ,

which is exactly the power of higher order terms in (3.17). It remains to estimate∫∫ |vδ|2+ 4
N . Note that if A and B are functions of space and time,∫∫

|A + B|2+ 4
N

=
∫∫

|A|2+ 4
N +

(
2+ 4

N

)
Re

∫∫
|A| 4

N AB+O
(∫∫

|A| 4
N |B|2+|B|2+ 4

N

)
.

(3.19)

By (3.19) and the definition of vδ we get,∫∫
|vδ|2+ 4

N dt dx = δ2+ 4
N

∫∫
|G|2+ 4

N dt dx

+ δ2+ 8
N

(
2 + 4

N

)
Re

∫∫
|G| 4

N Gr dt dx + O
(
δ2+ 12

N

)
,

which concludes the proof of Lemma 3.6 in view of the definition (3.16) of DN .
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We next prove Proposition 3.1. Let uδ , fδ , ϕδ and αδ be as in Proposition 3.3. We
have

uδ = ei t
2 � (αδG0 + ϕδ)︸ ︷︷ ︸

A

+ iγ
∫ t

0
ei (t−s)

2 �
(
|uδ(s)| 4

N uδ(s)
)

ds︸ ︷︷ ︸
B

. (3.20)

By (3.9) and Strichartz estimate (1.3),∥∥∥ei t
2 �ϕδ

∥∥∥
L2+ 4

N
≤ C‖ϕδ‖L2 ≤ Cδ1+ 2

N .

Expanding the B term in (3.20) and applying Strichartz estimates again to bound

the terms in ϕδ , we get (the O’s are estimated in the space L
2+ 4

N
t,x ).

B = iγ
∫ t

0
ei (t−s)

2 �
(
|uδ(s)| 4

N uδ(s)
)

ds

= iγ
∫ t

0
ei (t−s)

2 �

[∣∣∣αδG(s) + ei s
2 �ϕδ

∣∣∣ 4
N

(
αδG(s) + ei s

2 �ϕδ

)]
ds + O

(
δ1+ 8

N

)
= iγα

1+ 4
N

δ

∫ t

0
ei (t−s)

2 �
(
|G(s)| 4

N G(s)
)

ds + O
(
δ

4
N ‖ϕδ‖L2 + δ1+ 8

N

)
.

And thus, by (3.19) and (3.20),∫∫
|uδ|2+ 4

N dt dx =
∫∫ ∣∣∣αδG + ei t

2 �ϕδ

∣∣∣2+ 4
N

dt dx

−
(

2 + 4

N

)
γα

2+ 8
N

δ Im
∫∫

|G(t)| 4
N G(t)

∫ t

0
ei (t−s)

2 �
(
|G(s)| 4

N G(s)
)

ds dt dx

+ O
(
δ1+ 8

N ‖ϕδ‖L2

)
+ O

(
δ2+ 12

N

)
.

(3.21)

By the equation (3.2)

∫∫ ∣∣∣αδG + ei t
2 �ϕδ

∣∣∣2+ 4
N

dt dx

= α
2+ 4

N
δ

[
CS

∥∥∥∥G0 + 1

αδ

ϕδ

∥∥∥∥2+ 4
N

L2
− Q

(
1

αδ

ϕδ

)
+ O

(
1

α3
δ

‖ϕδ‖3
L2

)]
.

By (3.9) and (3.21), using that

‖αδG0 + ϕδ‖2
L2 = δ2 = α2

δ + ‖ϕδ‖2
L2 = α2

δ + O
(
δ2+ 4

N

)
, (3.22)
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we get, in view of the definition (3.16) of DN ,∫∫
|uδ|2+ 4

N dt dx

=CSδ
2+ 4

N − α
4
N
δ Q(ϕδ)+γ DN α

2+ 8
N

δ + O
(
δ1+ 8

N ‖ϕδ‖L2

)
+ O

(
δ2+ 12

N

)
.

(3.23)

By Lemma 3.6,∫∫
|uδ|2+ 4

N dt dx ≥ CSδ
2+ 4

N + γ DN δ2+ 8
N + O

(
δ2+ 12

N

)
.

Combining with (3.23), we get

CSδ
2+ 4

N − α
4
N
δ Q(ϕδ) + γ DN α

2+ 8
N

δ + O(δ2+ 12
N ) + O

(
δ1+ 8

N ‖ϕδ‖L2

)
≥ CSδ

2+ 4
N + γ DN δ2+ 8

N .

Using that by (3.22) ∣∣∣∣δ2+ 8
N − α

2+ 8
N

δ

∣∣∣∣ = O
(
δ2+ 12

N

)
,

this simplifies to

α
4
N
δ Q(ϕδ) = O

(
δ2+ 12

N

)
+ O

(
δ1+ 8

N ‖ϕδ‖L2

)
.

Let X = ‖ϕδ‖L2δ−1− 4
N . By the preceding estimate and Theorem 1.5, there exists a

constant C > 0 independent of δ such that X2 ≤ C(1 + X). This implies that X is
bounded independently of δ, i.e.

‖ϕδ‖L2 = O
(
δ1+ 4

N

)
. (3.24)

By (3.23) again,

I (δ) =
∫∫

|uδ|2+ 4
N = CSδ

2+ 4
N + γ DN δ2+ 8

N + O
(
δ2+ 12

N

)
. (3.25)

The proof is complete, except for the computation of DN which is given in appen-
dices B and C. Note that as announced in Remark 3.4, the estimate (3.24) improves
the preceding estimate (3.9) on ϕδ .
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4. Uniqueness

In this section we show the uniqueness part of Theorem 1.1. We assume again

N ∈ {1, 2}.
By Proposition 2.1, there exists, for small δ > 0, a maximizer for I (δ), i.e. a
solution uδ of (1.1) such that

‖ fδ‖L2 = δ,

∫∫
|uδ|2+ 4

N = I (δ) (4.1)

(as usual fδ(x) = uδ(0, x)). By Proposition 3.3 and Remark 3.4, assuming again
that δ is small, any maximizer for I (δ) satisfies, after transformation, the following
properties:

fδ = αδG0 + ϕδ, (4.2)

where ϕδ ∈ L2(RN ) and αδ > 0 are such that∫
ϕ G0 =

∫
ϕ |x |2G0 = 0,

∫
ϕ xG0 = 0RN , (4.3)

‖ϕδ‖L2 ≤ Cδ1+ 4
N , αδ > 0 and |αδ − δ| ≤ Cδ1+ 4

N . (4.4)

We must show that if C > 0, there exists δ0 > 0 such that if δ ∈ (0, δ0), there is at
most one solution uδ of (1.1) satisfying (4.1), (4.2), (4.3) and (4.4).

Let us fix a small δ > 0 and a maximizer uδ satisfying (4.1), (4.2), (4.3)

and (4.4). The strategy of the proof is to expand
∫ |v|2+ 4

n , where v is a solution

of (1.1) which is close to uδ . In Section 4.1 we expand v and
∫ |v|2+ 4

n at first
order, in Section 4.2 we obtain a second order expansion involving the quadratic
form Q. Assuming that v is another maximizer, the conclusion will follow from
Theorem 1.5.

4.1. Linearization

Lemma 4.1. There exists a linear operator Lδ : L
2+ 4

N
t,x → L

2+ 4
N

t,x such that

∀h ∈ L
2+ 4

N
t,x , ‖(Lδ − 1)h‖

L
2+ 4

N
t,x

≤ Cδ
4
N ‖h‖

L
2+ 4

N
t,x

, (4.5)

with the following property: if v is a solution of (1.1) with the initial condition
fδ + ψ , where

‖ψ‖L2 ≤ δ, (4.6)

then ∥∥∥v − uδ − Lδ

(
ei t

2 �ψ
)∥∥∥

L
2+ 4

N
t,x

≤ Cδ
4
N −1‖ψ‖2

L2 . (4.7)
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Proof. Let w = v − uδ . Then by Lemma 2.2,

‖w‖
L

2+ 4
N

t,x

≤ C‖ψ‖L2 . (4.8)

Writing Duhamel’s formula for uδ and v = uδ + w, we get

w=ei t
2 �ψ+iγ

∫ t

0
ei (t−s)

2 �
(
|uδ(s) + w(s)| 4

N (uδ(s) + w(s)) − |uδ(s)| 4
N uδ(s)

)
ds.

Expanding |uδ(s) + w(s)| 4
N (uδ(s) + w(s)), one can write the preceding equality as

w = ei t
2 �ψ + L̃δw + R̃δ(w), (4.9)

where the linear operator L̃δ : L
2+ 4

N
t,x → L

2+ 4
N

t,x satisfies

∥∥L̃δw
∥∥

L
2+ 4

N
t,x

≤ Cδ
4
N ‖w‖

L
2+ 4

N
t,x

, (4.10)

and R̃δ satisfies

∥∥R̃δ(w)
∥∥ ≤ C

(
δ

4
N −1‖w‖2

L
2+ 4

N
t,x

+ ‖w‖1+ 4
N

L
2+ 4

N
t,x

)
. (4.11)

Letting for small δ

Lδ = (
1 − L̃δ

)−1
,

we obtain by (4.10) that Lδ satisfies (4.5). The estimate (4.7) follows from (4.6),
(4.8), (4.9) and (4.11).

Lemma 4.2. Let Lδ be as in Lemma 4.1. Then for small δ > 0,

Re
∫∫

|uδ| 4
N uδ Lδ

(
ei t

2 �ψ
)

= µδ Re
∫

fδψ, (4.12)

where µδ > 0, which depends only on uδ , satisfies∣∣∣µδ − CSδ
4
N

∣∣∣ ≤ Cδ
8
N . (4.13)

Proof. Indeed, by definition

I (δ) = max
∫∫

|v|2+ 4
N , (4.14)
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where the maximum is taken over all solutions v of (1.1) with initial condition
fδ + ψ , such that

∫ | fδ + ψ |2 = δ2. For such a solution v, write, as in the proof of
Lemma 4.1, v = uδ + w. Then∫∫

|v|2+ 4
N =

∫∫
|uδ + w|2+ 4

N

=
∫∫

|uδ|2+ 4
N +

(
2 + 4

N

)
Re

∫∫
|uδ| 4

N uδw + O
(
δ

4
N ‖ψ‖2

L2

)
=

∫∫
|uδ|2+ 4

N +
(

2 + 4

N

)
Re

∫∫
|uδ| 4

N uδ Lδ

(
ei t

2 �ψ
)

+ O
(
δ

4
N ‖ψ‖2

L2

)
.

The existence of µδ then follows from the Lagrange multiplier equation for the
maximizing problem (4.14).

We next estimate µδ . By (4.2) and (4.4)

fδ = δG0 + O
(
δ1+ 4

N

)
in L2.

Thus by Claim 2.10,

uδ = δG + O
(
δ1+ 4

N

)
in L

2+ 4
N

t,x . (4.15)

As a consequence, we obtain (assuming ‖ψ‖L2 ≤ δ)

Re
∫∫

|uδ| 4
N uδ Lδ

(
ei t

2 �ψ
)

= Re
∫∫

|uδ| 4
N uδ ei t

2 �ψ + O
(
δ1+ 8

N ‖ψ‖L2

)
= δ1+ 4

N Re
∫∫

|G| 4
N G ei t

2 �ψ + O
(
δ1+ 8

N ‖ψ‖L2

)
.

On the other hand,

Re
∫

f δψ =Re
∫

αδG0ψ+O
(
δ1+ 4

N ‖ψ‖L2

)
=δ Re

∫
G0ψ+O

(
δ1+ 4

N ‖ψ‖L2

)
.

Combining with (4.12), we get

δ1+ 4
N Re

∫∫
|G| 4

N Gei t
2 �ψ =δµδ Re

∫
G0ψ +O

(
δ1+ 8

N ‖ψ‖L2 + µδδ
1+ 4

N ‖ψ‖L2

)
.

By (3.1),

CSδ
1+ 4

N Re
∫

G0ψ = δµδ Re
∫

G0ψ + O
(
µδδ

1+ 4
N ‖ψ‖L2 + δ1+ 8

N ‖ψ‖L2

)
.

This holds for all small ψ ∈ L2, yielding (4.13).
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4.2. Second order expansion

Lemma 4.3. Let v be a solution of (1.1) with initial condition fδ + ψ , and assume∫
| fδ + ψ |2 = δ2.

Then∫∫
|v|2+ 4

N = I (δ)−δ
4
N Q(ψ)+O

(
δ

8
N ‖ψ‖2

L2 + δ
4
N −1‖ψ‖3

L2 + ‖ψ‖2+ 4
N

L2

)
. (4.16)

Proof. Using that
∫ | fδ|2 = δ2, we get∫

|ψ |2 = −2 Re
∫

fδψ, (4.17)

and thus by (4.2) and (4.4),

δ2
∣∣∣∣Re

∫
G0ψ

∣∣∣∣2

≤ C
(
δ

8
N +2‖ψ‖2

L2 + ‖ψ‖4
L2

)
. (4.18)

Expanding |uδ + w|2+ 4
N at second order in w, we obtain∫∫

|v|2+ 4
N =

∫∫
|uδ + w|2+ 4

N

=
∫∫

|uδ|2+ 4
N +

(
2 + 4

N

)
Re

∫∫
|uδ| 4

N uδw

+
(

1+ 2

N

)2∫∫
|uδ| 4

N |w|2+ 2

N

(
1 + 2

N

)
Re

∫∫
|uδ| 4

N −2u2
δw

2

+ O
(
δ

4
N −1‖ψ‖3

L2

)
+ O

(
‖ψ‖2+ 4

N
L2

)
.

By Lemma 4.1, Lemma 4.2 and (4.17),

Re
∫∫

|uδ| 4
N uδw = Re

∫∫
|uδ| 4

N uδ Lδ

(
ei t

2 �ψ
)

+ O
(
δ

8
N ‖ψ‖2

L2

)
= µδ

∫
f δψ + O

(
δ

8
N ‖ψ‖2

L2

)
= −µδ

2

∫
|ψ |2 + O

(
δ

8
N ‖ψ‖2

L2

)
= −CS

2
δ

4
N

∫
|ψ |2 + O

(
δ

8
N ‖ψ‖2

L2

)
.
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By (4.15), then Lemma 4.1,∫∫
|uδ| 4

N |w|2 = δ
4
N

∫∫
|G| 4

N |w|2 + O
(
δ

8
N ‖ψ‖2

L2

)
= δ

4
N

∫∫
|G| 4

N

∣∣∣ei t
2 �ψ

∣∣∣2 + O
(
δ

8
N ‖ψ‖2

L2

)
,

and similarly

Re
∫∫

|uδ| 4
N −2u2

δw
2 = δ

4
N Re

∫∫
|G| 4

N −2G
2
(

ei t
2 �ψ

)2 + O
(
δ

8
N ‖ψ‖2

L2

)
.

Combining the preceding estimates, we obtain∫∫
|v|2+ 4

N =
∫∫

|uδ|2+ 4
N − CS

(
N + 2

N

)
δ

4
N

∫
|ψ |2

+
(

1 + 2

N

)2

δ
4
N

∫∫
|G| 4

N

∣∣∣ei t
2 �ψ

∣∣∣2

+ 2

N

(
1 + 2

N

)
δ

4
N Re

∫∫
|G| 4

N −2G
2
(

ei t
2 �ψ

)2

+ O
(

δ
8
N ‖ψ‖2

L2 + δ
4
N −1‖ψ‖3

L2 + ‖ψ‖2+ 4
N

L2

)
,

which yields (4.16) in view of (4.18) and the definition (3.3) of Q.

We can now conclude the proof of the uniqueness of the maximizer. Assume that
δ > 0 is small and consider a solution ũδ of (1.1) with initial condition f̃δ =
α̃δG0 + ϕ̃δ . Assume that ũδ , f̃δ , ϕ̃δ and α̃δ also satisfy (4.1), (4.2), (4.3) and (4.4).
We must show that ũδ = uδ . Let

ψ = (α̃δ − αδ)G0 + ϕ̃δ − ϕδ.

By (4.4), ‖ψ‖L2 ≤ Cδ
4
N +1. By Lemma 4.3 with v = ũδ ,

I (δ)=
∫∫

|v|2+ 4
N = I (δ)−δ

4
N Q(ψ)+O

(
δ

8
N ‖ψ‖2

L2 + δ
4
N −1‖ψ‖3

L2 + ‖ψ‖2+ 4
N

L2

)
,

and thus,

δ
4
N Q(ψ) ≤ C

(
δ

8
N ‖ψ‖2

L2 + δ
4
N −1‖ψ‖3

L2 + ‖ψ‖2+ 4
N

L2

)
≤ Cδ

8
N ‖ψ‖2

L2 . (4.19)

Since G0 is in the kernel of Q, Q(ψ) = Q(ϕ̃δ − ϕδ). Using that ϕδ and ϕ̃δ satisfy
the orthogonality conditions (1.9), we deduce from Theorem 1.5:

c‖ϕ̃δ − ϕδ‖2 ≤ Q(ψ). (4.20)
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Using that

α2
δ +

∫
|ϕδ|2 = δ2 = α̃2

δ +
∫

|ϕ̃δ|2,

we obtain, in view of (4.4),

|α̃δ − αδ| =
∣∣∣∣∣ α̃2

δ − α2
δ

αδ + α̃δ

∣∣∣∣∣ ≤ 1

δ

∣∣∣∣∫ |ϕδ|2 −
∫

|ϕ̃δ|2
∣∣∣∣ ≤ Cδ

4
N ‖ϕδ − ϕ̃δ‖L2,

and thus for small δ,

‖ψ‖2
L2 = (α̃δ − αδ)

2 + ‖ϕδ − ϕ̃δ‖2
L2 ≤ 2‖ϕδ − ϕ̃δ‖2

L2 . (4.21)

Combining (4.19), (4.20) and (4.21), we get

δ
4
N ‖ψ‖2

L2 ≤ Cδ
8
N ‖ψ‖2

L2,

a contradiction if δ > 0 is small and ψ �= 0. Thus, ψ = 0 and uδ = ũδ , which
completes the proof.

5. Coercivity of the quadratic form

In this section we show Theorem 1.5.
Let F be the N + 2-dimensional space of the null directions for Q that are

generated by the continuous symmetries of the linear Schrödinger equation:

F = spanC{G0, x j G0, |x |2G0}
( j = 1 or j = 1, 2 in dimension 1 and 2 respectively).

We must show that there exists a constant c > 0 such that

ϕ ∈ F⊥ =⇒ Q(ϕ) ≥ c‖ϕ‖2
L2 .

It turns out that F is generated by eigenfunctions for the harmonic oscillator defined
in Section 5.1.1. Indeed, in dimension 1, F is spanned by h0, h1 and h2 and in
dimension 2 by h00, h10, h01 and h20 + h02.

The outline of this section is as follows. In Section 5.1 we recall some proper-
ties of the harmonic oscillator H = −� + |x |2 and of a lens transform that will be
used in the proof. In Section 5.2 we show that the proof of Theorem 1.5 reduces to
the proof that Q(ϕ) > 0 for any eigenfunction ϕ of the harmonic oscillator H that
is orthogonal to F . In Section 5.3 and Section 5.4 we treat the reduced problem in
1D and 2D respectively by estimating the values taken by the quadratic form on
the eigenfunctions of H.
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5.1. Preliminaries

5.1.1. Harmonic oscillator

Consider the linear Schrödinger equation with the harmonic potential:

i∂τ u − 1

2
Hu = 0, (τ, y) ∈ R × RN , (5.1)

where H = −� + |y|2.
In what follows we briefly recall spectral property of H. We refer to [5] and refer-
ences therein for more details.

We first review the spectral properties of H in one space dimension. The spec-
trum of H consists of positive eigenvalues λn = 2n + 1, n = 0, 1, . . ., and the
corresponding eigenfunctions are

hn(y) = (−1)n cn ey2/2 ∂n
y (e−y2

), cn = 1√
n! 2n/2

, (5.2)

here the coefficients cn are chosen so that ‖hn‖2
L2(R)

= √
π . Equivalently, these are

the Hermite functions

hn(y) = Hn(y)√
2n n! e−y2/2, (5.3)

with Hn(y) being the nth Hermite polynomial:

Hn(y) = (−1)n ey2
∂n

y (e−y2
).

Thus, H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y, H4(y) =
16y4 − 48y2 + 12, etc. These eigenfunctions are orthogonal∫

R
h j (y) hk(y) dy = 1√

2 j j !√2k k!
∫
R

Hj (y) Hk(y) e−y2
dy = √

π δ jk, (5.4)

and they span L2(R).
In the 2D set up, y = (y1, y2) ∈ R2, the spectrum of H consists as well of a

discrete set of positive eigenvalues {λn}n∈N and, for n ∈ N, one has

λn = 2n + 2.

To each eigenvalue λn there corresponds a set of eigenfunctions h jk(y) with the
property that j + k = n and h jk(y) = h j (y1)hk(y2), where the hn’s are the one-

dimensional eigenfunctions. For example, h00(y) = e−|y|2 is the only eigenfunction
corresponding to the smallest eigenvalue λ0 = 2. For λ1 = 4, the eigenfunctions
are

h10(y) = √
2 y1 e−|y|2/2 and h01(y) = √

2 y2 e−|y|2/2,
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for λ2 = 6, they are

h20(y) = 2−1/2(2y2
1 − 1)e−|y|2/2, h02(y) = 2−1/2(2y2

2 − 1)e−|y|2/2

and h11(y) = 2y1 y2e−|y|2/2.

5.1.2. The Lens transform

For a function u(t, x) : I × RN → C, define the lens transform1 �Lu of u by

�Lu(τ, y) = 1

cosN/2 τ
u

(
tan τ,

y

cos τ

)
e−i |y|2 tan τ

2 .

The new variables (τ, y) are defined by t = tan τ and x = y
cos τ

, τ ∈ (−π
2 , π

2 ), and
thus, �Lu : tan−1(I )∩ (−π

2 , π
2 )×RN → C. If I = R, then �Lu : (−π

2 , π
2 )×RN →

C: the lens transform compactifies the time. For more details see for example [4,28]
and reference therein.

If u(t, x) solves (1.1) (for some γ ∈ R), then v = �Lu(τ, y) solves

i∂τ v − 1

2
Hv = −γ |v| 4

N v, (5.5)

and vice versa.
The lens transform preserves the initial data (�Lu)(0) = u(0), and thus, the

mass of the solution:
‖(�Lu)(0)‖L2 = ‖u(0)‖L2 .

Furthermore, all Strichartz norms are also preserved, in particular:

‖�Lu‖
L

4
N +2

t,x ((−π/2,π/2)×RN )

= ‖u‖
L

4
N +2

t,x (R×RN )

.

Example 5.1. Let G0 = 1
π N/4 e−|x |2/2. The solution to the linear Schrödinger equa-

tion (1.2) is given by (1.6). The definition of �L shows that the solution e−i τ
2 HG0

of (5.1) is given by

G̃(τ, y) = 1

π N/4
e−i N

2 τ e−|y|2/2 = (�LG)(τ, y),

which is consistent with the fact that G0 is an eigenfunction for the eigenvalue
λ0 = N of H (in dimension N = 1, 2).

1 We use the name ’lens transform’ as in [28] but it should not be confused with the pseudo-
conformal inversion (1.5) of Talanov which is sometimes also called the lens transform.
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For later use we note that using the invariance of the initial condition and the

L
4
N +2 norm by the lens transform �L, we can rewrite the definition (3.3) of the

quadratic form as

Q(ϕ) = CS

[
N + 2

N

∫
|ϕ|2 + 4(N + 2)

N 2

(
Re

∫
G0ϕ

)2
]

− (N + 2)2

N 2

∫ π
2

− π
2

∫
RN

G
4
N
0

∣∣∣e−i τ
2Hϕ

∣∣∣2

− 2(N + 2)

N 2
Re

∫ π
2

− π
2

∫
RN

G
4
N
0 ei Nτ

(
e−i τ

2Hϕ
)2

.

(5.6)

5.2. Reduction of the problem

We prove here the following proposition:

Proposition 5.2. Assume that the conclusion of Theorem 1.5 does not hold. Then
there exists an eigenfunction ϕ of H, satisfying the orthogonality relations (1.9) and
such that Q(ϕ) = 0.

We define
E = {ϕ ∈ L2, Q(ϕ) = 0}.

Since Q is a real positive quadratic form, we know that E is a real vector space.
Before proving Proposition 5.2, we need a few preliminary results.

Lemma 5.3. Let {ϕn} be a bounded sequence in L2 such that

lim
n→∞ Q(ϕn) = 0. (5.7)

Then there exists a subsequence of {ϕn} that converges strongly in L2 to an element
of E.

Proof. Assume after extraction,

ϕn ⇀ ϕ weakly in L2 as n → ∞.

Write

Q(ϕ) = cQ

∫
|ϕ|2 + B(ϕ, ϕ), (5.8)

where cQ = CS
N+2

N and the symmetric bilinear form B is defined by

B(ϕ, ψ) = CS
4(N + 2)

N 2

(
Re

∫
G0ϕ

) (
Re

∫
G0ψ

)
− (N + 2)2

N 2
Re

∫
R

∫
RN

|G| 4
N

(
ei t

2 �ϕ
) (

e−i t
2 �ψ

)
− 2(N + 2)

N 2
Re

∫
R

∫
RN

G
4
N

(
ei t

2 �ϕ
) (

ei t
2 �ψ

)
.
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We will use the following standard property of the Schrödinger linear flow:

Claim 5.4.

ψn ⇀ 0 weakly in L2 =⇒ ei t
2 �ψn → 0 strongly in L2

loc(R × RN ).

Indeed, by the local smoothing effect [7, 23, 32], ei t
2 � defines a continuous map

from L2(RN ) to L2
(
R, H1/2

loc (RN )
)

. Using the equation (1.2), we see that it also

defines a continuous map from L2(RN ) to H1/4
loc

(
RN+1

)
. The claim follows from

the local compactness of the embedding of H1/4 in L2.
Combining Claim 5.4 with the decay of G at infinity, we get

ψn ⇀ 0 weakly in L2 =⇒ B(ψn, ψn) → 0. (5.9)

We will show by contradiction that {ϕn} is a Cauchy sequence in L2. If not, there
exist sequences of integer { jn}, {kn} that go to ∞ such that

∀n, ‖ϕkn − ϕ jn ‖L2 ≥ ε0 > 0. (5.10)

The weak convergence of {ϕn} in L2 implies

ϕkn − ϕ jn ⇀ 0 weakly in L2. (5.11)

Furthermore, (5.7) and Cauchy-Schwarz inequality (Q is positive) implies

0 ≤ Q(ϕ jn − ϕkn ) ≤ 2
(
Q(ϕ jn ) + Q(ϕkn )

) −→ 0 as n → ∞.

Combining with (5.9) and (5.11) one gets

lim
n→∞ ‖ϕ jn − ϕkn ‖L2 = 0,

contradicting (5.10). The proof is complete.

Lemma 5.5. The space E is a finite dimensional vector space over C.

Proof. The space E is a vector space over R. To show that it is a vector space over
C, it is sufficient to show that it is stable by multiplication by i . Let ϕ ∈ E . Write
ϕ = αG0 + ϕ̃, with α = ∫

ϕG0, so that∫
ϕ̃G0 = 0. (5.12)

The function iαG is in E and E is stable by addition. To show that iϕ ∈ E we must
show that i ϕ̃ ∈ E . By (5.6),

Q(i ϕ̃) = Q(ϕ̃) − 8(N + 2)

N 2
CS

(
Re

∫
G0ϕ̃

)2

+ 4(N + 2)

N
Re

∫ π/2

−π/2

∫
RN

G
4
N
0 ei Nτ

(
e−i τ

2Hϕ̃
)2

.
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We know that ϕ̃ ∈ E , so Q(ϕ̃) = 0 and it suffices to show:(
Re

∫
G0ϕ̃

)2

= 0 (5.13)

Re
∫ π/2

−π/2

∫
RN

G
4
N
0 ei Nτ

(
e−i τ

2Hϕ̃
)2 = 0. (5.14)

The first equality follows immediately from (5.12). Let us show the second equality
in the case N = 2. By (5.12), ϕ̃ is orthogonal to the first eigenfunction h00 of H.
Thus, e−i τ

2Hϕ̃ is of the form

e−i τ
2Hϕ̃ =

∑
(n1,n2)∈N2

n1+n2≥1

αn1n2e−iτ(n1+n2+1)hn1n2(y),

where by definition αn1n2 = ∫
R2 ϕ̃(y)hn1n2(y)dy. It follows from the definition

of hn1n2 that it is even if n1 + n2 is even and odd if n1 + n2 is odd. Expanding(
e−i τ

2Hϕ̃
)2

, we can write

Re
∫ π/2

−π/2

∫
R2

G2
0e2iτ

(
e−i τ

2Hϕ̃
)2 = Re

∫ π/2

−π/2

∫
R2

G2
0e2iτ

∑
m≥4

e−iτm gm(y) dy dτ,

where m ≥ 4 and gm ∈ C∞ (
RN

)
is exponentially decaying. Again, gm is even if

m is even and odd if m is odd. Then (5.14) will follow from

Re
∫ π/2

−π/2

∫
R2

G2
0(x)ei2τ e−iτm gm(y) dy dτ = 0. (5.15)

We distinguish two cases. If m is odd, then
∫
R2 G0(y)2gm(y) dy = 0 (it is the

integral of an odd function on R2), and (5.15) follows. If m is even, using that m ≥
4, we get that

∫ π/2
−π/2 e2iτ−iτm dτ = 0, which implies also (5.15). This completes

the proof of (5.14) in the case N = 2. To prove (5.14) in the case N = 1 write

e−i τ
2Hϕ̃0 =

∑
n≥1

αne
−iτ

(
n+ 1

2

)
hn(y),

and argue as above. We leave the details to the reader.
It follows immediately from Lemma 5.3 that the unit ball of

(
E, ‖ · ‖L2

)
is

compact, concluding the proof of Lemma 5.5.

We next prove Proposition 5.2. Let Ẽ = F⊥ ∩ E . By definition, Ẽ is the
subspace of functions ϕ ∈ L2 satisfying Q(ϕ) = 0 and the orthogonality relations
(1.9). By Lemma 5.5 it is a complex, finite dimensional vector space.
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We argue by contradiction, assuming that the conclusion of Theorem 1.5 does
not hold.

Step 1. Existence of a nontrivial null-space for Q. In this step we show that the
negation of Theorem 1.5 implies that Ẽ is not reduced to {0}. Indeed, in this case,
there exists a sequence ϕn in L2 such that

∀n, ϕn ∈ F⊥ and nQ(ϕn) < ‖ϕn‖L2 = 1. (5.16)

By Lemma 5.3, a subsequence of {ϕn}n converges strongly in L2 to some ψ ∈ E .
The condition ‖ϕn‖L2 = 1 implies that ‖ψ‖L2 = 1 and, in particular, that ψ �= 0.
Furthermore, ϕn ∈ F⊥ for all n and F⊥ is closed, thus, ψ ∈ F⊥, which shows as
announced that dim Ẽ ≥ 1.

Step 2. Stability by the harmonic evolution. In this step we show that Ẽ is invariant

by e−i
τ0
2 H for any τ0 ∈ R. As Ẽ is a complex vector space, it is equivalent to

show that Ẽ is invariant by S(t0) = e−i H−N
2 τ0 . The space F admits a basis of

eigenfunctions of H, thus F⊥ is stable by S(τ0). To prove that E is stable by S(τ0),
we rewrite the equation (3.2) using the lens transform of Section 5.1.2

CS

(∫
RN

|G0 + ϕ|2
)1+ 2

N −
∫ π/2

−π/2

∫
RN

∣∣∣e−i Nτ
2 G0 + e−i τ

2Hϕ

∣∣∣2+ 4
N

dy dτ

= Q(ϕ) + O
(
‖ϕ‖3

L2

)
.

(5.17)

We will show that the two terms in the first line of (5.17) do not change when
replacing ϕ by S(τ0)ϕ, which will imply that

Q(S(τ0)ϕ) = Q(ϕ), (5.18)

and thus, that E and Ẽ = E ∩ F are stable by S(τ0)).
By mass conservation∫

RN
|G0 + S(τ0)ϕ|2 =

∫
RN

∣∣∣∣e−i
Nτ0

2 G0 + e−i
τ0
2 Hϕ

∣∣∣∣2

=
∫ ∣∣∣e−i

τ0
2 H (G0 + ϕ)

∣∣∣2 =
∫

|G0 + ϕ|2 .

(5.19)

Similarly, ∫ π/2

−π/2

∫
RN

∣∣∣e−i Nτ
2 G0 + e−i τ

2HS(τ0)ϕ

∣∣∣2+ 4
N

=
∫ π/2+τ0

−π/2+τ0

∫
RN

∣∣∣e−i τ
2H (G0 + ϕ)

∣∣∣2+ 4
N

=
∫ π/2

−π/2

∫
RN

∣∣∣e−i τ
2H (G0 + ϕ)

∣∣∣2+ 4
N

.
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The last equality is consequence of the following known identity (see e.g. equality
(2.5) in [5]), which can be easily checked by expanding ϕ in the Hilbert basis of L2

given by the eigenfunctions of H:

e−i π+τ
2 Hϕ(y) = e−i N π

2 e−i τ
2Hϕ(−y).

This concludes the proof of (5.18).

Step 3. End of the proof. We have shown that e−i τ
2H is a strongly continuous

group of operators on the finite dimensional vector space Ẽ . As a consequence,
e−i τ

2H = eτ A for some A ∈ L(Ẽ) (see for example [10, Theorem 2.9, page 11]).
Let f ∈ Ẽ . Then

lim
τ→0

e−i τ
2H f − f

τ
= lim

τ→0

eτ A f − f

τ
= A f.

This shows that f is in the domain of H and that A f = − i
2H f . As a consequence,

H = 2i A is a continuous linear operator on Ẽ . Using that Ẽ is finite dimensional,
we deduce that H admits an eigenfunction in Ẽ , concluding the proof of Proposi-
tion 5.2.

From now on we treat each dimension separately.

5.3. 1D case

In this case, the quadratic form is

Q(ϕ) = √
3

∫
|ϕ|2 dy + 4

√
3√

π

(
Re

∫
e−y2/2ϕ(y) dy

)2

− 9

π

∫ π
2

− π
2

∫
e−2y2

∣∣∣e−i τ
2Hϕ

∣∣∣2
dy dτ

− 6

π
Re

∫ π
2

− π
2

∫
e−2y2

eiτ
(

e−i τ
2Hϕ

)2
dy dτ.

(5.20)

Recall that h0 is the 0th Hermite function (the eigenfunction corresponding to λ0 =
1), and e−i τ

2Hh0 = e−i τ
2 e−y2/2. Similarly,

h1(y) = √
2 ye−y2/2 � e−i τ

2Hh1(y) = √
2 e− 3

2 iτ y e−y2/2,

and

h2(y) = 1√
2

(2y2 − 1)e−y2/2 � e−i τ
2Hh2(y) = 1√

2
e− 5

2 iτ (2y2 − 1) e−y2/2,
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then it is easy to check that

Q(h0) = Q(ih0) = Q(h1) = Q(ih1) = Q(h2) = Q(ih2) = 0.

Note that for the rest of h j , j ≥ 3, we have e−i τ
2Hh j = e−i(2 j+1) τ

2 h j , and when
computing the quadratic form Q(h j ), we obtain that by orthogonality of {h j } the
second term in (5.20) is zero. Integration in t over the full circle makes the fourth
term vanish, therefore producing

Q(h j ) = √
3

∫
|h j (y)|2 dy − 9

∫
e−2y2 |h j (y)|2 dy.

Since e−2y2
is dominated by e−y2

, we estimate the second term by∫
e−y2 |h j (y)|2 dy = (2 j)!

22 j ( j !)2

√
π

2
,

(see [33, Lemma 2.1]). Then, using the following estimate for the central binomial
coefficient (

2m

m

)
≤ 4m

√
3m + 1

, m ≥ 1, (5.21)

we obtain

Q(h j ) ≥ √
3π

(
1 − 3

√
3

2

(2 j)!
22 j ( j !)2

)

≥ √
3π

(
1 − 3

√
3√

2
√

3 j + 1

)
> 0,

for j > 4. Explicit computation shows that

Q(h3) = 2
√

π

3
√

3
for h3(y) = 1√

3
(2y3 − 3y)e−y2/2

and

Q(h4) = 8
√

π

9
√

3
for h4(y) = 1

2
√

6
(4y4 − 12y2 + 3)e−y2/2,

concluding the proof that Q(h j ) > 0 for all j ≥ 3.

5.4. 2D case

Recall from Section 5.1.1 the definitions of the basis h jk of eigenfunctions of H.
By definition h jk(y) = h j (y1)hk(y2), where {h j } j≥0 is the orthogonal system in
L2(R) of eigenfunctions of the 1D harmonic oscillator. The function h jk corre-
sponds to the eigenvalue λm with m = j +k, and λm = 2m +2 = 2( j +k)+2. For



464 THOMAS DUYCKAERTS, FRANK MERLE AND SVETLANA ROUDENKO

a fixed m there are m + 1 independent eigenfunctions h jk ≡ h j,m− j , 0 ≤ j ≤ m,
corresponding to λm . The space F is exactly

F = spanC
{
h00, h01, h10, h02 + h20

}
.

By Proposition 5.2, the proof of Theorem 1.5 in 2D is reduced to the following:

Proposition 5.6. Assume that N = 2. Then

If α �= β or γ �= 0, Q (αh02 + βh20 + γ h11) > 0. (5.22)

If m ≥ 3 and
m∑

j=0

|α j |2 �= 0, then Q

(
m∑

j=0

α j h j,m− j

)
> 0. (5.23)

Proof. Let ϕ ∈ L2. By (5.6) with N = 2, we have

Q(ϕ) =
∫
R2

|ϕ|2 + 2

(
Re

∫
G0ϕ

)2

− 4
∫ π/2

−π/2

∫
R2

G2
0

∣∣∣e−i τ
2Hϕ

∣∣∣2

− 2 Re
∫ π/2

−π/2

∫
R2

G2
0ei2τ

(
e−i τ

2Hϕ
)2

.

(5.24)

It is easy to check that Q(h00) = 0.

Let m ≥ 1. Any eigenfunction of H for the eigenvalue 2m + 2 is of the form

ϕ =
m∑

j=0

α j h j,m− j . (5.25)

If ϕ is of this form, then the second integral in Q(ϕ) vanishes because of the or-
thogonality of the h jk’s and so does the last term, since

∫ π/2
−π/2 ei2mt dt = 0 as

m ∈ N \ {0}.
Recall that the first eigenfunction for H is h00(y) = e− 1

2 |y|2 . Using that G0 =
1√
π

e− |y|2
2 , we obtain

Q(ϕ) = B(ϕ, ϕ), B(ϕ, ψ) = Re
∫
R2

ϕψ − 4 Re
∫
R2

h2
00ϕψ. (5.26)

In particular, if j + k ≥ 1,

Q(h jk) =
(∫

h2
j (y1) dy1

) (∫
h2

k(y2) dy2

)
− 4

(∫
e−y2

1 h2
j (y1) dy1

) (∫
e−y2

2 h2
k(y2) dy2

)
= π

(
1 − (2 j)!(2k)!

22( j+k)−1 ( j !)2 (k!)2

)
,
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where in the last line we used the product of Hermite functions from [33, Lemma
2.1]. As expected we get Q(h01) = Q(h10) = 0.

Define

G( j, k) =


( j + k)!

2( j+k)−1/2
√

j ! √k!
(

j+k
2

)
!

for j + k − even,

0 for j + k − odd.

For a product of two G functions, write

F(m, j, k) = G( j, k)G(m − j, m − k).

Observe that F is symmetric, i.e.,

F(m, j, k) = F(m, k, j) = F(m, m − j, m − k) = F(m, m − k, m − j).

Note as well that

Q(h j,m− j )=π (1− F(m, j, j)) , j �= k =⇒B (
h j,m− j , hk,m−k

)=π F(m, j, k),

and that for α, β, γ ∈ C

1

π
Q(αh02 + βh20 + γ h11) = 1

4
|α − β|2 + 1

2
|γ |2,

which is equal to zero if and only if α = β and γ = 0. This shows (5.22).
Let us show (5.23).
We have

1

π
Q

(
m∑

j=0

α j h j,m− j

)

=
m∑

j=0

|α j |2 (1 − F(m, j, j)) − 2

Re
∑
j<k,

j+k−even

α jαk F(m, j, k)



≥
m∑

j=0

|α j |2 −

 m∑
j=0

|α j |2 F(m, j, j) +
∑
j<k,

j+k−even

(|α j |2 + |αk |2)F(m, j, k)



≥
m∑

j=0

|α j |2
1 −

∑
k∈[0,m],
j+k−even

F(m, j, k)

 ,
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where we used the symmetry of F in the last line. By Cauchy-Schwarz, for any
j ∈ [0, m] we obtain

F(m, j) :=
∑

k∈[0,m],
j+k−even

F(m, j, k)

= 2

22m

∑
k∈[0,m],
j+k−even

( j + k)!(2m − ( j + k))!
√

j !k!(m − j)!(m − k)!
(

j+k
2

)
!
(

m − j+k
2

)
!

≤ 2

22m

 ∑
k∈[0,m],
j+k−even

(
j + k

k

)(
2m − ( j + k)

m − k

)
1/2

×

 ∑
k∈[0,m],
j+k−even

(
j + k

j+k
2

)(
2m − ( j + k)

m − j+k
2

)
1/2

≤ 2

4m
I × II.

By elementary combinatorial arguments (see Appendix D) and (5.21), we estimate
the term I

I 2 ≤ 1

2

[(
2m + 1

m + 1

)
+

(
2m

m

)]
= 1

2

[
m + 1

2m + 2

(
2m + 2

m + 1

)
+

(
2m

m

)]
<

1

2

[
1

2

4m+1

√
3(m + 1) + 1

+ 4m

√
3m + 1

]

= 4m
(

1√
3m + 4

+ 1

2
√

3m + 1

)
.

For the term II we use (5.21), then decompose into fractions:

II 2 ≤ 4m
∑

k∈[0,m],
j+k−even

1√
3 (

j+k
2 ) + 1

1√
3 (m − j+k

2 ) + 1

= 4m

√
3m + 2

∑
k∈[0,m],
j+k−even

(
1

3 (
j+k
2 ) + 1

+ 1

3 (m − j+k
2 ) + 1

)1/2

.

Using the inequality
√

a + b ≤ √
a+√

b, reindexing the summation and estimating



STRICHARTZ NORM ESTIMATES FOR NLS 467

the sum we obtain

II 2 ≤ 4m

√
3m + 2

[m/2]∑
l=0

(
1√

3l + 1
+ 1√

3(m − l) + 1

)

= 4m

√
3m + 2

 m∑
l=0

1√
3l + 1

+ 1√
3 m

2 + 1
χ{m−even}


≤ 4m

√
3m + 2

(
2

3
(
√

3m + 1 − 1) + 1 + 1√
1.5m + 1

χ{m−even}
)

,

where χ{m−even} = 1 if m is even, 0 if m is odd. Hence,

F(m, j) ≤ 2

[(
1√

3m + 4
+ 1

2
√

3m + 1

)

× 1√
3m + 2

(
2
√

3m + 1 + 1

3
+ 1√

1.5m + 1
χ{m−even}

)]1/2

,

which is less than 1 for m ≥ 7. For m = 3, 4, 5, 6 we provide the values of F(m, j)
in Table 5.1 (which are all smaller than 1).

m = 3 F(3, 0) F(3, 1) F(3, 2) F(3, 3)

0.841 0.591 0.591 0.841

m = 4 F(4, 0) F(4, 1) F(4, 2) F(4, 3) F(4, 4)

0.785 0.5 0.664 0.5 0.785

m = 5 F(5, 0) F(5, 1) F(5, 2) F(5, 3) F(5, 4) F(5, 5)

0.718 0.492 0.573 0.573 0.492 0.718

m = 6 F(6, 0) F(6, 1) F(6, 2) F(6, 3) F(6, 4) F(6, 5) F(6, 6)

0.673 0.454 0.563 0.495 0.563 0.454 0.673

Table 5.1. Values of F(m, j) for 3 ≤ m ≤ 6.

Appendix

A. Implicit function theorem and orthogonality conditions

In this appendix we prove Claim 3.5. By explicit computation,

∇G0 = −xG0, �G0 = (|x |2 − N )G0. (A.1)
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The preceding identities imply that at the point (0, �id , G0):

∂Uδ

∂θ0
= −iδG0,

∂Uδ

∂ρ0
= − N

2
δG0 − δx · ∇G0 = − N

2
δG0 + δ|x |2G0,

∂Uδ

∂ξ0
= −iδxG0,

∂Uδ

∂x0
= −∇G0 = δxG0 ,

∂Uδ

∂t0
= − i

2
δ�G0 − iγ δ

4
N +1|G0| 4

N G0 = i

2
δ(N − |x |2)G0 − iγ δ

4
N +1|G0| 4

N G0.

Using the equalities∫
G2

0 = 1,

∫
|x |2G2

0 = N

2
,

∫
|x |4G2

0 = N (N + 2)

4
, (A.2)

which follow from the normalization of G0 and (A.1), we get that the Jacobian(
∂�k

δ

∂θ0
,
∂�k

δ

∂ρ0
,
∂�k

δ

∂ξ0
,
∂�k

δ

∂x0
,
∂�k

δ

∂t0

)
k=1...5

of �δ with respect to the variables (θ0,ρ0,ξ0,x0,t0)

at the point (0, �id , G0) is of the form


−1 0 0 0 1

4 + O (
δ4

)
0 1

2 0 0 0
0 0 − 1

2 0 0
0 0 0 1

2 0
0 0 0 0 − 1

4 + O (
δ4

)

 ,



−1 0 0 0 0 0 1
2 + O (

δ2
)

0 1 0 0 0 0 0
0 0 − 1

2 0 0 0 0
0 0 0 − 1

2 0 0 0
0 0 0 0 1

2 0 0
0 0 0 0 0 1

2 0
0 0 0 0 0 0 − 1

2 + O (
δ2

)


in dimensions N = 1 or 2 respectively. Using that these matrices are invertible, and
that their inverses may be estimated uniformly with respect to δ ∈ (0, δ0) (δ0 small),
we deduce from the implicit functions theorem that there exists ε > 0 and a constant
C > 0 such that for small δ, if ‖ f − G0‖L2 < ε, there exists (θδ, ρδ, ξδ, xδ, tδ) =
(θδ, �δ) such that

|θδ| + |ρδ − 1| + |ξδ| + |xδ| + |tδ| ≤ C‖ f − G0‖L2 and �δ(θδ, �δ, f ) = 0.

Applying this to the family
{
δ−1gδ

}
δ

of Step 1 in the proof of Proposition 3.3, we
get as announced that there exists (θδ, �δ) = (θδ, ρδ, ξδ, xδ, tδ) such that

lim
δ→∞ |θδ| + |ρδ − 1| + |ξδ| + |xδ| + |tδ| = 0 and �δ

(
θδ, �δ, δ

−1gδ

)
= 0,

concluding the proof.



STRICHARTZ NORM ESTIMATES FOR NLS 469

B. Constant in 1D and the generating function trick

By (3.16),

D1 = 6 Re
∫∫

|G(t)|4G(t)r(t) dt dx,

where r is the solution to

i∂t r + 1

2
�r + |G|4G = 0, r(0, x) = 0.

Let �L be the lens transform defined in Section 5.1.2. By the change of variable
t = tan τ , x = y

cos τ
, τ ∈ (−π/2, π/2), we get

D1 = 6 Re
∫
R

∫ π/2

−π/2
|�LG|4 �LG �Lr dτ dy.

By the example at the end of Section 5.1.2, �LG = 1
π1/4 e−iτ/2e−y2/2, and thus,

D1 = 6

π5/4
Re

∫
R

∫ π/2

−π/2
e−5y2/2eiτ/2�Lr dτ dy. (B.1)

Denote r̃ = �Lr . An explicit computation shows that r̃ solves

i∂τ r̃ − 1

2
Hr̃ + 1

π
5
4

e− i
2 τ e− 5

2 y2 = 0, r̃(0, y) = 0.

By Duhamel’s formula

r̃(τ, y) = i

π5/4
e− iτ

2 H
∫ τ

0
e− iσ

2 e
iσ
2 H

(
e− 5

2 y2
)

dσ. (B.2)

Decompose

e− 5
2 y2 =

∑
k≥0

αkhk

with {hk}’s as in (5.2) or (5.3), and

Hhk = λkhk ≡ (2k + 1) hk .

Then the coefficients αk’s are given by

αk = 1√
π

∫ +∞

−∞
e− 5

2 y2
hk(y) dy. (B.3)
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Note that for k odd, the eigenfunction hk is odd, and thus, the corresponding coeffi-
cient αk = 0. In the end of this appendix we compute the rest of (even) coefficients
using a generating function trick of Wang [33] and obtain

α2 j = (−1) j
√

(2 j)!
3 j

√
3 j ! . (B.4)

Since
e

1
2 iσH

(
e− 5

2 y2
)

= α0e
1
2 iσ h0 +

∑
k≥1

αkei(k+ 1
2 )σ hk,

by (B.2) we have

r̃(τ, y) = i

π5/4
e−i τ

2

(
τα0 h0(y) − i

∑
k≥1

αk

k
(1 − e−ikτ )hk(y)

)
. (B.5)

Substituting r̃ back into (B.1), we obtain that the zeroth term from (B.5) vanishes
when integrating in τ , and thus,

D1 = 6

π
5
2

Re
∫ ∫ π

2

− π
2

e− 5
2 y2 ∑

k≥1

αk

k
(1 − e−ikτ )hk(y) dτ dy

= 6

π
5
2

∑
k≥1

αk

k
Re

∫ π
2

− π
2

(
1 − e−ikτ

)
dτ

∫
e− 5

2 y2
hk(y) dy

= 6

π
5
2

∑
k≥1

αk

k
· π · √

παk,

where we have used
∫ π/2
−π/2 e−ikτ dτ = 0 if k is even, and αk = 0 if k is odd. By

(B.4) and keeping only even terms (k = 2 j), we have

D1 = 6

π

∑
j≥1

(α2 j )
2

2 j
= 1

π

∑
j≥1

(2 j)!
j 32 j ( j !)2

, (B.6)

and since
∑

j≥1
(2 j)!

j 9 j ( j !)2 ≈ 0.2724, we get

D1 = 1

π

∑
k≥1

(2k)!
k 9k (k!)2

≈ 1

π
0.2724 ≈ 0.0867.

Proof of (B.4). Here we compute coefficients of decomposition of e− 5
2 x2

in Her-
mite basis, adapting a method from [33]. Recall the k-th Hermite polynomial Hk

hk(x) = Hk(x)√
2k k! e− x2

2 .
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We have

αk = 1√
2k k! π

∫ +∞

−∞
Hk(x) e−3x2

dx . (B.7)

Using the generating function representation

e2t x−t2 =
+∞∑
n=0

tn

n! Hn(x), (B.8)

we observe that it is equivalent to

e
2 t√

3

√
3x−

(
t√
3

)2

× e− 2
3 t2 =

+∞∑
n=0

tn

n! Hn(x),

on the other hand, using (B.8) again on the left side

+∞∑
j=0

1

j !
(

t√
3

) j

H j

(√
3x

)
×

+∞∑
k=0

1

k!
(

−2

3

)k

t2k =
+∞∑
n=0

tn

n! Hn(x).

Expanding the product on the left-hand side and identifying the powers of t , we get

1

n! Hn(x) =
∑

j+2k=n

(
−2

3

)k 1

j ! k! (√3) j
H j

(√
3x

)
= 1

(
√

3)n

∑
j+2k=n

(−2)k

j ! k! Hj

(√
3x

)
Integrating both sides against e−3x2

, we obtain

1

n!
∫

Hn(x) e−3x2
dx = 1

(
√

3)n

∑
j+2k=n

(−2)k

j ! k!
∫
R

Hj

(√
3x

)
e−3x2

dx

= 1

(
√

3)n

∑
j+2k=n

(−2)k

j ! k!
1√
3

∫
R

H0(y) Hj (y) e−y2
dy.

Thus by (5.4)

1

n!
∫

Hn(x) e−3x2
dx = 1

(
√

3)n+1

∑
j+2k=n

(−2)k

j ! k!
√

2 j j ! δ0 j
√

π

=


0 if n is odd;
(−2)k √

π

(
√

3)2k+1 k! if n is even, n = 2k.
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Thus, ∫ ∞

−∞
H2k(x) e−3x2

dx = (2k)!
k!

(−2)k √
π

(
√

3)2k+1
,

which by (B.7) implies that

α2k = (−1)k

√
(2k)!

3k
√

3 k! .

C. Constant in 2D

Claim C.1.

D2 = 1

2π
ln

4

3
.

Proof. Recall from (3.18) the definition of r . By (3.16) we must show

Re
∫∫

|G|2 G r dt dx = 1

8π
ln

4

3
.

We will prove this result by direct computation of the integral, which is essentially
an integral of a Gaussian function (in x) and rational functions (in s and t).

By (1.6),

r(t, x) = i

π3/2

∫ t

0

1

(1 + is)(1 + s2)
ei (t−s)

2 �

(
e
− |x |2

2
(3−is)
(1+s2)

)
ds.

Noting that

ei t
2 �

(
e−α|x |2) = 1

(1 + 2αi t)N/2
e− α|x |2

1+2αi t , Re α > 0,

we get

r(t, x) = i

π3/2

∫ t

0

1

(1 + is)(1 + s2 + (s + 3i)(t − s))
e
− |x |2

2
3−is

1+s2+(s+3i)(t−s) ds.

Let
A = 1 + s2 + (s + 3i)(t − s) = 1 + st + 3i(t − s),

B = 1

2

(
2

1 + t2
+ 1

1 − i t
+ 3 − is

A

)
.

Thus

|G|2 G r = i

π3

∫ t

0

1

(1 + t2)(1 − i t)(1 + is)A
e−|x |2 B ds.
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Integrating in space we obtain∫
R2

|G|2 G r dx = i

π2

∫ t

0

1

(1 + t2)(1 − i t)(1 + is) A B
ds

= 1

π2

∫ t

0

i

(1 − i t)(1 + is)(3(1 + st) + 5i(t − s))
ds.

(C.1)

By fraction decomposition with respect to the variable s,

Re

[
i

(1 − i t)(1 + is)(3(1 + st) + 5i(t − s))

]
= Re

[
1

8(1 + t2)

(
i

1 + is
+ 5i − 3t

3 + 5i t + (3t − 5i)s

)]
= 1

8(1 + t2)

(
s

1 + s2
+ 25(t − s) − 9t (1 + ts)

9(1 + ts)2 + 25(t − s)2

)
.

Integrating with respect to the variable s and coming back to (C.1) we get:

Re

(∫
R2

|G|2 G r dx

)
= − 1

16π2

ln(1 + t2) + 2 ln 3 − ln(9 + 25t2)

1 + t2
.

Finally, we compute the space-time norm:∫ ∞

−∞
Re

(∫
R2

|G|2 G r dx

)
dt

= − 1

16π2

(∫ ∞

−∞
ln(1 + t2)

1 + t2
dt + 2 ln 3

∫ ∞

−∞
dt

1 + t2
−

∫ ∞

−∞
ln(9 + 25t2)

(1 + t2)
dt

)
.

We have ∫ ∞

−∞
1(

1 + t2
) dt = π.

By the change of variable t = tan τ , τ ∈ (−π/2, π/2) and the classical formulas∫ π
2

0
ln(cos τ) dτ = −π

2
ln 2,∫ π

0
ln(a + b cos τ) dτ = π ln

(
a + √

a2 − b2

2

)
, a > |b|,

one gets ∫ ∞

−∞
ln(9 + 25t2)

(1 + t2)
= 6π ln 2,

∫ ∞

−∞
ln

(
1 + t2

)(
1 + t2

) dt = 2π ln 2.
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We leave the details of the computations to the reader. Combining the preceding
equalities, we obtain as announced∫ ∞

−∞
Re

(∫
R2

|G|2 G r dx

)
dt = 1

8π
(ln 4 − ln 3).

D. Bound of a sum of binomial coefficients

Let m ≥ 1 and j ∈ {0, . . . , m}. In this appendix we sketch the proof of the follow-
ing inequality

∑
k∈{0,...,m}

j+k even

(
j + k

j

)(
2m − ( j + k)

m − j

)
≤ 1

2

(
2m + 1

m + 1

)
+ 1

2

(
2m

m

)
. (D.1)

For n ∈ N∗, let In = {1, . . . , n}. Let P(I2m+1) be the set of all subsets of I2m+1.
Define Om, j ⊂ P(I2m+1) and Em, j ⊂ P(I2m+1) as follows: a subset of I2m+1 is
in Om, j (respectively, Em, j ) if it has m + 1 elements a1 < a2 < . . . < am+1 and if
a j+1 is odd (respectively, even). Then for fixed j ∈ {0, . . . , m},
∣∣Om, j

∣∣ =
∑

k∈{0,...,m}
j+k even

(
j + k

j

)(
2m − ( j + k)

m − j

)
,

(
2m + 1

m + 1

)
= ∣∣Om, j

∣∣ + ∣∣Em, j
∣∣ .

Let us construct a one-to-one map � j from Om, j to the disjoint union of Em, j
and the set of m-elements subsets of I2m . Let S be a set which is in Om, j , and
a1 < a2 < . . . < am+1 its m + 1 elements. Then if j ≥ 1 and a j < a j+1 − 1, or
j = 0 and a1 > 1, we denote by � j (S) the element of Em, j {a1, . . . , a j , a j+1 −
1, a j+2, . . . , am+1} (i.e obtained from S by shifting only the element a j+1 to the
left). If a j = a j+1 − 1, or j = 0 and a1 = 1, we denote by � j (S) the subset
{a1, . . . , a j , a j+2, . . . , am} of I2m . The mapping � j is clearly one-to-one: in the
first case one can recover S by shifting the j + 1 element of � j (S) to the right. In
the second case, by adding to the set � j (S) the element b j + 1 (1 if j = 0), where
b j is the j th element of � j (S). Finally we obtain:

|Om, j | ≤ |Em, j | +
(

2m

m

)
≤

(
2m + 1

m + 1

)
− |Om, j | +

(
2m

m

)
,

which yields (D.1).
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