
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. X (2011), 669-681

Harmonic mappings and distance function

DAVID KALAJ

Abstract. We prove the following theorem: every quasiconformal harmonic

mapping between two plane domains with C1,α (α < 1) and, respectively, C1,1

compact boundary is bi-Lipschitz. This theorem extends a similar result of the
author [10] for Jordan domains, where stronger boundary conditions for the image
domain were needed. The proof uses distance function from the boundary of the
image domain.

Mathematics Subject Classification (2010): 58E20 (primary); 30C62 (sec-
ondary).

1. Introduction and statement of the main result

We say that a function u : D → R is ACL (absolutely continuous on lines) in

the region D ⊂ R2, if for every closed rectangle R ⊂ D with sides parallel to

the x and y-axes, u is absolutely continuous on a.e. horizontal and a.e. vertical

line in R. Such a function has, of course, partial derivatives ux and uy a.e. in D.

A homeomorphism f : D → G, where D and G are subdomains of the complex

plane C, is said to be K -quasiconformal (K -q.c), for K ≥ 1, if f is ACL and

|∇ f (z)| ≤ Kl(∇ f (z)) a.e. on D, (1.1)

where

|∇ f (x)| := max
|h|=1

|∇ f (x)h| = | fz| + | fz̄|

and

l(∇ f (z)) := min
|h|=1

|∇ f (z)h| = | fz| − | fz̄|

(cf. [1, pages 23–24] and [22]). Note that, condition (1.1) can be written as

| fz̄| ≤ k| fz| a.e. on D, where k = K − 1

K + 1
i.e. K = 1+ k

1− k

Received October 9, 2009; accepted in revised form May 26, 2010.



670 DAVID KALAJ

or in its equivalent form

|∇ f (z)|2 ≤ K J f (z), z ∈ U, (1.2)

where J f is the Jacobian of f .

A function w is called harmonic in a region D if it has form w = u + iv
where u and v are real-valued harmonic functions on D. If D is simply connected,
then there are two analytic functions g and h defined on D such that w has the

representation

w = g + h.

If w is a harmonic univalent function then, by Lewy’s theorem (see [23]), w has a

non-vanishing Jacobian and consequently, according to the inverse mapping theo-

rem, w is a diffeomorphism.

Let

P(r, x) = 1− r2

2π(1− 2r cos x + r2)

denote the Poisson kernel. Then every bounded harmonic functionw defined on the
unit disc U := {z : |z| < 1} has the representation

w(z) = P[F](z) =
∫ 2π

0

P(r, x − ϕ)F(eix )dx, (1.3)

where z = reiϕ and F is a bounded integrable function defined on the unit circle S1.

In this paper we continue to study quasiconformal harmonic mappings. See

[25] for the pioneering work on this topic, and [8] for related earlier results. In some

recent papers, a lot of work have been done on this class of mappings ([3, 10–17,

19–21,24,26,28,29]). In these papers for the Lipschitz and the co-Lipschitz charac-

ter is established quasiconformal harmonic mappings between plane domains with

certain boundary conditions. In [32] the same problem is considered for hyperbolic

harmonic quasiconformal selfmappings of the unit disk. Notice that, in general,

quasi-symmetric self-mappings of the unit circle do not have a quasiconformal har-

monic extension to the unit disk. In [25] an example is given of C1 diffeomorphism

of the unit circle onto itself whose Euclidean harmonic extension is not Lipschitz.

Alessandrini and Nesi proved in [2] the following:

Proposition 1.1. Let F : S1 → γ ⊂ C be an orientation-preserving diffeomor-

phism of class C1 of S1 onto a simple closed curve γ . Let D be the bounded

domain such that ∂D = γ . Let w = P[F] ∈ C1(U; C). The mapping w is a

diffeomorphism of U onto D if and only if

Jw > 0 everywhere on S1. (1.4)

From the inequalities (1.2) and (1.4), we easily deduce the following:

Corollary 1.2. Under the assumption of Proposition 1.1 the harmonic mapping w
is a diffeomorphism if and only if it is K -quasiconformal for some K ≥ 1.
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In contrast to the case of the Euclidean metric, in the case of the hyperbolic

metric, if f : S1 (→ S1 is C1 diffeomorphism, or more generally if f : Sn−1 (→
Sm−1 is a mapping with non-vanishing energy, then its hyperbolic harmonic exten-
sion is C1 up to the boundary ([4, 5]).

To continue we need the definition of Ck,α Jordan curves (k ∈ N, 0 < α ≤ 1).

Let γ be a rectifiable curve in the complex plane. Let l be the length of γ . Let g :
[0, l] (→ γ be an arc-length parametrization of γ . Then |ġ(s)| = 1 for all s ∈ [0, l].
We will say that γ ∈ Ck,α , k ∈ N, 0 < α ≤ 1 if g ∈ Ck , and M(k,α) :=
supt )=s

|g(k)(t)−g(k)(s)|
|t−s|α < ∞. Notice this important fact: if γ ∈ C1,1 then γ has a

curvature κz for a.e. z ∈ γ and ess sup{|κz| : z ∈ γ } ≤ M(1, 1) < ∞.

This definition can be easily extended to an arbitrary Ck,α compact 1-dimen-

sional manifold (not necessarily connected).

The starting point of this paper is the following proposition.

Proposition 1.3. Let w = f (z) be a K -quasiconformal harmonic mapping

between a Jordan domain '1 with C1,α boundary and a Jordan domain '
with C1,α (respectively C2,α) boundary. Consider in addition b ∈ '1 and set

a = f (b). Then w is Lipschitz (respectively co-Lipschitz). Moreover there exists a
positive constant c = c(K ,','1, a, b) ≥ 1 such that

| f (z1) − f (z2)| ≤ c|z1 − z2|, z1, z2 ∈ '1 (1.5)

and
1

c
|z1 − z2| ≤ | f (z1) − f (z2)|, z1, z2 ∈ '1, (1.6)

respectively.

See [13] for the first part of Proposition 1.3 and [10] for its second part. In [10],

it was conjectured that the second part of Proposition 1.3 remains true if we assume

that ' has C1,α boundary only. Notice that the proof of Proposition 1.3 relies

on the Kellogg-Warschawski theorem ([6, 33, 34]) from the theory of conformal

mappings, which asserts that if w is a conformal mapping of the unit disk onto a

domain ' ∈ Ck,α , then w(k) has a continuous extension to the boundary (k ∈ N).
It also depended on Mori’s theorem from the theory of quasiconformal mappings,

which deals with the Hölder character of quasiconformal mappings between plane

domains (see [1, 31]). In addition, Lemma 3.2 below is needed.

Using a different approach, we will extend here as stated in Theorem 1.4 the

second part of Proposition 1.3 to the case of image domains with C1,1 boundary.

The proof of Theorem 1.4, given in the last section, is different form the proof of

second part of Proposition 1.3, and the use of the Kellogg-Warschawski theorem

for the second derivative ([34]) is avoided. The distance function is used and hence

a “weaker” smoothness of the boundary of image domain is needed.

Theorem 1.4 (The main theorem). Let w = f (z) be a K -quasiconformal har-

monic mapping from the unit disk U to a Jordan domain' with C1,1 boundary. Set
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a = f (0). Then w is co-Lipschitz. More precisely, there exists a positive constant

c = c(K ,', a) ≥ 1 such that

1

c
|z1 − z2| ≤ | f (z1) − f (z2)|, z1, z2 ∈ '. (1.7)

Since the composition of a quasiconformal harmonic and a conformal mapping is

itself quasiconformal harmonic, using Theorem 1.4 and Kellogg’s theorem for the

first derivative we obtain:

Corollary 1.5. Let w = f (z) be a K -quasiconformal harmonic mapping between
a plane domain '1 with C

1,α compact boundary and a plane domain ' with C1,1

compact boundary. Consider a0 ∈ '1 and set b0 = f (a0). Then w is bi-Lipschitz.

Moreover there exists a positive constant c = c(K ,','1, a0, b0) ≥ 1 such that

1

c
|z1 − z2| ≤ | f (z1) − f (z2)| ≤ c|z1 − z2|, z1, z2 ∈ '1. (1.8)

Proof of Corollary 1.5. Let b = f (a) ∈ ∂'. Since ∂' ∈ C1,1, it follows that there

exists a C1,1 Jordan curve γb ⊂ ', whose interior Db lies in ', and ∂' ∩ γb is
a neighborhood of b. See [13, Theorem 2.1] for an explicit construction of such a

Jordan curve. Let Da = f −1(Db), and take a conformal mapping ga of the unit disk
onto Da . Then fa = f ◦ ga is a quasiconformal harmonic mapping from the unit
disk onto the C1,1 domain Db. From Theorem 1.4 it follows that fa is bi-Lipschitz,

and from Kellogg’s theorem it follows that f = fa ◦ g−1
a and its inverse f −1 are

Lipschitz in some small neighborhood of a and of b = f (a) respectively. This
means that ∇ f is bounded in some neighborhood of a. Since ∂'1 is a compact, we

deduce that ∇ f is bounded in ∂'1. The same holds for ∇ f −1 with respect to ∂'.
This implies that f is bi-Lipschitz.

ACKNOWLEDGEMENTS. I thank the referee for providing constructive comments

and help in improving the contents of this paper.

2. Auxiliary results

Let ' be a domain in R2 having non-empty boundary ∂'. The distance function
from the boundaryis defined by

d(x) = dist (x, ∂'). (2.1)

Let ' be bounded and assume ∂' ∈ C1,1. These conditions on ' imply that ∂'
satisfies the following: at a.e. point z ∈ ∂' there exists a disk D = D(wz, rz)
depending on z such that D ∩ (C \ ') = {z}. Moreover µ := ess inf{rz, z ∈
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∂'} > 0. It is easy to show that µ−1 bounds the curvature of ∂', which means that
1
µ ≥ κz, for z ∈ ∂'. Here κz denotes the curvature of ∂' at z ∈ ∂'. Under the

above conditions, we have d ∈ C1,1((µ), where (µ = {z ∈ ' : d(z) < µ} and for
z ∈ (µ there exists ω(z) ∈ ∂' such that

∇d(z) = νω(z), (2.2)

where νω(z) denotes the inner normal vector to the boundary ∂' at the point ω(z).
See [7, Section 14.6] for the details.

Lemma 2.1. Let w : '1 (→ ' be a K -quasiconformal mapping and set χ =
−d(w(z)). Then

|∇χ | ≤ |∇w| ≤ K |∇χ | (2.3)

in w−1((µ) for µ > 0 such that 1/µ > κ0 = ess sup{|κz| : z ∈ ∂'}.

Proof. Observe first that ∇d is a unit vector. From the identity ∇χ = −∇d · ∇w it

follows that

|∇χ | ≤ |∇d||∇w| = |∇w|.
For a non-singular matrix A we have

inf
|x |=1

|Ax |2 = inf
|x |=1

〈Ax, Ax〉 = inf
|x |=1

〈
AT Ax, x

〉

= inf{λ : ∃ x )= 0, AT Ax = λx}
= inf{λ : ∃ x )= 0, AAT Ax = λAx}
= inf{λ : ∃ y )= 0, AAT y = λy} = inf

|x |=1
|AT x |2.

(2.4)

We next denote that (∇χ)T = −(∇w)T · (∇d)T , therefore for x ∈ w−1((µ) we
obtain

|∇χ | ≥ inf
|e|=1

|(∇w)T e| = inf
|e|=1

|∇w e| = l(w) ≥ K−1|∇w|.

The proof of (2.3) is complete.

Lemma 2.2. Let {e1, e2} be the canonical basis of the space R2. Let w : '1 (→ '
be a twice differentiable mapping and let χ = −d(w(z)). Then

,χ(z0) = κw0

1− κw0d(w(z0))
|(Oz0∇w(z0))

T e1|2 − 〈(∇d)(w(z0)),,w〉 , (2.5)

where z0 ∈ w−1((µ), ω0 ∈ ∂' with |w(z0) − ω0| = dist(w(z0), ∂'), µ > 0 such

that 1/µ > κ0 = ess sup{|κz| : z ∈ ∂'} and Oz0 is an orthogonal transformation.
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Proof. Let νω0 be the inner unit normal vector to γ at the point ω0 ∈ γ . Let Oz0 be

an orthogonal transformation that takes the vector e2 to νω0 . In complex notations

one has:

Oz0w = −iνω0w.

Take '̃ := Oz0'. Let d̃ be the distance function for '̃. Then

d(w) = d̃(Oz0w) = dist (Oz0w, ∂'̃).

Therefore χ(z) = −d̃(Oz0(w(z))). Furthermore

,χ(z) = −
2∑

i=1
(D2d̃)(Oz0(w(z)))(Oz0∇w(z)ei , Oz0∇w(z)ei )

− 〈∇d(w(z)),,w(z)〉 .

(2.6)

To continue, we make use of the following proposition.

Proposition 2.3 ([7, Lemma 14.17]). Let ' be bounded and assume ∂' ∈ C1,1.

Then, with notation as in Lemma 2.2, we have

(D2d̃)(Oz0w(z0)) = diag

( −κω0

1− κω0d
, 0

)
=




−κω0

1− κω0d
0

0 0



 , (2.7)

where κω0 denotes the curvature of ∂' at ω0 ∈ ∂'.

Applying (2.7) we have

2∑

i=1
(D2d̃)(Oz0(w(z0)))(Oz0(∇w(z0))ei , Oz0(∇w(z0))ei )

=
2∑

i=1

2∑

j,k=1
Dj,k d̃(Oz0(w(z0))) Di (Oz0w) j (z0) · Di (Oz0w)k(z0)

=
2∑

j,k=1
Dj,k d̃(Oz0(w(z0)))

〈
(Oz0∇w(z0))

T e j , (Oz0∇w(z0))
T ek

〉

= −κω0

1− κω0 d̃
|(Oz0∇w(z0))

T e1|2.

(2.8)

Finally we obtain

,χ(z0) = κω0

1− κω0 d̃
|(Oz0∇w(z0))

T e1|2 − 〈(∇d)(w(z0)),,w〉 .



HARMONIC MAPPINGS AND THE DISTANCE FUNCTION 675

3. Proof of the main theorem

The main step to establish the main theorem is the following lemma.

Lemma 3.1. Let w = f (z) be a K -quasiconformal mapping of the unit disk onto
a C1,1 Jordan domain ' satisfying the differential inequality

|,w| ≤ B|∇w|2, B ≥ 0 (3.1)

for some B ≥ 0. Assume in addition that w(0) = a0 ∈ '. Then there exists a
constant C(K ,', B, a) > 0 such that

∣∣∣∣
∂w

∂r
(t)

∣∣∣∣ ≥ C(K ,', B, a0) for almost every t ∈ S1. (3.2)

Proof. Let us find A > 0 such that the function ϕw(z) = − 1
A

+ 1
A
e−Ad(w(z)) is

subharmonic on {z : d(w(z)) < 1
2κ0

}, where

κ0 = ess sup{|κw| : w ∈ γ }.
Let χ = −d(w(z)). Combining (2.3), (2.5) and (3.1) we get

|,χ | ≤ 2κ0|∇w|2 + B|∇w|2 ≤ (2κ0 + B)K 2|∇χ |2. (3.3)

Take

g(t) = − 1

A
+ 1

A
eAt .

Then ϕw(z) = g(χ(z)). Thus

,ϕw = g′′(χ)|∇χ |2 + g′(χ),χ . (3.4)

Since

g′(χ) = e−Ad(w(z)) (3.5)

and

g′′(χ) = Ae−Ad(w(z)), (3.6)

it follows that

,ϕw ≥ (A − (2κ0 + B)K 2)|∇χ |2e−Ad(u(z)). (3.7)

In order to have ,ϕw ≥ 0, it is enough to take

A = (2κ0 + B)K 2. (3.8)

Choosing

. = max

{
|z| : dist(w(z), γ ) = 1

2κ0

}
,

we have that ϕw satisfies the conditions of the following generalization of the Hopf

lemma ([9]):
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Lemma 3.2 ([10]). Let ϕ satisfy ,ϕ ≥ 0 in R. = {z : . ≤ |z| < 1}, 0 < . < 1,

ϕ be continuous on R., ϕ < 0 in R., ϕ(t) = 0 for t ∈ S1. Assume that the radial

derivative
∂ϕ
∂r exists almost everywhere on S

1. Set M(ϕ, .) = max|z|=. ϕ(z). Then
the following inequality holds

∂ϕ(t)

∂r
>

2M(ϕ, .)

.2(1− e1/.
2−1)

for a.e. t ∈ S1. (3.9)

We will make use of (3.9), but under some improvement for the class of quasi-

conformal harmonic mappings. The idea is to make the right-hand side of (3.9)

independent of the mapping w for ϕ = ϕw.

We will say that a quasiconformal mapping f : U (→ ' is normalized if

f (1) = w0, f (e
2π i/3) = w1 and f (e−2π i/3) = w2, where w0w1, w1w2 and w2w0

are arcs of γ = ∂' having the same length |γ |/3.
In what follows we will prove that, for the class H(', K , B) of normalized

K -quasiconformal mappings, satisfying (3.1) for some B ≥ 0, and mapping the

unit disk onto the domain ', the inequality (3.9) holds uniformly (see (3.10)).
Let

. := sup

{
|z| : dist(w(z), γ ) = 1

2κ0
, w ∈ H(', K , B)

}
.

Then there exists a sequence {wn}, wn ∈ H(', K , B) such that

.n = max

{
|z| : dist(wn(z), γ ) = 1

2κ0

}
,

and

. = lim
n→∞ .n.

Now notice that if wn is a sequence of normalized K -quasiconformal mappings

of the unit disk onto ' then, up to taking a subsequence, wn is a locally uni-

formly convergent sequence converging to some quasiconformal mapping w ∈
H(', K , B). Under the condition on the boundary of ', by [27, Theorem 4.4]

this sequence is uniformly convergent on U. Then there exists a sequence zn such
that dist(wn(zn), γ ) = 1

2κ0
, limn→∞ zn = z0 and . = |z0|. Since wn converges

uniformly to w, it follows that limn→∞ wn(zn) = w(z0), and dist(w(z0), γ ) = 1
2κ0

.

This implies that . < 1. Let now

M(.) := sup{M(ϕw, .), w ∈ H(', K , B)}.

Using a similar argument we obtain that there exists a uniformly convergent se-

quence wn , converging to a mapping w0, such that

M(.) = lim
n→∞ M(ϕwn , .) = M(ϕw0, .).
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Thus

M(.) < 0.

Placing M(.) instead of M(.,ϕ) and ϕw instead of ϕ in (3.9), we obtain

∂ϕw(t)

∂r
>

2M(.)

.2(1− e1/.
2−1)

:= C(K ,', B) for a.e. t ∈ S1. (3.10)

To continue observe that

∂ϕw(t)

∂r
= eAd(w(z))|∇d|

∣∣∣∣
∂w

∂r
(t)

∣∣∣∣ = eAd(w(z))

∣∣∣∣
∂w

∂r
(t)

∣∣∣∣ .

Combining (3.8) and (3.10) we obtain for a.e. t ∈ S1

∣∣∣∣
∂w

∂r
(t)

∣∣∣∣ = e−Ad(w(z)) ∂ϕw(t)

∂r
≥ e−K

2 2M(.)

.2(1− e1/.
2−1)

.

Lemma 3.1 is now proved for a normalized mapping w. If w is not normalized then

we take the composition of w and an approprieate Möbius transformation in order

to obtain the desired inequality. The proof of Lemma 3.1 is complete.

Conclusion of the proof of Theorem 1.4. In this setting w is harmonic, therefore

B = 0. Assume first that w ∈ C1(U). Let l(∇w)(t) = ||wz(t)| − |wz̄(t)||. Since w
is K -quasiconformal, according to (3.2) we have

l(∇w)(t) ≥ |∇w(t)|
K

≥

∣∣∣∣
∂w

∂r
(t)

∣∣∣∣

K
≥ C(K ,', 0, a0)

K
(3.11)

for t ∈ S1. Therefore, having in mind Lewy’s theorem ([23]), which states that

|wz| > |wz̄| for z ∈ U, we obtain for t ∈ S1 that |wz(t)| )= 0 and hence

1

|wz|
C(K ,', 0, a0)

K
+ |wz̄|

|wz|
≤ 1, t ∈ S1.

Since w ∈ C1(U), it follows that the functions

a(z) := wz̄

wz

, b(z) := 1

wz

C(K ,', 0, a0)

K

are well-defined holomorphic functions in the unit disk having a continuous exten-

sion to the boundary. As |a| + |b| is bounded on the unit circle by 1, it follows that
it is bounded on the whole unit disk by 1 because

|a(z)| + |b(z)| ≤ P[|a|S1](z) + P[|b|S1](z) = P[|a|S1 + |b|S1](z), z ∈ U.
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This in turn implies that for every z ∈ U

l(∇w)(z) ≥ C(K ,', 0, a0)

K
=: C(', K , a0). (3.12)

This yields that

C(K ,', a0) ≤ |w(z1) − w(z2)|
|z1 − z2|

, z1, z2 ∈ U.

Assume now that w /∈ C1(U). We begin with a definition.

Definition 3.3. Let G be a domain in C and let a ∈ ∂G. We will say that Ga ⊂ G

is a ∂-neighborhood of a if there exists a disk D(a, r) := {z : |z−a| < r} such that
D(a, r) ∩ G ⊂ Ga .

Let t = eiβ ∈ S1, so that w(t) ∈ ∂'. Let γ be an arc-length parametrization
of ∂' with γ (s) = w(t). Since ∂' ∈ C1,1, there exists a ∂-neighborhood 't of

w(t) with C1,1 Jordan boundary such that

'τ
t := 't + iγ ′(s) · τ ⊂ ', and ∂'τ

t ⊂ ' for 0 < τ ≤ τt (τt > 0) . (3.13)

An example of a family 'τ
t such that ∂'τ

t ∈ C1,1 and with the property (3.13) has

been given in [13].

Let at ∈ 't be arbitrary. Then at + iγ ′(s) · τ ∈ 'τ
t . Take Uτ = f −1('τ

t ). Let

ητ
t be a conformal mapping of the unit disk onto Uτ such that η

τ
t (0) = f −1(at +

iγ ′(s) · τ ), and arg
dητ

t

dz
(0) = 0. Then the mapping

f τ
t (z) := f (ητ

t (z)) − iγ ′(s) · τ

is a harmonic K -quasiconformal mapping of the unit disk onto 't satisfying the

condition f τ
t (0) = at . Moreover

f τ
t ∈ C1(U).

Using the case w ∈ C1(U), it follows that

|∇ f τ
t (z)| ≥ C(K ,'t , at ).

On the other hand

lim
τ→0+

∇ f τ
t (z) = ∇( f ◦ ηt )(z)

on the compact sets of U as well as

lim
τ→0+

dητ
t

dz
(z) = dηt

dz
(z),
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where ηt is a conformal mapping of the unit disk onto U0 = f −1('t ) with ηt (0) =
f −1(at ). It follows that

|∇ ft (z)| ≥ C(K ,'t , at ).

Applying the Schwarz reflexion principle to the mapping ηt and using the formula

∇( f ◦ ηt )(z) = ∇ f · dηt

dz
(z)

it follows that in some ∂-neighborhood Ũt of t ∈ S1 with smooth boundary where

(D(t, rt ) ∩ U ⊂ Ũt for some rt > 0), the function f satisfies the inequality

|∇ f (z)| ≥ C(K ,'t , at )

max{|η′
t (ζ )| : ζ ∈ Ũt }

=: C̃(K ,'t , at ) > 0. (3.14)

Since S1 is a compact set, it can be covered by a finite family ∂Ũt j ∩S1∩D(t, rt/2),
j = 1, . . . ,m. It follows that the inequality

|∇ f (z)| ≥ min{C̃(K ,'t j , at j ) : j = 1, . . . ,m} =: C̃(K ,', a0) > 0 (3.15)

holds in the annulus

R̃ =
{
z : 1−

√
3

2
min
1≤ j≤m

rt j < |z| < 1

}
⊂

m⋃

j=1
Ũt j .

This implies that the subharmonic function S = |a(z)| + |b(z)| is bounded in U.
According to the maximum principle, it is bounded by 1 in the whole unit disk.

This in turn implies again (3.12) and consequently

C(K ,', a0)

K
|z1 − z2| ≤ |w(z1) − w(z2)|, z1, z2 ∈ U.
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[29] M. PAVLOVIĆ, Boundary correspondence under harmonic quasiconformal homeomorfisms
of the unit disc, Ann. Acad. Sci. Fenn. Math. 27 (2002), 365–372.

[30] C. POMMERENKE, “Boundary Behaviour of Conformal Maps”, Springer-Verlag, New
York, 1992.

[31] C. WANG, A sharp form of Mori’s theorem on Q-mappings, Kexue Jilu 4 (1960), 334–337.

[32] T. WAN, Constant mean curvature surface, harmonic maps, and universal Teichmüller
space, J. Differential Geom. 35 (1992), 643–657.

[33] S. E. WARSCHAWSKI, On differentiability at the boundary in conformal mapping, Proc.
Amer. Math. Soc. 12 (1961), 614–620.



HARMONIC MAPPINGS AND THE DISTANCE FUNCTION 681

[34] S. E. WARSCHAWSKI, On the higher derivatives at the boundary in conformal mapping,
Trans. Amer. Math. Soc. 38 (1935), 310–340.

University of Montenegro
Faculty of Natural Sciences
and Mathematics
Cetinjski put b.b.
81000 Podgorica, Montenegro
davidk@t-com.me


