We complete the known results on the Cauchy problem in Sobolev spaces for the KdV-Burgers equation by proving that this equation is well-posed in with a solution-map that is analytic from to whereas it is ill-posed in , as soon as , in the sense that the flow-map cannot be continuous from to even at any fixed small enough. As far as we know, this is the first result of this type for a dispersive-dissipative equation. The framework we develop here should be useful to prove similar results for other dispersive-dissipative models.
@article{ASNSP_2011_5_10_3_531_0, author = {Molinet, Luc and Vento, St\'ephane}, title = {Sharp ill-posedness and well-posedness results for the {KdV-Burgers} equation: the real line case}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {531--560}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {3}, year = {2011}, mrnumber = {2905378}, zbl = {1238.35136}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2011_5_10_3_531_0/} }
TY - JOUR AU - Molinet, Luc AU - Vento, Stéphane TI - Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 531 EP - 560 VL - 10 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2011_5_10_3_531_0/ LA - en ID - ASNSP_2011_5_10_3_531_0 ER -
%0 Journal Article %A Molinet, Luc %A Vento, Stéphane %T Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 531-560 %V 10 %N 3 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2011_5_10_3_531_0/ %G en %F ASNSP_2011_5_10_3_531_0
Molinet, Luc; Vento, Stéphane. Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 531-560. http://archive.numdam.org/item/ASNSP_2011_5_10_3_531_0/
[1] D. Bekiranov, The initial-value problem for the generalized Burgers’ equation, Differential Integral Equations 9 (6) (1996), 1253–1265. | MR | Zbl
[2] I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal. 233 (2006), 228–259. | MR | Zbl
[3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal. 3 (1993), 209–262. | EuDML | MR | Zbl
[4] J. Bourgain, Periodic Korteveg de Vries equation with measures as initial data, Selecta Math. 3 (1993), 115–159. | MR | Zbl
[5] M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), 1235–1293. | MR | Zbl
[6] D. B. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burger’s equation, SIAM J. Math. Anal. 27 (1996), 708–724. | MR | Zbl
[7] P. Gérard, Nonlinear Schrödinger equations in inhomogeneous media: wellposedness and illposedness of the Cauchy problem, In: “International Congress of Mathematicians”, Vol. III, Eur. Math. Soc., Zürich, 2006, 157–182. | MR | Zbl
[8] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), In: “Séminaire Bourbaki 796”, Astérique 237, 1995, 163–187. | EuDML | Numdam | MR | Zbl
[9] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 133 (1997), 50–68. | MR | Zbl
[10] Z. Guo, Global Well-posedness of Korteweg-de Vries equation in , J. Math. Pures Appl. 91 (2009), 583–597. | MR | Zbl
[11] Z. Guo and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential Equations 246 (2009), 3864–3901. | MR | Zbl
[12] T. Kappeler and P. Topalov, Global wellposedness of KdV in , Duke Math. J. 135 (2006), 327–360. | MR | Zbl
[13] C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. | MR | Zbl
[14] N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations 22 (2009), 447–464. | MR | Zbl
[15] L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case, Trans. Amer. Math. Soc., to appear. | MR | Zbl
[16] L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not. 37 (2002), 1979–2005. | MR | Zbl
[17] E. Ott and N. Sudan, Damping of solitary waves, Phys. Fluids 13 (1970), 1432–1434.
[18] T. Tao, Multilinear weighted convolution of -functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123 (2001), 839–908. | MR | Zbl
[19] T. Tao, Scattering for the quartic generalised Korteweg-de Vries equations, J. Differential Equations 232 (2007), 623–651. | MR | Zbl
[20] D. Tataru, On global existence and scattering for the wave maps equation, Amer. J. Math. 123 (2001), 37–77. | MR | Zbl