Using results by D. Witte [35] on the superigidity of lattices in solvable Lie groups we get a new proof of a recent remarkable result obtained by D. Guan [15] on the de Rham cohomology of a compact solvmanifold, i.e., of a quotient of a connected and simply connected solvable Lie group by a lattice . This result can be applied to compute the Betti numbers of a compact solvmanifold even in the case that the solvable Lie group and the lattice do not satisfy the Mostow condition.
@article{ASNSP_2011_5_10_4_801_0, author = {Console, Sergio and Fino, Anna}, title = {On the de {Rham} cohomology of solvmanifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {801--818}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {4}, year = {2011}, mrnumber = {2932894}, zbl = {1242.53055}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2011_5_10_4_801_0/} }
TY - JOUR AU - Console, Sergio AU - Fino, Anna TI - On the de Rham cohomology of solvmanifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 801 EP - 818 VL - 10 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2011_5_10_4_801_0/ LA - en ID - ASNSP_2011_5_10_4_801_0 ER -
%0 Journal Article %A Console, Sergio %A Fino, Anna %T On the de Rham cohomology of solvmanifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 801-818 %V 10 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2011_5_10_4_801_0/ %G en %F ASNSP_2011_5_10_4_801_0
Console, Sergio; Fino, Anna. On the de Rham cohomology of solvmanifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 4, pp. 801-818. http://archive.numdam.org/item/ASNSP_2011_5_10_4_801_0/
[1] L. Auslander, An exposition of the structure of solvmanidolds I and II, Bull. Amer. Math. Soc. 79 (1973), 227–261. | MR | Zbl
[2] L. Auslander and J. Brezin, Almost algebraic Lie algebras, J. Algebra 8 (1968), 295–313. | MR | Zbl
[3] L. Auslander and R. Tolimieri, Splitting theorems and the structure of solvmanifolds, Ann. of Math. (2) 92 (1970), 164–173. | MR | Zbl
[4] O. Baues and V. Cortes, Aspherical Kähler manifolds with solvable fundamental group, Geom. Dedicata 122 (2006), 215–229. | MR | Zbl
[5] C. Bock, On low-dimensional solvmanifolds, preprint arXiv:0903.2926 (2009). | MR
[6] A. Borel, “Linear Algebraic Groups”, Second edition, Graduate Texts in Mathematics, Vol. 126, Springer, New York, 1991. | MR | Zbl
[7] S. Console and A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001), 111–124. | MR | Zbl
[8] A. Cordero, M. Fernández, A. Gray and L. Ugarte, Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), 5405–5433. | MR | Zbl
[9] P. de Bartolomeis and A. Tomassini, On solvable generalized Calabi-Yau manifolds, Ann. Inst. Fourier (Grenoble) 56 (2006), 1281–1296. | EuDML | Numdam | MR | Zbl
[10] K. Dekimpe, Semi-simple splitting for solvable Lie groups and polynomial structures, Forum Math. 12 (2000), 77–96. | MR | Zbl
[11] V.V. Gorbatsevich, Splittings of Lie groups and their application to the study of homogeneous spaces, Math. USSR-Izv. 15 (1980), 441–467. | Zbl
[12] V.V. Gorbatsevich, Plesicompact homogeneous spaces, Siber. Math. J. 30 (1989), 217–226. | MR | Zbl
[13] V.V. Gorbatsevich, Symplectic structures and cohomologies on some solvmanifolds, Siber. Math. J. 44 (2003), 260–274. | EuDML | MR | Zbl
[14] W. Greub, S. Halperin and R. Vanstone, “Connections, Curvature and Cohomology”, Vol. I, Academic Press, New York and London, 1973. | MR | Zbl
[15] D. Guan, Modification and the cohomology groups of compact solvmanifolds, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 74–81. | MR | Zbl
[16] D. Guan, Classification of compact complex homogeneous manifolds with pseudo-Khlerian structures, J. Algebra 324 (2010), 2010–2024. | MR | Zbl
[17] D. Guan, Classification of compact homogeneous manifolds with pseudo-Kählerian structures, C. R. Math. Acad. Sci. Soc. R. Can. 31 (2009), 20–23. | MR | Zbl
[18] K. Hasegawa, Complex and Kähler structures on compact solvmanifolds, J. Symplectic Geom. 3 (2005), 749–767. | MR | Zbl
[19] A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289–331. | MR | Zbl
[20] A. Malcev, On solvable Lie algebras, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 9 (1945), 329–356. | MR
[21] Y. I. Merzilyakov, “Rational Groups”, Nauka, Moscow, 1987. | MR | Zbl
[22] J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293–329. | MR | Zbl
[23] M. V. Milovanov, Description of solvable Lie groups with a given uniform subgroup, Mat. Sb. (N.S.) 113(155) (1980), 98–117, 175. | EuDML | MR | Zbl
[24] D. V. Millionschikov, Multivalued functionals, one-forms and deformed de Rham complex, e-print math.AT/0512572 (2005).
[25] G. Mostow, Factor spaces of solvable spaces, Ann. of Math. (2) 60 (1954), 1–27. | MR | Zbl
[26] G. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 20–48. | MR | Zbl
[27] K. Nomizu, On the cohomology of homogeneous spaces of nilpotent Lie Groups, Ann. of Math. (2) 59 (1954), 531–538. | MR | Zbl
[28] A. L. Onishchik and E. B. Vinberg, “Lie Groups and Lie Algebras II. Discrete Subgroups of Lie Groups and Cohomologies of Lie Groups and Lie Algebras”, Encyclopaedia of Mathematical Sciences, Vol. 21, Springer-Verlag, Berlin, 2000. | MR | Zbl
[29] J. Oprea and A. Tralle, “Symplectic Manifolds with no Kähler Structure”, Lecture Notes in Mathematics, Vol. 1661, Springer, Berlin, 1997. | MR | Zbl
[30] M. S. Raghunathan, “Discrete subgroups of Lie groups”, Springer, Berlin, 1972. | MR | Zbl
[31] S. Rollenske, Lie-algebra Dolbeault-cohomology and small deformations of nilmanifolds, J. London Math. Soc. (2) 79 (2009), 346–362. | MR | Zbl
[32] A. N. Starkov, “Algebraic Groups and Homogeneous Spaces of Finite Volume”, Translated from the 1999 Russian original by the author, Translations of Mathematical Monographs, Vol. 190, American Mathematical Society, Providence, RI, 2000. | MR | Zbl
[33] T. Yamada, A pseudo-Kähler structure on a nontoral compact complex parallelizable solvmanifold, Geom. Dedicata 112 (2005), 115–122. | MR | Zbl
[34] D. Witte, Zero-entropy affine maps on homogeneous spaces, Amer. J. Math. 109 (1987), 927–961. | MR | Zbl
[35] D. Witte, Superrigidity of lattices in solvable Lie groups, Invent. Math. 122 (1995), 147–193. | EuDML | MR | Zbl