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Markov uniqueness of degenerate elliptic operators

DEREK W. ROBINSON AND ADAM SIKORA

Abstract. Let ! be an open subset of Rd and H! = −∑d
i, j=1 ∂i ci j ∂ j be a

second-order partial differential operator on L2(!) with domain C∞
c (!), where

the coefficients ci j ∈ W1,∞(!) are real symmetric and C = (ci j ) is a strictly
positive-definite matrix over !. In particular, H! is locally strongly elliptic. We
analyze the submarkovian extensions of H!, i.e., the self-adjoint extensions that
generate submarkovian semigroups. Our main result states that H! is Markov
unique, i.e., it has a unique submarkovian extension, if and only if cap!(∂!) = 0
where cap!(∂!) is the capacity of the boundary of ! measured with respect to
H!. The second main result shows that Markov uniqueness of H! is equivalent
to the semigroup generated by the Friedrichs extension of H! being conservative.

Mathematics Subject Classification (2010): 47B25 (primary); 47D07, 35J70
(secondary).

1. Introduction

The Markov uniqueness problem [9] consists of finding conditions which ensure

that a diffusion operator has a unique submarkovian extension, i.e. an extension

that generates a submarkovian semigroup. An operator with this property is said to

be Markov unique. Our aim is to analyze this problem for the class of second-order,

divergence-form, elliptic operators with real Lipschitz continuous coefficients act-

ing on an open subset of ! of Rd . Each of these operators has at least one sub-

markovian extension, the Friedrichs extension [16]. This extension corresponds to

Dirichlet boundary conditions on ∂! and alternative boundary conditions can lead

to different submarkovian extensions. Our principal results establish that Markov

uniqueness is equivalent to the boundary ∂! having zero capacity, Theorem 1.2, or

to conservation of probability, Theorem 1.3.

Define H! as the positive symmetric operator on L2(!)with domain D(H!)=
C∞
c (!) and action

H!ϕ = −
d∑

i, j=1
∂i ci j ∂ jϕ = −

d∑

i, j=1
ci j ∂i ∂ jϕ −

d∑

i, j=1
(∂i ci j ) ∂ jϕ (1.1)
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where the ci j = c ji ∈ W 1,∞(!) are real, C = (ci j ) is a non-zero, positive-definite
matrix over ! and ∂i = ∂/∂xi . We assume throughout that C(x) = (ci j (x)) > 0

for all x ∈ !. This ensures that H! is locally strongly elliptic, i.e. for each compact

subset K of ! there is a µK > 0 such that C(x) ≥ µK I for all x ∈ K . This

ellipticity property is fundamental as it ensures that the various possible self-adjoint

extensions of H! differ only in their boundary behaviour (see Section 2).

The Markov uniqueness problem has been considered in a variety of contexts

(see [9] for background material and an extensive survey). It is related to a number

of other uniqueness problems. For example, the operator H!, which can be viewed

as an operator on L p(!) for each p ∈ [1,∞], is defined to be L p-unique if it has
a unique extension which generates an L p-continuous semigroup. In particular H!

is L2-unique if and only if it is essentially self-adjoint (see [9, Corollary 1.2]).

Then the self-adjoint closure is automatically submarkovian and H! is Markov

unique. Moreover, if H! is L1-unique then it is Markov unique [9, Lemma 1.6]. In

Theorem 1.3 we will establish a converse to this statement for the class of operators

under consideration. As a byproduct of our analysis of Markov uniqueness we also

derive criteria for various other forms of uniqueness.

In the sequel we extensively use the theory of positive closed quadratic forms

and positive self-adjoint operators (see [21, Chapter 6]) and the corresponding the-

ory of Dirichlet forms and submarkovian operators (see [4, 15, 23]). First we intro-

duce the quadratic form h! associated with H! by

h!(ϕ) =
d∑

i, j=1

∫

!
dx ci j (x) (∂iϕ)(x)(∂ jϕ)(x) (1.2)

with domain D(h!) = D(H!) = C∞
c (!). The form h! is closable with re-

spect to the graph norm ϕ %→ ‖ϕ‖D(h!) = (h!(ϕ) + ‖ϕ‖22)1/2 and its closure h!

is a Dirichlet form. The positive self-adjoint operator corresponding to h! is the

Friedrichs extension HF
! of H!. It is automatically submarkovian. Moreover, it is

the largest positive self-adjoint extension of H! with respect to the usual ordering

of self-adjoint operators. Krein [22] established that H! also has a smallest positive

self-adjoint extension. But the Krein extension is not always submarkovian. For ex-

ample, if ! is bounded the Krein extension of the Laplacian restricted to C∞
c (!) is

not submarkovian (see [15, Theorem 3.3.3]). Our first aim is to establish that H!

also has a smallest submarkovian extension. Then the Markov uniqueness problem

is reduced to finding conditions which ensure that this latter extension coincides

with the Friedrichs extension (see [9, Chapter 3]).

Define l! by setting

l!(ϕ) =
∫

!
dx

d∑

i, j=1
ci j (x) (∂iϕ)(x)(∂ jϕ)(x) (1.3)

where the ∂iϕ denote the distributional derivatives and the domain D(l!) of the

form is defined to be the space of all ϕ ∈ W
1,2
loc (!) for which the integral is finite.
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It is clear that l! is an extension of h! but it is not immediately obvious that l!
is closed and that the corresponding operator L! is an extension of H!. These

properties were established in [15] for operators of the form (1.1) but with smooth

coefficients. Our first result is a generalization for operators with Lipschitz coeffi-

cients which also incorporates some regularity and domination properties.

Recall that the positive semigroup St is defined to dominate the positive semi-

group Tt if Stϕ ≥ Ttϕ for all positive ϕ ∈ L2(!) and all t > 0. Moreover, D(k!) is
defined to be an order ideal of D(l!) if the conditions 0 ≤ ϕ ≤ ψ , ψ ∈ D(k!) and
ϕ ∈ D(l!) imply ϕ ∈ D(k!). (See [24], Chapter 2, for these and related concepts.)

Theorem 1.1. Let ! be an open subset of Rd and H! = −∑d
i, j=1 ∂i ci j ∂ j be a

second-order partial differential operator on L2(!) with domain C∞
c (!), where

the ci j ∈ W 1,∞(!) are real symmetric and C(x) = (ci j (x)) > 0 for all x ∈ !.
Then the following are true.

I. l! is a Dirichlet form and D(l!) ∩ C∞(!) is a core of l!.

II. The submarkovian operator L! associated with l! is an extension of H!.

III. If K! is any submarkovian extension of H! and k! the corresponding Dirich-

let form then l! ⊇ k! ⊇ h!. Therefore 0 ≤ L! ≤ K! ≤ HF
! in the sense of

operator order.

IV. If K! is any self-adjoint extension of H! then C∞
c (!)D(K!) ⊆ D(H!) and

if K! is a submarkovian extension then C∞
c (!)D(k!) ⊆ D(h!).

V. If K! is a submarkovian extension of H! then D(h!) is an order ideal of

D(k!) and e−t K! dominates e−t H
F
! . Moreover, e−t L! dominates e−t K! if and

only if D(k!) is an order ideal of D(l!).

The first three statements are a generalization of [15, Lemma 3.3.3 and Theo-

rem 3.3.1]. They establish that the operator L! is the smallest submarkovian ex-

tension of H!, but not necessarily the smallest self-adjoint extension. The fourth

statement is an interior regularity property. It establishes, in particular, that every

submarkovian extension of H! is a Silverstein extension in the terminology of [30]

(see [9, Definition 1.4]).

The third statement of the theorem implies that H! is Markov unique if and

only if l! = h!, i.e. if and only if D(l!) = D(h!). It is this criterion that has
been used extensively in the analysis of the Markov uniqueness problem (see [2]

[15] and [9, Chapter 3]). But the fourth statement implies that all the Dirichlet

form extensions coincide in the interior of ! and consequently differ only on the

boundary. Our first criterion for Markov uniqueness is in terms of the capacity of

the boundary.

The (relative) capacity of a measurable subset A ⊂ ! is defined by

cap!(A) = inf
{
‖ψ‖2D(l!) : ψ ∈ D(l!) and there exists an open set

U ⊂ Rd such that U ⊇ A and ψ = 1 a. e. on U ∩ !
}

.
(1.4)
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Thus cap! is directly related to the capacity occurring in the theory of Dirichlet

forms [4, 15].

Theorem 1.2. Under the assumptions of Theorem 1.1, the following conditions are
equivalent:

I. H! is Markov unique,

II. cap!(∂!) = 0.

It should be emphasized that there is no comparable geometric or potential-theoretic

characterization of essential self-adjointness, i.e. L2-uniqueness. Folklore would

suggest that H! is L2-unique if and only if the Riemannian distance to the boundary

∂!, measured with respect to the metric C−1, is infinite. But this is not true in
dimension one (see Example 6.5).

Our second result on Markov uniqueness is based on a conservation property.

The submarkovian semigroup SFt generated by the Friedrichs extension H
F
! is de-

fined to be conservative on L∞(!) if SFt 11! = 11! for all t ≥ 0.

Theorem 1.3. Adopt the assumptions of Theorem 1.1. Let SFt denote the semigroup

generated by the Friedrichs extension HF
! of H!.

The following conditions are equivalent:

I. H! is Markov unique,

II. SFt is conservative,

III. H! is L1-unique.

The implications II⇔ III⇒ I are already known under slightly different hypothe-

ses. The equivalence of Conditions II and III was established by Davies [7, Theo-

rem 2.2], for a different class of second-order operators with smooth coefficients.

His proof is based on an earlier result of Azencott [3]. The implication III ⇒ I

is quite general and is given by [9, Lemma 1.6]. Moreover, the implication I ⇒
II follows from [9, Corollary 3.4], if |!| < ∞. The proof of this implication for

general ! is considerably more complicated (see Section 5). In the broader setting

of second-order operators acting on weighted spaces considered in [9] this impli-

cation is not always valid. The weights can introduce singular boundary behaviour

(see [9, Remark following Corollary 3.4]).

Combination of the foregoing theorems gives the conclusion that Markov

uniqueness, L1-uniqueness and the conservation property are all characterized by

the capacity condition cap!(∂!) = 0. This is of interest since the latter condition

can be estimated in terms of the boundary behaviour of the coefficients ci j and the

geometric properties of ∂!. In Section 4 we derive estimates in terms of the order
of degeneracy of the coefficients and the Minkowski dimension of the boundary

(see Proposition 4.2).

The proofs of Theorems 1.1, 1.2 and 1.3 will be given in Sections 3, 4 and 5,

respectively. In Section 6 we demonstrate that versions of the capacity estimates

also give sufficient conditions for L p-uniqueness for all p ∈ [1, 2] and we establish
that the semigroup SFt is irreducible if and only if ! is connected.
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2. Elliptic regularity

In this section we derive some basic regularity properties of the operators H! de-

fined by (1.1). Since H! is symmetric its adjoint H∗
! is an extension of its clo-

sure H! and the domain D(K!) of each self-adjoint extension K! of H! satis-

fies D(H!) ⊆ D(K!) ⊆ D(H∗
!). The principal observation is that D(H!) and

D(H∗
!) only differ on the boundary ∂!. Hence the various possible extensions are

distinguished by their boundary behaviour.

The comparison of D(H!) and D(H∗
!) can be articulated in various ways but

it is convenient for the sequel to express it as a multiplier property.

Theorem 2.1. Adopt the assumptions of Theorem 1.1. Then C∞
c (!)D(H∗

!) ⊆
D(H!).

Proof. The principal step in the proof consists of establishing that D(H∗
!) ⊆

W
1,2
loc (!). Once this is achieved the rest of the proof is given by the following

argument.

Let !′ be a bounded open subset of ! which is strictly contained in !, i.e.
!′ ⊂ !. (Strict containment will be denoted by !′ ! !.) If ψ ∈ D(H∗

!) and

D(H∗
!) ⊆ W

1,2
loc (!) then ψ ∈ W 1,2(!′). Set ξ = H∗

!ψ then ξ ∈ L2(!
′) and

d∑

i, j=1
(ci j∂ jη, ∂iψ) = (η, ξ)

for all η ∈ C∞
c (!′), i.e. ψ is a weak solution of the elliptic equation H!′ψ = ξ on

!′. Since H!′ is strongly elliptic on L2(!
′) it follows by elliptic regularity (see,

for example, [20] Theorem 8.8) that ψ ∈ W 2,2(!′′) for all !′′ ! !′. Thus ψ ∈
W
2,2
loc (!′) ⊆ W

2,2
loc (!). Therefore D(H∗

!) ⊆ W
2,2
loc (!). Hence if η ∈ C∞

c (!) then

η ψ ∈ W
2,2
0 (!). But W 2,2

0 (!) ⊆ D(H!), because the coefficients are bounded,
and the statement of the theorem is established.

It remains to prove that D(H∗
!) ⊆ W

1,2
loc (!).

First, fix η ∈ C∞
c (!) and set K = supp η. Next let!′ ! ! be a bounded open

subset which contains K . Since ci j ∈ W 1,∞(!) and C(x) > 0 for all x ∈ ! the

restriction H!′ of H! to C
∞
c (!′) is strongly elliptic.
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Secondly, ϕ ∈ D(H∗
!) if and only if there is an a > 0 such that

|(ϕ, H!ψ)| ≤ a ‖ψ‖2

for all ψ ∈ C∞
c (!). In particular if ϕ ∈ D(H∗

!) then these bounds are valid for all
ψ ∈ C∞

c (!′). Thus the restriction 11!′ϕ of ϕ to !′ is in D(H∗
!′) and H

∗
!′(11!′ϕ) =

11!′(H∗
!ϕ). But η ϕ = 11!′(η ϕ) = η (11!′ϕ). In particular if η (11!′ϕ) ∈ D(H!′)

then η ϕ ∈ D(H!). Thus ηD(H∗
!) ⊆ D(H!) if and only if ηD(H∗

!′) ⊆ D(H!′)
for all possible choices of η and !′. Therefore it suffices to prove D(H∗

!′) ⊆
W
1,2
loc (!′) for the strongly elliptic operator H!′ on L2(!

′) for all bounded open
subsets !′ ! !.

Thirdly, we extend H!′ to a strongly elliptic operator L on L2(Rd) with coef-
ficients ĉi j ∈ W 1,∞(Rd) such that H!′ = L|C∞

c (!′). This is achieved in two steps.

Since the ci j are continuous on !, C(x) ≥ µI for all x ∈ !′ and C(x) > 0 for

all x ∈ ! one may choose an !′′ such that !′ ! !′′ ! ! and C(x) ≥ (µ/2)I
for all x ∈ !′′. Then one may choose a χ ∈ C∞(Rd) such that 0 ≤ χ ≤ 1,

χ(x) = 1 if x ∈ !′ and χ(x) = 0 if x is in the complement of !′′. Then set
Ĉ = χ C + (1 − χ) (µ/2)I . It follows that Ĉ ≥ (µ/2)I . Now let L be the di-
vergence form operator on L2(Rd) with the matrix of coefficients Ĉ = (ĉi j ). It is

strongly elliptic, ĉi j ∈ W 1,∞(Rd) and L|C∞
c (!′) = H!′ by construction. Therefore

the proof is completed by the following lemma.

Lemma 2.2. Let H!′ = L|C∞
c (!′) where L is a strongly elliptic operator, with

coefficients ĉi j ∈ W 1,∞(Rd), acting on L2(Rd). Then D(H∗
!′) ⊆ W

1,2
loc (!′).

Proof. The proof exploits some basic properties of strongly elliptic operators with

Lipschitz continuous coefficients summarized in Proposition A.1 of the appendix.

In particular L is essentially self-adjoint on C∞
c (Rd) and its self-adjoint closure L

has domain D(L) = W 2,2(Rd).
Let D(!′) denote C∞

c (!′) equipped with the Frechet topology and D′(!′)
the dual space, i.e. the space of distributions on !′. If ψ ∈ L2(!

′) then ϕ ∈
C∞
c (!′) %→ (ψ, H!′ϕ) is a continuous linear function over D(!′). Thus for each

ψ ∈ L2(!
′) there is a distribution H!′(ψ) ∈ D′(!′) such that

(H!′(ψ),ϕ) = (ψ, H!′ϕ)

for all ϕ ∈ C∞
c (!′). Similarly for each ψ ∈ L2(Rd) there is a distribution L(ψ) ∈

W−2,2(Rd), the dual of W 2,2(Rd), such that

(L(ψ),ϕ) = (ψ, Lϕ)

for all ϕ ∈ C∞
c (Rd). But by assumption

(ψ, H!′ϕ) = (ψ, Lϕ) = (L(ψ),ϕ)
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for all ψ ∈ L2(!
′) and all ϕ ∈ C∞

c (!′). Therefore

(H!′(ψ),ϕ) = (L(ψ),ϕ)

for all ϕ ∈ C∞
c (!′). In particular ψ ∈ D(H∗

!′) if and only if L(ψ) ∈ L2(!
′).

Next fix ψ ∈ D(H∗
!′). Then L(ψ) ∈ L2(!

′). Moreover, if η ∈ C∞
c (!′)

then η ψ ∈ D(H∗
!′) if and only if L(η ψ) ∈ L2(!

′). But one has the distributional
relation

L(η ψ) = ηL(ψ) + L(η)ψ + (η (2.1)

where

(η = −2
d∑

i, j=1
ĉi j (∂ jη) (∂iψ) .

Since ψ, L(ψ) ∈ L2(!
′) and η, L(η) ∈ L∞(!′) it follows that the first two terms

on the right of (2.1) are in L2(!
′). But there is an a > 0 such that

|((η,ϕ)| ≤ a ‖ψ‖2 ‖ϕ‖1,2

for all ϕ ∈ C∞
c (Rd) where ‖ · ‖1,2 denotes the W 1,2-norm. Therefore (η ∈

W−1,2(Rd), the dual of W 1,2(Rd). Hence it follows from (2.1) that L(η ψ) ∈
W−1,2(Rd). But

η ψ = (I + L)−1η ψ + L(I + L)−1η ψ = (I + L)−1η ψ + (I + L)−1L(η ψ)

and η ψ ∈ W 1,2(Rd) by Proposition A.1.III of the appendix applied to the strongly

elliptic operator L . Since η ∈ C∞
c (!′) it follows that η ψ ∈ W

1,2
0 (!′).

Finally let K be an arbitrary compact subset of !′. If η1 ∈ C∞
c (!′) with

η1 = 1 on K it follows that ∂i (η1ψ)|K = ∂iψ |K . Thus ∂iψ ∈ L2(K ) for all

i ∈ {1, . . . , d}. Therefore ψ ∈ W
1,2
loc (!).

One can also draw a conclusion about the domain of a general self-adjoint

extension of H! and partially establish Statement IV of Theorem 1.1.

Corollary 2.3. If K! is any self-adjoint extension of H! then C∞
c (!)D(K!) ⊆

D(H!).

Proof. SinceD(H!)⊆D(K!)⊆D(H∗
!) one hasC∞

c (!)D(K!)⊆C∞
c (!)D(H∗

!)⊆
D(H!) by Theorem 2.1.

Note that D(H!)⊆D(H∗
!)⊆W

2,2
loc (!). Therefore C∞

c (!)D(K!)⊆D(H!)⊆
D(K!) ⊆ W

2,2
loc (!) for each self-adjoint extension K!.
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3. The minimal Markov extension

In this section we prove Theorem 1.1. The proof of the first parts of the theorem

broadly follows the reasoning used in [15] to prove the analogous result, Theo-

rem 3.3.1, for operators with C∞-coefficients. The essential new ingredient is the
elliptic regularity properties of Theorem 2.1 and its corollaries.

Proof of Theorem 1.1. I. The Markov property of l! follows by the calculations

of [15, Example 1.2.1]. Moreover, the form is closed with respect to the graph

norm by the arguments in [23, Section II.2.b]. The latter arguments depend crucially

on the local strong ellipticity property. Therefore the form l! is a Dirichlet form.

Finally D(l!) ∩ C∞(!) is a core of l! by the proof of [15, Lemma 3.3.3].

II. The proof that L! is an extension of H! is identical to the proof of [15, Lemma

3.3.4] modulo a regularity argument.

Let ϕ ∈ L2(!). Then ψ = (I + L!)−1ϕ ∈ D(L!) ⊆ D(l!). Moreover,

(ϕ, η) = (ψ, η) + l!(ψ, η) = (ψ, η) +
∫ d∑

i, j=1
ci j (∂iψ)(∂ jη)

for all η ∈ C∞
c (!). Now fix an η1 ∈ C∞

c (!) such that η1 = 1 on the support of

η. Then ψ1 = η1ψ ∈ D(l!) by a straightforward estimate and ψ1 ∈ W
1,2
0 (!) by

local strong ellipticity. Therefore

(ϕ, η)=(ψ1, η) +
∫ d∑

i, j=1
ci j (∂iψ1)(∂ jη)=(ψ1, (I + H!)η)=(ψ, (I + H!)η)

by partial integration. Hence ψ ∈ D(I+H∗
!) and (I+H∗

!)ψ = ϕ. Thus D(L!) ⊆
D(H∗

!) and H∗
! is an extension of L!. So D(H!) ⊆ D(L!) and L! is an extension

of H!.

III. This is the lengthiest part of the proof. We divide it into two steps.

Step 1. First, we prove that D(k!) ∩ D(H∗
!) ⊆ D(l!) (see proof of [15, Lemma

3.3.5]). Clearly it suffices to prove that

k!(ϕ) ≥
∫

!
dx

d∑

i, j=1
ci j (x) (∂iϕ)(x)(∂ jϕ)(x) (3.1)

for all ϕ ∈ D(k!) ∩ D(H∗
!).

Set Rλ = (λI + K!)−1 for all λ > 0 and introduce the bounded forms

k
(λ)
! (ϕ) = λ (ϕ, (I − λRλ)ϕ) (3.2)
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for all ϕ ∈ L2(!). The k
(λ)
! are Dirichlet forms and

k!(ϕ) = sup
λ>0

k
(λ)
! (ϕ) = lim sup

λ→∞
k
(λ)
! (ϕ) (3.3)

with D(k!) the subspace of L2(!) for which the supremum is finite (see, for ex-
ample [15, Lemma 1.3.4(ii)]).

Next for η ∈ C∞
c (!) with 0 ≤ η ≤ 1 define the truncated form

k
(λ)
!,η(ϕ) = k

(λ)
! (ϕ, ηϕ) − 2−1k(λ)

! (η,ϕ2)

for all ϕ ∈ L2(!) ∩ L∞(!). It then follows from the Dirichlet form structure that

k
(λ)
! (ϕ) ≥ k

(λ)
!,η(ϕ) (3.4)

for all ϕ ∈ L2(!) ∩ L∞(!) (see [4, Proposition I.4.1.1]). Moreover,

k
(λ)
!,η(ϕ) = λ (ϕ, (I − λRλ)ηϕ) − 2−1λ (ϕ(I − λRλ)η,ϕ) (3.5)

for all ϕ ∈ L2(!) ∩ L∞(!) since (I − λRλ)η ∈ L∞(!) by the submarkovian
property of K!. Then, however, (3.5) extends to all ϕ ∈ L2(!) by continuity.
Combination of (3.2), (3.3), (3.4) and (3.5) immediately gives

k!(ϕ) ≥ λ (ϕ, (I − λRλ)ηϕ) − 2−1λ (ϕ(I − λRλ)η,ϕ) (3.6)

for all ϕ ∈ D(k!). Now we consider the limit λ → ∞.

If ϕ ∈ D(H∗
!) then ηϕ ∈ D(H!) ⊆ D(K!) by Theorem 2.1. Therefore

lim
λ→∞

λ (ϕ, (I − λRλ)ηϕ) = (ϕ, K!ηϕ) = (ϕ, H!ηϕ) .

Now let S denote the submarkovian semigroup generated by K! on L2(!) and

S(∞) the corresponding weak∗ semigroup on L∞(!). Further let K
(∞)
! denote the

generator of S(∞) and R
(∞)
λ = (λI + K

(∞)
! )−1 the resolvent. Then η ∈ D(H!) ∩

L∞(!) ⊆ D(K!) ∩ L∞(!) and K!η = H!η ∈ L∞(!). Therefore η ∈ D(K
(∞)
! )

and K
(∞)
! η = H!η. Consequently

H!η = K
(∞)
! η = weak∗ limλ→∞λ(I − λR

(∞)
λ )η

and one concludes that

lim
λ→∞

λ (ϕ(I−λRλ)η,ϕ)= lim
λ→∞

λ((I−λR
(∞)
λ )η,ϕ2)=(K

(∞)
! η,ϕ2)=(ϕH!η,ϕ) .

Then it follows from taking the limit λ → ∞ in (3.6) that

k!(ϕ) ≥ (ϕ, H!ηϕ) − 2−1(ϕH!η,ϕ)



692 DEREK W. ROBINSON AND ADAM SIKORA

for all ϕ ∈ D(k!) ∩ D(H∗
!). Since η ∈ C∞

c (!) and D(H∗
!) ⊆ W

2,2
loc (!), by the

proof of Theorem 2.1, it follows by direct calculation that

k!(ϕ) ≥
∫

!
dx

d∑

i, j=1
η(x) ci j (x) (∂iϕ)(x)(∂ jϕ)(x)

for all ϕ ∈ D(k!) ∩ D(H∗
!) and η ∈ C∞

c (!) with 0 ≤ η ≤ 1. But k!(ϕ) is
independent of η. Therefore taking the limit over a sequence of η which converges
monotonically upward to 11! one deduces that (3.1) is valid by the Lebesgue domi-

nated convergence theorem.

Step 2. Next we argue that the inclusion D(k!) ∩ D(H∗
!) ⊆ D(l!) established by

Step 1 implies D(k!) ⊆ D(l!).
By definition D(h!) is a subspace of D(k!). But the orthogonal complement

of D(h!) with respect to the graph norm ‖ · ‖D(k!) is D(k!) ∩N where

N = {ϕ ∈ D(H∗
!) : (I + H∗

!)ϕ = 0}

(see [15, Lemma 3.3.2(ii)]). Therefore each ϕ ∈ D(k!) has a unique decomposition
ϕ = ϕ1 + ϕ2 with ϕ1 ∈ D(h!) and ϕ2 ∈ D(k!) ∩N such that

‖ϕ‖2D(k!) = ‖ϕ1‖2D(h!)
+ ‖ϕ2‖2D(k!) .

But ϕ2 ∈ D(k!) ∩ D(H∗
!). So ϕ2 ∈ D(l!) and k!(ϕ2) ≥ l!(ϕ2) by Step 1.

Therefore

‖ϕ‖2D(k!) ≥ ‖ϕ1‖2D(h!)
+ ‖ϕ2‖2D(l!) = ‖ϕ1‖2D(l!) + ‖ϕ2‖2D(l!) = ‖ϕ‖2D(l!) .

The last equality follows because l!(ϕ1,ϕ2)+(ϕ1,ϕ2) = 0. It follows immediately

that D(k!) ⊆ D(l!). This completes the proof of Statement III of Theorem 1.1.

IV. The inclusion C∞
c (!)D(K!) ⊆ D(H!), was established in Corollary 2.3. But

if η ∈ C∞
c (!) and ϕ ∈ D(K!) then ηϕ ∈ D(H!) ⊆ D(K!) ⊆ D(k!) ⊆ D(l!)

and
h!(ηϕ) = l!(ηϕ) ≤ 2 ‖η‖2∞ l!(ϕ) + 2 ‖*(η)‖∞ ‖ϕ‖22

≤ 2 (‖*(η)‖∞ + ‖η‖2∞) ‖ϕ‖2D(k!)

where *(η) = ∑d
i, j=1 ci j (∂iη) (∂ jη), i.e. * is the carré du champ as defined in [4],

Section I.8. Since D(K!) is a core of k! with respect to the D(k!)-graph norm it
follows that C∞

c (!)D(k!) ⊆ D(h!) by continuity.

V. First let D(k!)c denote the subspace of functions with compact support in
D(k!). If ϕ ∈ D(k!)c then by regularization one can construct a sequence ϕn ∈
C∞
c (!) such that ‖ϕn − ϕ‖D(k!) → 0 as n → ∞. Since k! is an extension of



MARKOV UNIQUENESS OF DEGENERATE ELLIPTIC OPERATORS 693

h! it follows that ϕ ∈ D(h!). Therefore D(k!)c ⊆ D(h!). Now the first part
of Statement V follows from [10, Proposition 2.1]. But then D(h!) is an ideal
(see [24, Definition 2.19]) of D(k!) by [24, Corollary 2.22]. In particular it is an
order ideal.

For the proof of the second part of Statement V we again appeal to [24, Corol-

lary 2.22]. First if e−t L! dominates e−t K! then it follows from this corollary that

D(k!) is an ideal of D(l!). Secondly, for the converse statement, it suffices to
prove that D(k!) is an ideal of D(l!). Then the domination property follows from
another application of [24, Corollary 2.22]. Thus if ψ ∈ D(k!), ϕ ∈ D(l!) and
|ϕ| ≤ |ψ | then one must deduce that ϕ sgnψ ∈ D(k!). But ϕ,ψ ∈ D(l!). There-
fore ϕ sgnψ ∈ D(l!) by [24, Proposition 2.20]. (See the remark following this
proposition.) Moreover, |ψ | ∈ D(k!) and (ϕ sgnψ)+ ∈ D(l!) because k! and l!
are Dirichlet forms. Since

0 ≤ (ϕ sgnψ)+ ≤ |ϕ| ≤ |ψ |

and since D(k!) is an order ideal of D(l!) it follows that (ϕ sgnψ)+ ∈ D(k!). Ap-
plying the same argument to −ϕ one deduces that (ϕ sgnψ)− ∈ D(k!). Therefore
ϕ sgnψ ∈ D(k!) and D(k!) is an ideal of D(l!).

We note in passing that the existence of l! gives a criterion for uniqueness

of the submarkovian extension of H! similar to the standard criterion for essential

self-adjointness.

Proposition 3.1. The following conditions are equivalent:

I. H! has a unique submarkovian extension.

II. ker(I + H∗
!) ∩ D(l!) = {0}.

Proof. Condition I is equivalent to l! = h! by Theorem 1.1, i.e. equivalent to

D(l!) = D(h!). But D(l!) = D(h!) ⊕H! with H! = ker(I + H∗
!) ∩ D(l!)

by Lemma 3.3.2(ii) in [15]. Therefore the equivalence of the conditions of the

proposition is immediate.

Statement III of Theorem 1.1 establishes that H! is Markov unique if and only

if l! = h! or, equivalently, D(l!) = D(h!). This is the criterion used extensively
in the analysis of Markov uniqueness (see [9], Chapter 3). It will also be used to

prove Theorem 1.2.

Statement IV of the theorem establishes that each submarkovian extension of

H! is a Silverstein extension (see [30] or [9, Definition 1.4]). Therefore Markov

uniqueness of H! and Silverstein uniqueness are equivalent.

Statement V gives an alternative approach to establishing Markov uniqueness

of H! if the submarkovian semigroup generated by the Friedrichs extension is con-

servative. This will be discussed in Section 5.
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4. Markov Uniqueness

In this section we prove Theorem 1.2. Throughout the section we assume that the

coefficients ci j are real, symmetric, Lipschitz continuous and C(x) = (ci j (x)) > 0

for all x ∈ !.

Proof of Theorem 1.2. It follows from Theorem 1.1 that H! has a unique sub-

markovian extension if and only if l! = h!, i.e. if and only if C
∞
c (!) is a core

of l!. Therefore Theorem 1.2 is a direct corollary of the following proposition

which is a variation of [26, Proposition 3.2].

Proposition 4.1. Under the assumptions of Theorem 1.2, the following conditions
are equivalent:

I. cap!(∂!) = 0.

II. C∞
c (!) is a core of l!.

Proof. I ⇒ II First, since l! is a Dirichlet form D(l!) ∩ L∞(!) is a core of l!.
Therefore it suffices that each ϕ ∈ D(l!) ∩ L∞(!) can be approximated by a
sequence ϕn ∈ C∞

c (!) with respect to the graph norm ‖ · ‖D(l!). Now fix ϕ ∈
D(l!) ∩ L∞(!).

Secondly, let ρn ∈ C∞
c (Rd) be a sequence of functions with 0 ≤ ρn ≤ 1,

‖∇ρn‖∞ ≤ n−1 and such that ρn → 11 pointwise as n → ∞. Then 11 − ρn ∈
W 1,∞(Rd). But W 1,∞(Rd)D(l!) ⊆ D(l!). Therefore (11 − ρn)ϕ ∈ D(l!) ∩
L∞(!). It then follows from Leibniz’ rule and the Cauchy–Schwarz inequality that

‖ϕ − ρnϕ‖2D(l!) ≤ 2

∫

!
ϕ2 *(ρn) + 2

∫

!
(11− ρn)

2 *(ϕ) + ‖(11− ρn)ϕ‖22

≤ 2 n−2‖C‖ ‖ϕ‖22 +
∫

!
(11− ρn)

2 (2*(ϕ) + ϕ2)

where ‖C‖ is the supremum over the matrix norms ‖C(x)‖. Clearly the first term
on the right hand side tends to zero as n → ∞. Moreover, 0 ≤ (11 − ρn)

2 ≤ 1,

(11 − ρn)
2 → 0 pointwise as n → ∞ and 2*(ϕ) + ϕ2 ∈ L1(!). Therefore the

second term on the right hand side also tends to zero as n → ∞ by the Lebesgue

dominated convergence theorem. Thus ϕ is approximated by the sequence ρnϕ in
the graph norm.

Thirdly, since cap!(∂!) = 0 one may choose χn ∈ D(l!) ∩ L∞(!) and open
subsets Un ⊃ ∂! such that 0 ≤ χn ≤ 1, l!(χn) + ‖χn‖22 ≤ n−1 and χn = 1 on

Un ∩ !. Now set ϕn = (1− χn)ρnϕ. Then

‖ϕ − ϕn‖2D(l!) ≤ 2 ‖ϕ − ρnϕ‖2D(l!) + 2 ‖χnρnϕ‖2D(l!)

and the first term on the right hand side converges to zero as n → ∞ by the previous

discussion. Moreover,

‖χnρnϕ‖2D(l!) = l!(χnρnϕ) + ‖χnρnϕ‖22 (4.1)
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and the second term on the right tends to zero because ‖χnρnϕ‖2 ≤ ‖χn‖2‖ϕ‖∞.
But the first term can be estimated by

l!(χnρnϕ) ≤ 2

∫

!
ρ2nϕ

2 *(χn) + 2

∫

!
χ2n *(ρnϕ)

≤ 2

∫

!
ϕ2 *(χn) + 4

∫

!
χ2n ϕ2 *(ρn) + 4

∫

!
χ2n ρ2n *(ϕ)

≤ 2 ‖ϕ‖2∞ l!(χn) + 4 ‖C‖ ‖∇ρn‖2∞‖ϕ‖22 + 4

∫

!
χ2n *(ϕ) .

Since l!(χn) → 0 and ‖∇ρn‖∞ → 0 as n → ∞ the first two terms on the right

hand side tend to zero. But if Am = {x ∈ ! : *(ϕ) > m} one has the equicontinuity
estimate ∫

!
χ2n *(ϕ) ≤ m ‖χn‖22 +

∫

Am

*(ϕ)

because 0 ≤ χn ≤ 1. Since ‖χn‖2 → 0 and *(ϕ) ∈ L1(!) the integral also tends
to zero as n → ∞. Thus both terms on the right hand side of (4.1) tend to zero as

n → ∞ and one now concludes that ϕ is approximated by the sequence ϕn in the
graph norm.

Finally suppϕn is contained in the set!n = ((supp ρn)∩ !)∩ (!\(Un ∩ !)).
Hence !n is a bounded subset which is strictly contained in !, i.e. !n ! !. Then
since C(x) > 0 for all x ∈ ! one has an estimate l!(ϕn) ≥ µn ‖∇ϕn‖22 with
µn > 0. Therefore ϕn ∈ W

1,2
0 (!n) and it follows that it can be approximated

in the W 1,2(!n)-norm by a sequence of C∞
c -functions. Then because l!(ψ) ≤

‖C‖ ‖∇ψ‖22 for all ψ ∈ D(l!) it follows that ϕn , and hence ϕ, can be approximated
by a sequence of C∞

c -functions in the graph norm ‖ · ‖D(l!).

II ⇒ I Let ψ ∈ D(l!) ∩ C∞(!) with ψ = 1 on U ∩ ! where U is an open

subset containing ∂!. One may assume 0 ≤ ψ ≤ 1. Then by Condition II there is a

sequence ψn ∈ C∞
c (!) such that ‖ψn − ψ‖D(l!) → 0. In particular ψ ∈ W 1,2(!).

Since ψn has compact support in ! it also follows that there is an open subset Un
containing ∂! such that ψn = 0 onUn∩!. Therefore ψ −ψn = 1 on (U ∩Un)∩!
and one must have cap!(∂!) = 0.

The condition cap!(∂!) = 0 is of interest as a criterion forMarkov uniqueness

since the capacity can be estimated by elementary means. The estimates depend on

two gross features, the order of degeneracy of the coefficients at the boundary and

the dimension of the boundary. There are various ways of assigning a dimension

to a measurable subset A (see, for example [14, Chapters 2 and 3]). In the next

proposition we characterize the dimension in terms of the volume growth of the

δ-neighbourhoods

Bδ = {x ∈ Rd : inf
y∈B

|x − y| < δ}

of the bounded measurable subsets B of A.



696 DEREK W. ROBINSON AND ADAM SIKORA

Proposition 4.2. Let A be a measurable subset of ! with |A| = 0 and dA the

Euclidean distance to A. Assume 1. there are a > 0 and γ ≥ 0 such that 0 <
C(x) ≤ a (dA(x) ∧ 1)γ for all x ∈ !, 2. there is a d(A) ∈ [0, d] such that
supδ∈〈0,1] δ

−(d−d(A))|Bδ| < ∞ for each bounded measurable B ⊂ A.

It follows that cap!(A) = 0 if γ ≥ 2− (d−d(A)). In particular cap!(A) = 0

if γ ≥ 2.

Proof. Let B be a bounded measurable subset of A. Then dA ≤ dB . Now introduce

the functions x > 0 %→ χn(x) ∈ [0, 1] by χn(x) = 1 if x ∈ 〈0, n−1], χn(x) =
− log x/ log n if x ∈ 〈n−1, 1] and χn(x) = 0 if x > 1. Set ηn = χn ◦ dB . It follows
that ηn(x) = 0 if x 7∈ B1. Now ‖ηn‖2 → 0 as n → ∞ since |B| = 0. Moreover,

l!(ηn) ≤ a

∫

B1

dx dB(x)γ |∇ηn(x)|2

≤ a (log n)−2
∫
dx 11{x :n−1≤dB(x)≤1} dB(x)−(2−γ ).

Thus if γ ≥ 2 then l!(ηn) ≤ a (log n)−2|B1| → 0 as n → ∞. Then cap!(B) = 0.

If, however, γ < 2 then dB(x)−(2−γ ) = 1 + (2 − γ )−1
∫ 1
dB(x) dδ δ−(3−γ ) and one

deduces that

l!(ηn) ≤ a′(log n)−2
(
1+ (2− γ )−1

∫ 1

n−1
dδ δ−3+γ+d−d(A)(δ−(d−d(A))|Bδ|)

)
.

Thus if γ ≥ 2− (d − d(A)) then l!(ηn) ≤ a′′(log n)−1 → 0 as n → ∞. It follows

that cap!(B) = 0. Then cap!(A) = 0 by the general additivity properties of the

capacity.

Remark 4.3. 1. The ‘dimension’ d(A) introduced in Proposition 4.2 is not
uniquely defined. But it is closely related to the upper Minkowski, or upper box,

dimension (see [14, Chapter 3]). The upper Minkowski dimension dM(B) of each
bounded B ⊂ A is given by

dM(B) = − lim sup
δ→0

log(δ−d |Bδ|)/ log δ

= inf
{
d̂ ∈ [0, d] : sup

δ∈〈0,1]
δ−(d−d̂)|Bδ| < ∞

}
.

(4.2)

and then dM(A) = sup{dM(B) : B ⊆ A , B bounded}. It is clear from the second
relation that dM(B) ≤ d(B) for all choices of d(B). Moreover, one may choose
d(B) = dM(B) if and only if the infimum in (4.2) is attained. For example, if A is
locally the graph of a Lipschitz function then one may choose d(A) = dM(A) =
d − 1 = dH (A) where dH (A) is the Hausdorff dimension.

2. If the growth condition supδ∈〈0,1] δ
−(d−d(A))|Bδ| < ∞ in Proposition 4.2 is re-

placed by the weaker condition supn≥1(log n)
−1 ∫ 1

n−1 dδ δ−1 δ−(d−d(A))|Bδ| < ∞
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then the conclusion of the proposition is unchanged. This follows by a minor modi-

fication of the foregoing proof. The integral bound is of interest as it is automatically

satisfied for a large family of self-similar fractal sets (see [19, Theorem 2.3]) with

d(A) replaced by dH (A).

The estimates of Proposition 4.2 have two simple implications.

Corollary 4.4. Assume |∂!| = 0 and d(∂!) = d − 1. If the coefficients ci j ∈
W
1,∞
0 (!) are real symmetric and C(x) > 0 for all x ∈ ! then H! is Markov

unique.

Proof. Since the coefficients ci j are inW
1,∞
0 (!) they extend by continuity to! and

the extended coefficients are zero on the boundary. But then by Lipschitz continuity

|ci j (x)| ≤ a (d∂!(x)∧1) for all x ∈ !. Therefore cap!(∂!) = 0 by Proposition 4.2

applied with A = ∂!, γ = 1 and d(A) = d − 1. Hence H! is Markov unique by

Theorem 1.2.

Corollary 4.5. Assume |∂!| = 0. If the coefficients ci j ∈ W
2,∞
0 (!) are real

symmetric and C(x) > 0 for all x ∈ ! then H! is Markov unique.

Proof. Since the coefficients ci j are in W
2,∞
0 (!) they again extend to!, the exten-

sions are zero on the boundary and one now has bounds |ci j (x)| ≤ a (d∂!(x) ∧ 1)2
for all x ∈ !. Then cap!(∂!) = 0, by Proposition 4.2 applied with A = ∂! and

γ = 2. Hence H! is Markov unique by Theorem 1.2.

Note that the second result is universal in the sense that it does not depend

on the geometry of !. In particular it does not depend on the dimension of ∂!.

Moreover, it suffices that the coefficients ci j ∈ W 1,∞(!)∩W 2,∞
0 (U ∩!) for some

open set U ⊃ ∂!. In fact if ci j ∈ W
2,∞
0 (!) then the weaker ellipticity condition

C(x) ≥ 0 for x ∈ ! suffices to deduce that H! is L2-unique (see [25, Section 6],

or [11, Proposition 2.3]). In this latter case the coefficients can be extended to Rd

by setting ci j (x) = 0 if x ∈ !c and then the operator is essentially self-adjoint on

C∞
c (Rd) and the self-adjoint extension leaves L2(!) invariant.
Finally we emphasize that the condition cap!(∂!) = 0 does not necessarily

imply that the coefficients ci j (x) → 0 as x → ∂!. In fact Proposition 4.2 estab-
lishes that if A ⊂ ∂! and d(A) ≤ d − 2 then cap!(A) = 0 independently of the

boundary behaviour of the coefficients. Nevertheless if ! has a locally Lipschitz

boundary, and consequently d(∂!) = d − 1, one can argue that cap!(∂!) = 0 if

and only if ci j (x) → 0 as x → ∂!.

5. Conservation criteria

In this section we prove Theorem 1.3. This theorem is to a large extent known and

we concentrate on the new feature, Markov uniqueness implies semigroup conser-

vation. An integral part in this proof is played by an approximation criterion for
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conservation which is also useful for the discussion of L p-uniqueness (see Sec-

tion 6).

Lemma 5.1. Assume there exists a sequence ηn ∈ C∞
c (!) with 0 ≤ ηn ≤ 11! such

that ‖(ηn − 11!)ψ‖2 → 0 for all ψ ∈ L2(!) and h!(ηn) → 0 as n → ∞. Then

SFt is conservative.

Proof. First it follows that ((ηn − 11!),ψ) → 0 as n → ∞ for all ψ ∈ L1(!) ∩
L2(!). Fix ϕ in the L1-dense set D(HF

! ) ∩ L1(!). Then SFt ϕ ∈ L1(!) ∩ L2(!)
and

|(11!, SFt ϕ) − (11!,ϕ)| = lim
n→∞ |(ηn, SFt ϕ) − (ηn,ϕ)|

= lim
n→∞

∣∣∣
∫ t

0

ds (ηn, S
F
s H

F
! ϕ)

∣∣∣

≤ lim
n→∞ t h!(ηn)

1/2 h!(ϕ)1/2 = 0 .

Therefore SFt is conservative on L∞(!).

Now we turn to the proof of the theorem

Proof of Theorem 1.3. I⇒ II The proof is in five steps.

Step 1. The first step consists of proving the implication for bounded ! by con-

structing a sequence of ηn of the type occurring in Lemma 5.1.
Assume ! is bounded. It follows from the Markov uniqueness and Theo-

rem 1.2 that cap!(∂!) = 0 and l! = h!. Therefore there exist a decreasing

sequence of open subsets Un of Rd with ∂! ⊂ Un and a sequence χn ∈ D(l!)
with 0 ≤ χn ≤ 1 and χn = 1 on Un ∩ ! such that ‖χn‖2 → 0 and l!(χn) → 0

as n → ∞. Since ! is bounded it follows that 11! ∈ D(l!). Therefore ηn =
(11! − χn) ∈ D(l!). But then

‖(ηn − 11!)ψ‖2 = ‖χnψ‖2 ≤ ‖χn‖2 ‖ψ‖∞ → 0 .

for all ψ in the L2-dense subset L2(!) ∩ L∞(!). Thus the first convergence prop-
erty of the ηn is satisfied. Then, however, l!(ηn) = l!(χn) and the second condition
is also satisfied. Finally supp ηn ! ! for each n. Hence by regularization one may

construct a second sequence of C∞
c (!)-functions ηn ∈ D(l!) with similar bound-

edness and convergence properties.

Therefore it follows from Lemma 5.1 that the semigroup SFt is conservative.

Step 2. The second step consists of proving the theorem for unbounded ! but for a

family of cutoff operators.

Fix ρ ∈ C∞
c (Rd) with 0 ≤ ρ ≤ 1, ρ(x) = 1 if |x | ≤ 1 and ρ(x) = 0 if

|x | ≥ 2. Then introduce the sequence ρn by ρn(x) = ρ(n−1x). Thus ρn(x) = 1 if

|x | ≤ n and ρ(x) = 0 if |x | ≥ 2n. Set Bn = {x ∈ Rd : |x | < 2n} and!n = !∩Bn .
Note that !n is bounded.
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Now define a family of truncations h!,n of h! by D(h!,n) = C∞
c (!n) and

h!,n(ϕ) = h!(ϕ, ρnϕ) − 2−1h!(ρn,ϕ
2)

for all ϕ ∈ C∞
c (!n). The truncation h!,n is the Markovian form corresponding

to the symmetric operator with H!,n coefficients ρnci j acting on L2(!n). Let l!,n

denote the extended form corresponding to H!,n . The form h!,n is automatically

closable, the closure h!,n is a Dirichlet form and the corresponding self-adjoint

operator HF
!,n is the Friedrichs extension of H!,n . The form l!,n is a Dirichlet

form which in principle differs from h!,n . But we next argue that H!,n is Markov

unique. Hence l!,n = h!,n .

Let cap!,n(A) denote the capacity of the measurable subset A of!n measured

with respect to l!,n . Since!n = !∩ Bn it follows that ∂!n = (∂!∩ Bn)∪ (∂Bn ∩
!). Hence

cap!,n(∂!n) = cap!,n(∂! ∩ Bn) + cap!,n(∂Bn ∩ !) .

But l!,n ≤ l! and cap!(∂!) = 0 by Markov uniqueness of H! . Therefore

cap!,n(∂! ∩ Bn) ≤ cap!(∂! ∩ Bn) ≤ cap!(∂!) = 0 .

Moreover, cap!,n(∂Bn ∩ !) = 0 because the C∞-cutoff function ρn and all its
derivatives are zero on the boundary ∂Bn . Thus cap!,n(∂!n) = 0 and H!,n is

Markov unique by Theorem 1.2. Hence the semigroup generated by the Friedrichs

extension HF
!,n of the cutoff operator H!,n is conservative on L∞(!n) by Step 1.

Step 3. The third and fourth steps consist of removing the cutoff by a suitable limit

n → ∞, first by L2-arguments and then by L1-arguments.

It is convenient to view H! and H!,n as symmetric operators on L2(Rd). Since
the coefficients ci j of H! are in W

1,∞(!) the operator can be extended to a sym-

metric operator on the domain C∞
c (Rd). The extension corresponds to the operator

H! ⊕ 0 with domain C∞
c (!) ⊕ L2(!

c). The Markov uniqueness of H! on L2(!)

implies that the extended operator has a unique submarkovian extension HF
! ⊕ 0 on

L2(Rd) and for simplicity of notation we set H = HF
! ⊕ 0. Similarly, since H!,n is

Markov unique by Step 2 there is a unique submarkovian operator Hn = HF
!,n ⊕ 0

which extends H!,n . We let h and hn denote the corresponding Dirichlet forms on

L2(Rd).
The ρn form an increasing sequence of functions on Rd , by definition. There-

fore the hn are a monotonically increasing family of forms on L2(Rd). This im-
plicitly uses the Markov uniqueness through the identification l! = h! and hence

l!,n = h!,n . Therefore one can define h∞ by D(h∞) = ⋂
n≥1 D(hn) and h∞(ϕ)=

supn≥1 hn(ϕ) for all ϕ ∈ D(h∞). The form h∞ is closed (see, for example [21, Sec-

tion VIII.3.4]) and since the hn are Dirichlet forms the supremum h∞ is also a

Dirichlet form. Moreover, by direct calculation h∞(ϕ) = h(ϕ) for all ϕ ∈ C∞
c (Rd).

Hence h∞ ⊇ h. Then it follows from the monotone convergence of the forms hn
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that one has strong L2-convergence of the resolvents (λI + Hn)
−1 to the resolvent

(λI + H∞)−1 for all λ > 0 where H∞ is the submarkovian operator corresponding

to the form h∞. Hence

H∞(I + εH∞)−1ϕ = lim
n→∞ Hn(I + εHn)

−1ϕ

= lim
n→∞(I + εHn)

−1Hϕ = (I + εH∞)−1Hϕ

for all ϕ ∈ C∞
c (Rd). Since (I+εH∞)−1 converges strongly to the identity operator

as ε → 0 it follows that C∞
c (Rd) ⊆ D(H∞) and H∞ϕ = Hϕ for all ϕ ∈ C∞

c (Rd).
Thus H∞ is a submarkovian extension of H and by Markov uniqueness one has

H∞ = H .

The foregoing arguments establish that the Hn converge to H in the strong

resolvent sense on L2(Rd). Therefore the submarkovian semigroups S
(n)
t gener-

ated by the Hn converge strongly on L2(Rd) to the submarkovian semigroup St
generated by H .

Note that by construction the semigroup S
(n)
t leaves both L2(!n) and the or-

thogonal complement L2(!
c) invariant. The semigroup is conservative on L∞(!)

by Step 2 and is equal to the identity semigroup on the orthogonal complement.

Therefore the S
(n)
t are conservative semigroups on L∞(Rd) which are strongly L2-

convergent to St . But this is not sufficient to ensure that St is conservative. For this

one needs L1-convergence.

Step 4. The fourth step in the proof consists in proving that the semigroups S
(n)
t are

strongly convergent on L1(Rd) to St (see [27], Proposition 6.2, for a similar result).

Since the semigroups S
(n)
t and St are all submarkovian it suffices to prove

convergence on a subset of L1 whose span is dense. In particular it suffices to prove

convergence on L1(A) ∩ L2(A) for each bounded open subset A of !. Moreover
one can restrict to positive functions.

Fix A ⊂ ! and ϕA ∈ L1(A) ∩ L2(A). Assume ϕA is positive. Next let B ⊃ A

be a bounded closed set of Rd . Then

‖(S(n)
t −St )ϕA‖1≤ ‖11B(S

(n)
t − St )ϕA‖1 + ‖11BcS(n)

t ϕA‖1 + ‖11BcStϕA‖1

≤ |B|1/2‖(S(n)
t − St )ϕA‖2 + |(11Bc, S(n)

t ϕA)|
+ |(11Bc, StϕA)|

(5.1)

where we have used the positivity of the semigroups and the functions to express

the L1-norms as pairings between L1 and L∞. Therefore it suffices to prove that the
last two terms can be made arbitrarily small, uniformly in n, by suitable choice of

B. Then the L1-convergence follows from the L2-convergence of Step 3. But the

uniform estimate follows by Davies–Gaffney bounds using the arguments of [13,

Proposition 3.6]. We briefly sketch the proof.

First one can associate a set theoretic (quasi-)distance with a quite general

Dirichlet form (see, for example, [1, 5, 29] or [12]). Specifically we introduce the
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family of dn(X ;Y ) of distances corresponding to the Dirichlet forms hn and a simi-
lar distance d(X ;Y ) corresponding to h following the definitions of [12, Section 1].
Here X and Y are measurable subsets ofRd and dn(X ;Y ) ∈ [0,∞]. The definition
of the distances is quite technical and dn(X ;Y ) takes the value +∞ if X or Y is

not a subset of !n . But since hn ≤ h one has dn(X ;Y ) ≥ d(X ;Y ) and since
h(ϕ) ≤ ‖C‖‖∇ϕ‖22 one also has

d(X ;Y ) ≥ ‖C‖−1/2|X − Y | = ‖C‖−1/2 inf
x∈X, y∈Y

|x − y|

(see [12, Section 5], for a discussion of the monotonicity properties of the dis-

tances). Then the Davies–Gaffney bounds [1, 8, 18, 29] as presented in [12, Theo-

rem 2] give

|(ϕX , S
(n)
t ϕY )| ≤ e−dn(X;Y )2(4t)−1‖ϕX‖2‖ϕY ‖2

≤ e−d(X;Y )2(4t)−1‖ϕX‖2‖ϕY ‖2
≤ e−|X−Y |2(4‖C‖t)−1‖ϕX‖2‖ϕY ‖2

(5.2)

for all ϕX ∈ L2(X) and ϕY ∈ L2(Y ). These bounds are uniform in n and are

conveniently expressed in terms of the Euclidean distance.

Now choose R sufficiently large that A ⊆ BR = {x : |x | < R} and let B =
B2R . Then one can separate B

c into annuli B(n+1)R\BnR and make a quadrature
estimate, as in the proof of [13, Proposition 3.6], to find

e−|A−Bc|2(4‖C‖t)−1 ≤ ∑
n≥2 e

−|BR−BcnR |2(4‖C‖t)−1 |B(n+1)R|1/2 ≤ a Rd/2e−bR
2t−1

with a, b > 0. Therefore combining these bounds with (5.1) and (5.2) one obtains

the equicontinuous bounds

‖(S(n)
t − St )ϕA‖1 ≤ a′ Rd/2 ‖(S(n)

t − St )ϕA‖2 + 2 a Rd/2e−bR
2t−1

where a′, a, b > 0 are all independent of n. It follows immediately that ‖(S(n)
t −

St )ϕA‖1 → 0 as n → ∞. Thus the S
(n)
t converge strongly to St on L1(Rd) and in

particular on the invariant subspace L1(!).

Step 5. Finally we combine the conclusions of Steps 1 and 4 to deduce that SFt is

conservative on L∞(!).
It follows from Step 1 that the semigroup generated by the Friedrichs exten-

sion HF
!,n of the cutoff operator H!,n is a conservative semigroup on L∞(!n).

Therefore the extension S
(n)
t of the semigroup to L∞(Rd) is also conservative since

S
(n)
t 11 = (S

(n)
t ⊕ I )(11!n ⊕ 11!cn ) = S

(n)
t 11!n ⊕ 11!cn = 11!n ⊕ 11!cn = 11 .

Then, however,

(11,ϕ) = lim
n→∞(11, S

(n)
t ϕ) = (11, Stϕ)
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for all ϕ ∈ L1(Rd) by Step 4. Hence St is conservative on L∞(Rd) and its restric-
tion SFt to the invariant subspace L∞(!) is conservative.

II⇔ III This follows by an argument of Davies, [7] Theorem 2.2, which was given

for operators with smooth coefficients but which is also valid for operators with

Lipschitz coefficients. In fact Davies argues that SFt is conservative if and only if

C∞
c (!) is a core for the generator of the semigroup acting on L1(!). But this is
equivalent to L1-uniqueness (see [9], Section 1b). Davies arguments need a slight

modification to cover the operator H! but this is not difficult by the discussion of

elliptic regularity properties in Section 2. We omit further details.

III⇒ I This is a general feature which is proved in [9], Lemma 1.6.

Note that the implication II⇒ I, which is an indirect consequence of the fore-

going proof, can be easily deduced from Theorem 1.1. Let St denote the semigroup

generated by L!. Then S
F
t ϕ ≤ Stϕ for all positive ϕ ∈ L2(!) and all t ≥ 0 by

Theorem 1.1.V. But if ϕ ∈ L2(!) and 0 ≤ ϕ ≤ 11! then

11! = SFt 11! = SFt ϕ + SFt (11! − ϕ) ≤ Stϕ + St (11! − ϕ) = St11! ≤ 11! .

Therefore the inequalities are equalities and SFt ϕ = Stϕ for all positive ϕ ∈ L2(!)

such that 0 ≤ ϕ ≤ 11! and for all t ≥ 0. It follows immediately that SFt = St for all

t ≥ 0. Therefore HF
! = L! and H! is Markov unique by Theorem 1.1.III. (This

argument follows the latter part of the proof of [9, Corollary 3.4].)

6. Concluding remarks

In this concluding section we discuss various results and examples concerning L p-

uniqueness, sets of capacity zero and irreducibility properties.

6.1. L p-uniqueness

First note that Lemma 5.1 gives a condition, in terms of an approximation to the

identity, which ensures that SFt is conservative, and consequently H! is L1-unique.

But if p ∈ [1, 2] there is a similar sufficient condition for L p-uniqueness.

Proposition 6.1. Assume p ∈ [1, 2 ]. If there exists a sequence ηn ∈ C∞
c (!) such

that 0 ≤ ηn ≤ 11!, ‖(ηn −11!)ψ‖2 → 0 for all ψ ∈ L2(!) and ‖*(ηn)‖p/(2−p) →
0 as n → ∞ then H! is L p-unique.

In the case p = 2 Davies has established similar criteria (see [7], Theorems 3.1

and 3.2). (If p = 2 then p/(2− p) is understood to be∞.) Moreover, if p = 1 then

‖*(ηn)‖1 = h!(ηn) and the condition for L1-uniqueness agrees with the condition
in Lemma 5.1.

Proposition 6.1 is essentially a corollary of the following.
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Lemma 6.2. If ϕ ∈ D(H∗
!) and η ∈ C∞

c (!) then

(η2ϕ, H∗
!ϕ) ≥ −(ϕ,*(η)ϕ) (6.1)

where * is the carré du champ associated with H!. Therefore if (I + H∗
!)ϕ = 0

then

‖η ϕ‖22 ≤ (ϕ,*(η)ϕ) (6.2)

for all η ∈ C∞
c (!).

Proof. First, if η ∈ C∞
c (!) and ϕ ∈ D(H∗

!) then ηϕ, η2ϕ ∈ D(H!) by Theo-
rem 2.1. Therefore

2 (η2ϕ, H∗
!ϕ) = 2 Re(η2ϕ, H∗

!ϕ)

= (H!η2ϕ,ϕ) + (ϕ, H!η2ϕ)

≥ (H!η2ϕ,ϕ) + (ϕ, H!η2ϕ) − 2 (H!ηϕ, ηϕ)

since H! ≥ 0. But if !′ ! ! is bounded and supp η ⊂ !′ then one may construct
the strongly elliptic extension L of H!′ to L2(Rd) as in the proof of Theorem 2.1.
Then since H!ηϕ = H!′ηϕ etc. one has

(H!η2ϕ,ϕ) + (ϕ, H!η2ϕ) − 2 (H!ηϕ, ηϕ)

= (ϕ, η2L(ϕ)) + (ϕ, L(η2ϕ)) − 2 (ϕ, ηL(ηϕ))

= (ϕ, L(η2)ϕ) − 2 (ϕ, ηL(η)ϕ) = −2 (ϕ,*(η)ϕ)

where we have used the distributional relation (2.1) several times. Combination of

the last two estimates immediately yields (6.1).

Remark 6.3. The essence of the foregoing calculation is the formal double com-

mutator identity

(ad η)2(H!) = [η, [η, H!]] = −2*(η) .

Double commutator estimates of a different nature were used to prove general self-

adjointness results in [25], e.g. Theorem 2.10, (see also [11, Proposition 2.3]).

Proof of Proposition 6.1. It suffices to prove that the range of I + H! is dense in

L p(!). Therefore assume that ϕ ∈ Lq(!), the dual space of L p(!), and (I +
H∗

!)ϕ = 0. Since q ∈ [2,∞] it follows that ηnϕ = −ηnH
∗
!ϕ ∈ L2(!) and then

(6.1) gives

‖ηnϕ‖22 ≤ (ϕ,*(ηn)ϕ) =
∫

*(ηn)ϕ2 ≤ ‖ϕ‖2q ‖*(ηn)‖p/(2−p) .

Taking the limit n → ∞ one deduces that ‖ϕ‖2 = 0 so ϕ = 0 and the range is

dense.
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If p = 2 then the statement of Proposition 6.1 be strengthened.

Corollary 6.4. Assume there exists a sequence ηn ∈ C∞
c (!) such that 0 ≤ ηn ≤

11!, ‖(ηn − 11!)ψ‖2 → 0 for all ψ ∈ L2(!) and supn≥1 ‖*(ηn)‖∞ < ∞. Then

H! is L2-unique, i.e. H! is essentially self-adjoint.

Proof. It suffices to prove that the range of I + εH! is dense in L2(!) for all small
ε > 0. But if ϕ ∈ D(H∗

!) and (I + εH∗
!)ϕ = 0 then the foregoing argument gives

‖ηnϕ‖22 ≤ ε (ϕ,*(ηn)ϕ) ≤ ε sup
n≥1

‖*(ηn)‖∞ ‖ϕ‖22 .

Therefore ‖ϕ‖2 = 0 for all small ε > 0. Thus ker(I + ε H!) = {0} and the range
of I + εH! is dense.

Example 6.5. Let ! = Rd . Then the operator H = −∑d
i, j=1 ∂i ci j∂ j acting on

C∞
c (Rd) with ci j ∈ W 1,∞(Rd) and (ci j ) > 0 is L2-unique as a consequence of

Proposition 6.1. It suffices to choose ηn ∈ C∞
c (Rd) with 0 ≤ ηn ≤ 1, ηn(x) = 1

if |x | ≤ n and ‖∇ηn‖∞ ≤ a n−1. Then the ηn converge pointwise to the identity
as n → ∞ and ‖*(ηn)‖∞ ≤ a n−2‖C‖ → 0. The L2-uniqueness implies that

H is Markov unique. Therefore H is also L1-unique and S
F
t is conservative by

Theorem 1.3.

Example 6.6. Assume that ci j ∈ W 1,∞(!) and 0 < C(x) ≤ a d∂!(x)2 I for some
a > 0 and all x ∈ ! where d∂! is the Euclidean distance to the boundary ∂! of

!. Then H! is L2-unique. Again this follows from Proposition 6.1. Define ρn and
χn as in the proofs of Propositions 4.1 and 4.2, respectively. Set ηn = ρn (11! −
χn ◦ d∂!). Then the ηn converge pointwise to 11! and ‖*(ηn)‖∞ ≤ a (log n)−2.
Therefore L2-uniqueness follows from Proposition 6.1 with p = 2. More generally

if |Bδ| ≤ b δ for all bounded B ⊆ ∂! and all δ ∈ 〈0, 1] then one can use the
calculational procedure of the proof of Proposition 4.2 to deduce that if p ∈ [1, 2 ]
and 0 < C(x) ≤ a d∂!(x)(3p−2)/p I then H! is L p-unique. In particular L1-

uniqueness follows if 0 < C(x) ≤ a d∂!(x)I .

Although the approximation criteria for L1-uniqueness and L2-uniqueness in

Proposition 6.1 are superficially similar they are of a totally different geometric

character. The first involves the norm ‖*(η)‖1 which is related to the capacity and
the second involves the norm ‖*(η)‖∞ which is related to the Riemannian distance.

In dimension one the first estimate is optimal but the second is suboptimal. This is

illustrated by the following example adapted from [6] (see also [9, 28]).

Example 6.7. Assume d = 1 and ! = 〈−1, 1〉. Further let H be the operator

with domain C∞
c (−1, 1) and action Hϕ = −(c ϕ′)′ where c(x) = (1− x2)δ . Then

c ∈ W 1,∞(−1, 1) if and only if δ ≥ 1. Set W (x) =
∫ x

0 c
−1. Thus H∗W = 0. It

follows that H is L p-unique for p ∈ [1,∞〉 if and only if W 7∈ Lq(−1, 1) where
q is conjugate to p (see [6, Proposition 3.5]). Hence H is L1-unique for all δ ≥ 1

and L p-unique for p > 1 if and only if δ > (2p − 1)/p. In particular it is L2-
unique if and only if δ > 3/2 and L p-unique for all p ∈ [1,∞〉 if and only if



MARKOV UNIQUENESS OF DEGENERATE ELLIPTIC OPERATORS 705

δ ≥ 2. Alternatively, H is Markov unique for all δ ≥ 1 by [9], Theorem 3.5. Thus

Markov uniqueness and L1-uniqueness are simultaneously valid in agreement with

Theorem 1.3.

The L1-uniqueness can be verified by the criterion of Proposition 6.1. Define

ηn by ηn(x) = 1− W (x)/W (1− n−1) if x ∈ [0, n−1〉, ηn(x) = 0 if x ≥ 1− n−1
and ηn(−x) = ηn(x) for all x ≥ 0. Since δ ≥ 1 it follows that ηn converges
monotonically upward to 11〈−1,1〉 as n → ∞. But *(ηn) = c |η′

n|2. Thus h(ηn) =
‖*(ηn)‖1 = 2W (1 − n−1)−1 → 0 as n → ∞. Therefore L1-uniqueness of H

follows for all δ ≥ 1. But ‖*(ηn)‖∞ ∼ n(2−δ) and this is bounded if and only if

δ ≥ 2. Therefore the L2-uniqueness only follows for δ ≥ 2 and not for the full

range δ > 3/2.
Note that the Riemannian distance corresponding to the metric c−1 is given by

d(x ; y) = |
∫ x

y
c−1/2|. Thus the distance from the origin to the boundary, d(0 ; 1) =

d(0 ;−1), is finite for all δ ∈ [1, 2〉. Therefore if δ ∈ 〈3/2, 2〉 then the distance to
the boundary is finite but H is nonetheless essentially self-adjoint.

6.2. Sets of capacity zero

Let A be a closed subset of ! with |A| = 0. In this subsection we assume that

the coefficients ci j are real, symmetric, ci j ∈ W 1,∞(!) and C(x) > 0 for all

x ∈ !\A. Then we define the operators H! and H!\A with the coefficients ci j
on C∞

c (!) and C∞
c (!\A), respectively. All the foregoing considerations apply

to H!\A because the matrix of coefficients C is non-degenerate on !\A but they
do not necessarily apply to H! since C can be degenerate on A. Nevertheless

H! ⊇ H!\A. Hence uniqueness criteria for H!\A give sufficient conditions for
uniqueness of H!. For example if H!\A is Markov unique then H! is Markov

unique. But Markov uniqueness of H!\A is equivalent to the boundary ∂(!\A)
having zero capacity and this is equivalent to ∂! and A both having zero capacity.

Thus the boundary condition cap!(∂!) = 0 is sufficient for H! to be Markov

unique if in addition the degeneracy set A has zero capacity. This typically occurs

for one of two reasons. Either d(A) ≤ d−2 and cap!(A) = 0 independently of the

behaviour of the coefficients in the neighbourhood of A or d(A) is arbitrary and the
coefficients have a correspondingly strong degeneracy on A (see Proposition 4.2).

We illustrate these possibilities with two simple examples.

Example 6.8. Let! = Rd and consider the operator H = −∑d
i, j=1 ∂i ci j∂ j acting

on C∞
c (Rd) with ci j ∈ W 1,∞(Rd) and (ci j ) > 0 on the complement Ac of a closed

set A with |A| = 0 and supδ∈〈0,1] δ
−2|Bδ| < ∞ for all bounded B ⊆ A. Then H is

L1-unique and Markov unique. This follows because ∂Ac = A and cap!(A) = 0

by the estimates of Proposition 4.2. Therefore H is L1-unique and Markov unique

on C∞
c (Rd\A) by Theorems 1.2 and 1.3.

Example 6.9. Again let ! = Rd and H = −∑d
i, j=1 ∂i ci j∂ j the operator acting

on C∞
c (Rd) with coefficients ci j ∈ W 1,∞(Rd) and (ci j ) > 0 on the complement

Ac = Rd\A of a closed set A with |A| = 0. Further assume that Ac = !1 ∪ !2
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with !1 ∩ !2 = ∅. Now assume cap!(A) = 0. Since A = ∂(!1 ∪ !2) =
!1 ∩ !2 it follows that H is L1-unique and Markov unique on C

∞
c (!1 ∪ !2).

Therefore H is L1-unique and Markov unique on C
∞
c (Rd). Moreover, the unique

Markov extension, the Friedrichs extension HF , must coincide with the Friedrichs

extension of H on C∞
c (!1 ∪ !2) = C∞

c (!1) + C∞
c (!2). But it follows readily

from the definition of the Friedrichs extension that this latter operator is of the form

HF
!1

⊕ HF
!2
on L2(!1) ⊕ L2(ϕ2). Therefore the semigroup S

F
t generated by H

F

leaves the subspaces L2(!1) and L2(!2) invariant.

6.3. Irreducibility and ergodicity

In Example 6.8 the set Rd\A on which the coefficients of the operator H are

non-degenerate has two disjoint components !1 and !2. Consequently the cor-

responding Markov semigroup has two invariant subspaces L2(!1) and L2(!2).
We conclude by giving a general result that relates connectedness of the set of non-

degeneracy and ergodicity of the corresponding Friedrichs semigroup.

The absence of non-trivial invariant subspaces is variously defined as ergod-

icity or irreducibility of a semigroup. The property can be characterized by strict

positivity. In particular the positive semigroup St on L2(!) is defined to be irre-
ducible if for every t > 0 and every positive, nonzero, ϕ ∈ L2(!) one has Stϕ > 0

almost everywhere (see, for example [24, Definition 2.8]). This is clearly equivalent

to the requirement that (ϕ, Stψ) > 0 for all positive, nonzero, ϕ,ψ ∈ L2(!) and
for all t > 0.

Now consider the submarkovian semigroups generated by extensions of H!

always under the assumptions of Theorem 1.1. The following proposition extends

[24, Theorem 4.5] to this situation.

Proposition 6.10. Let SFt denote the semigroup generated by the Friedrichs exten-

sion HF
! of H!. The following conditions are equivalent:

I. SFt is irreducible,

II. ! is connected.

Moreover if these conditions are satisfied then each semigroup generated by a sub-

markovian extension of H! is irreducible.

Proof. First note that if K! is a submarkovian extension of H! then the semigroup

e−t K! dominates SFt by Theorem 1.1.V. It follows immediately that irreducibility

of SFt implies irreducibility of e
−t K! .

I ⇒ II This follows by the foregoing discussion. If ! is not connected then SFt is

not irreducible.

II ⇒ I Let !n be an increasing family of connected open subsets of ! with

!n ! !n+1 and ! = ⋃
n≥1!n . Then Hn = H!|C∞

c (!n) is a strongly elliptic op-

erator on L2(!n). Let H
F
n denote the Friedrichs extension of Hn and S

(n)
t the cor-
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responding semigroup. The extension HF
n corresponds to Dirichlet boundary con-

ditions on Hn . It follows that S
(n)
t is irreducible on L2(!n) by [24], Theorem 4.5.

But SFt ϕ ≥ S
(n+1)
t 11!n+1ϕ ≥ S

(n)
t 11!nϕ for all positive ϕ ∈ L2(!) by [10, Corol-

lary 2.3]. Therefore SFt is irreducible on L2(!).

A. Strong ellipticity

In this appendix we recall some basic properties of the operator L=−
d∑

i, j=1
∂i ci j ∂ j ,

with real symmetric Lipschitz continuous coefficients ci j and domain D(L) =
C∞
c (Rd), acting on L2(Rd) under the hypothesis of strong ellipticity.

Proposition A.1. Assume ci j = c ji ∈ W 1,∞(Rd) and that C = (ci j ) ≥ µI > 0

uniformly over Rd . Then one has the following.

I. L is essentially self-adjoint,

II. D(L) = W 2,2(Rd),
III. (I + L)−1 is a bounded operator from W−δ,2(Rd) to W 2−δ,2(Rd) for all δ ∈

[0, 1].

The conclusions of the proposition are well known. If the operator is strongly

elliptic and ci j ∈ W 2,∞(Rd) then the result follows in its entirety from [25] or

[11] but we have not found a suitable reference for the complete statement with

ci j ∈ W 1,∞(Rd). We briefly sketch the proof.

Sketch of proof of Proposition A.1. First, since the operator L is symmetric on

L2(Rd) it is closable and its closure L is self-adjoint if and only if the range con-
dition R(κ I + L) = L2(Rd) is satisfied for large positive κ . Since the coefficients
ci j ∈ W 1,∞(Rd) the latter condition can be established by the following variant of
Levi’s parametrix argument (see, for example, [17]).

Fix y∈Rd and introduce the constant coefficient operator Ly=−
d∑

i, j=1
ci j (y) ∂i∂ j

with domainW 2,2(Rd). Then Ly is a positive self-adjoint operator which generates
a translationally invariant submarkovian semigroup with an integral kernel

K
(y)
t (x) = (detC(y))−1(4π t)−d/2e−(x,C(y)−1x)/4t . (A.1)

The kernel R
(y)
κ of the resolvent (κ I + Ly)

−1 is then given by

R(y)
κ (x) =

∫ ∞

0

dt e−κt K
(y)
t (x) .
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Next define Rκ as a bounded operator on the spaces L p(Rd) by

(Rκϕ)(x) =
∫

Rd

dy R(y)
κ (x − y)ϕ(y) .

It follows that if κ ≥ 1 then RκL2(Rd) ⊆ D(L) and

(κ I + L)Rκ = I + Qκ

where the Qκ are the bounded operators

(Qκϕ)(x) = −
d∑

i, j=1

∫

Rd

dy
(
∂i (ci j (x) − ci j (y))∂ j R

(y)
κ

)
(x − y)ϕ(y)

= −
d∑

i, j=1

∫

Rd

dy
(
(∂i ci j )(x)(∂ j R

(y)
κ )(x − y)

+ (ci j (x) − ci j (y))(∂i∂ j R
(y)
κ )(x − y)

)
ϕ(y).

Since the coefficients ci j ∈ W 1,∞(Rd) one has bounds |ci j (x) − ci j (y)| ≤ a (|x −
y| ∧ 1) for some a > 0. Therefore it follows that Qκ satisfy bounds ‖Qκ‖2→2 ≤
b κ−1/2 for all κ ≥ 1. Thus ‖Qκ‖2→2 < 1, the operator I + Qκ has a bounded

inverse and

(κ I + L)Rκ(I + Qκ)−1 = I

for all large κ . Then the range of (κ I + L) is L2(Rd) and L is self-adjoint.

Secondly, to deduce that D(L) = W 2,2(Rd), with equivalent norms, we note
that

‖Lϕ‖22 =
d∑

i, j,k,l=1
(∂ j ci j ∂iϕ, ∂k ckl ∂lϕ) =

d∑

i, j,k,l=1
(∂k∂iϕ, ci j ckl ∂ j∂lϕ) + LOT

for all ϕ ∈ C∞
c (Rd) where LOT denotes a sum of lower order terms. But if A

denotes the d2 × d2-matrix with coefficients a(ik),( jl) = ci j ckl then A = C ⊗ C .

Thus if λ I ≥ C ≥ µ I > 0 then λ2 I ≥ A ≥ µ2 I uniformly on Rd and

λ2 ‖1ϕ‖22 ≥
d∑

i, j,k,l=1
(∂k∂iϕ, ci j ckl ∂ j∂lϕ) ≥ µ2 ‖1ϕ‖22 (A.2)

for all ϕ ∈ C∞
c (Rd) where 1 denotes the usual Laplacian. The lower order terms

can, however, be bounded by standard estimates. For each ε ∈ 〈0, 1] there is a
cε > 0 such that

|LOT| ≤ ε ‖1ϕ‖22 + cε ‖ϕ‖22 (A.3)
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for all ϕ ∈ C∞
c (Rd). The identity D(L) = W 2,2(Rd) follows straightforwardly by

combination of the estimates (A.2) and (A.3) since the W 2,2-norm and the graph

norm on D(1) are equivalent and C∞
c (Rd) is dense in W 2,2(Rd).

Thirdly, if δ ≥ 0 then W δ,2(Rd) = D((I + 1)δ/2) with the graph norm and
W−δ,2(Rd) is defined as the dual space. These spaces are a scale of spaces for real
interpolation. Since, by the foregoing, (I + L)−1L2(Rd) = D(L) = W 2,2(Rd), i.e.
the resolvent is a bounded operator from L2(Rd) to W 2,2(Rd), it suffices to prove
that (I + L)−1 is bounded from W−1,2(Rd) to W 1,2(Rd). Therefore it suffices to
prove that (I+1)1/2(I+L)−1(I+1)1/2 extends to a bounded operator on L2(Rd).
This follows, however, because

‖(I + 1)1/2 (I + L)−1(I + 1)1/2ϕ‖22
≤ (1 ∨ µ−1) (ϕ, (I + 1)1/2(I + L)−1(I + 1)1/2ϕ)

≤ (1 ∨ µ−1) ‖ϕ‖2 ‖(I + 1)1/2(I + L)−1(I + 1)1/2ϕ‖2

by strong ellipticity.
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