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A nonlinear integral transform

and a global inverse bifurcation theory

YUTAKA KAMIMURA

Abstract. We consider a nonlinear integral transform and show that the trans-
form acts as a homeomorphism between certain metric spaces of positive func-
tions. We apply the result to the inverse bifurcation problem of determining the
nonlinear term of a certain nonlinear Sturm-Liouville problem from its first bifur-
cating branch, and we establish the well-posedness of the inverse problem. An
application to an inverse problem of determining a restoring force from a time-
map is also given.

Mathematics Subject Classification (2010): 44A15 (primary); 34A55, 45P05
(secondary).

1. The main result

This paper studies the nonlinear integral transform K defined by

(K f )(x) =
∫ 1

0

dt
(∫ 1

t
sβ−1 f (xs)ds

)1−δ
, x ∈ I, (1.1)

where 0 < δ < 1, β > 0, and I is a bounded, closed interval containing 0. Our

objective is to show that the transform K is a homeomorphism of an appropriate

metric space onto a twin metric space reflecting the smoothing property of K and,
as its application, that an inverse problem to determine a nonlinear term of a certain

nonlinear Sturm-Liouville problem from its first bifurcating branch is globally well-

posed.

Throughout the paper, θ denotes the Euler differential operator θ = x d
dx
. To

state the main result explicitly, for a nonnegative integer k, a number α ∈ (0, 1],
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and a number η ∈ R, we introduce the function space

Ck,α(I )η :=
{

φ ∈ Ck(I \ {0}) : ‖φ‖k,α,η =
k∑

i=0
|θ iφ|η + |θkφ|α,η < ∞

}
(1.2)

where | · |η and | · |α,η are the semi-norms defined by

|φ|η := sup
x∈I\{0}

|φ(x)|
|x |η , |φ|α,η := sup

x,y∈I\{0},x %=y

‖x |α−ηφ(x) − |y|α−ηφ(y)|
|x − y|α .

Equipped with the norm ‖φ‖k,α,η, the space Ck,α(I )η is a Banach space. A suitable

choice of metric spaces on which K acts isMk,α(I )η defined by

Mk,α(I )η :=
{
f ∈ C+(I ) : f (x) − f (0) ∈ Ck,α(I )η

}
(1.3)

with the metric

d( f, g) := | f (0) − g(0)| + ‖( f (x) − f (0)) − (g(x) − g(0))‖k,α,η. (1.4)

Here C+(I ) denotes the set of positive, continuous functions on I :

C+(I ) := { f ∈ C(I ) : f (x) > 0 for any x ∈ I } .

One of the main theorems in this paper is now stated as follows:

Theorem 1.1. Let 0 < δ < 1, β > 0, and let I be a bounded, closed interval

containing 0. Then, for any α, η such that 0 < η ≤ α < 1− δ, the transform K is

a homeomorphism ofM1,α(I )η ontoM1,α+δ(I )η.

The assertion in Theorem 1.1 is the same as saying that, given F ∈ M1,α+δ(I )η,
the nonlinear integral equation

∫ 1

0

dt
(∫ 1

t
sβ−1 f (xs)ds

)1−δ
= F(x), x ∈ I, (1.5)

has a unique solution f inM1,α(I )η and both correspondences f '→ F and F '→
f are continuous in the sense of the metrics of the two spaces involved. The proof

of Theorem 1.1 is organized as follows. In Section 2 we shall prove that equation

(1.5) has a local solution near x = 0 by using an implicit function theorem on

function spaces and a theory of multiplicative Wiener-Hopf equations developed

by Iwasaki-Kamimura [12, 13]. In recasting neighborhoods of 0 in the function

spaces to an interval Iκ := {κx : x ∈ I } near x = 0, we employ a scaling operator

Sκ defined by (Sκ f )(x) = f (κx). The commutative property KSκ = SκK of

the transform K on the scaling operator makes it possible to obtain a solution of
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the equation on the interval Iκ with sufficiently small κ . In Section 3 we explore a
significant characteristic of the equation; a solution f of the equation remains in the

spaceM1,α(I )η as long as F belongs toM1,α+δ(I )η. To show this good behavior
of the solution we make use of the so-called fractional calculus together with a

technique established in Kamimura [17]. Loosely speaking, by differentiating (1.5)

1 − ε times and then letting ε tend to 0, we shall prove that the solution never
goes to infinity. An explicit statement and a rigorous proof of this fact is given

in Lemma 3.9. The characteristic of the equation is rather delicate. Actually a

solution of (1.5) does not necessarily remain in the spaceM0,α(I )η even though F

belongs toM0,α+δ(I )η, as will be indicated by Example 4.5 at the end of Section

4; the conclusion in Theorem 1.1 breaks down generally when a pairM1,α(I )η and

M1,α+δ(I )η is replaced byM0,α(I )η andM0,α+δ(I )η. For this reason the proof
of Lemma 3.9 becomes considerably technical. In Section 4 we shall prove that

each solution f ∈ M1,α(I ′)η of the equation on a closed subinterval I ′ ⊂ I can be

extended to both sides of I ′. Following this observation, in Proposition 4.3 we shall
prove that our transform K is a bijection fromM1,α(I )η ontoM1,α+δ(I )η. The
continuities of the correspondences f '→ F and F '→ f are established in Lemma

2.3 and Proposition 5.4, respectively.

Our study on the transformK is motivated by an inverse problem in bifurcation
theory (inverse bifurcation problem). Let f be a positive, continuous function on

a bounded, closed interval I containing 0 and consider the nonlinear eigenvalue

problem 




u′′ + λu f (u) = 0 on (0, 1), ′ = d
dx

,

u(0) = u(1) = 0,

u %= 0 on (0, 1).

(1.6)

By the condition that u %= 0 on the interval (0, 1), each solution u of (1.6) is positive
or negative in the interval. Hence the solution has its maximum or minimum value

at the middle point 1
2
of the interval. By means of the value h, as a projection

into (0,∞) × I of the first bifurcating branch of (1.6), we define a set *( f ) in
(0,∞) × I by

*( f ) :=
{
(λ, h)∈(0,∞) × I | ∃u∈C2[0, 1] satisfying (1.6) and u

(
1
2

)
=h

}
. (1.7)

Then, as is easily seen (see Lemma 6.1 in Section 6), the set *( f ) is expressed as
*( f ) = {(λ(h), h) : h ∈ I \ {0}} in terms of a positive function λ(h) defined by

λ(h) = 2




∫ 1

0

dt
√∫ 1

t
s f (hs)ds




2

. (1.8)

We thus have a correspondence (the forward bifurcation transform)

B : f (u) '→ λ(h) (1.9)
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Figure 1.1. The bifurcation transform.

(see Figure 1.1), where the trivial function f ≡ f (0) corresponds to the trivial

bifurcation λ(h) ≡ π2

f (0) in the linear case.

The inverse bifurcation problem is to ask whether f can be recovered from

λ(h). By (1.8), the bifurcation transform B is written as B f = 2(K f )2 in terms
of the transform K with δ = 1

2
, β = 2 in (1.1). Accordingly we can draw the

following conclusion from Theorem 1.1.

Theorem 1.2. For any α, η such that 0 < η ≤ α < 1
2
, the bifurcation transform B

is a homeomorphism ofM1,α(I )η ontoM1,α+ 1
2 (I )η.

The rigorous statement of the inverse bifurcation problem and an example in-

dicating the meaning of Theorem 1.2 is given in Section 6.

The inverse problem to determine a nonlinear term from a first bifurcating

branch was studied in Kamimura [14], Iwasaki and Kamimura [11, 13] for a class

of Sturm-Liouville equations different from (1.6). In these papers, the local exis-

tence of nonlinear terms realizing a prescribed bifurcating branch was established.

That is, it was proved that, for each curve sufficiently near the trivial bifurcation

in the linear case, there exist nonlinear terms (not unique, in general) realizing the

curve as their first bifurcating branch. Studies for some related inverse problems

to determine nonlinear terms of semilinear differential equations from spectral data

can be found in Zhidkov [33], Shibata [29]. Theorem 1.2 asserts that the inverse

bifurcation problem is well-posed globally for the simpler problem (1.6).

The inverse bifurcation problem mentioned above is directly connected to a

classical inverse problem (inverse time-map problem): determine a function g rep-

resenting a restoring force in the newtonian equation ü+g(u) = 0 from a time-map

T (h) assigning to each half-amplitude the corresponding half-period. In fact, by a
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scaling
√

λ x = t and the setting g(u) = u f (u), the problem (1.6) becomes






ü + g(u) = 0 on (0,
√

λ), ˙ = d
dt

,

u(0) = u(
√

λ) = 0,

u > 0 on (0,
√

λ),

(1.10)

provided that I = [0, b] and λ > 0. Hence the mapping T : h '→
√

λ is no other
than the time-map (see Figure 1.2). In view of (1.8), the time-map associated to g

is expressed as

T (h) =
√
2

∫ 1

0

dt
√∫ 1

t
s f (hs)ds

=
√
2

∫ h

0

dη
√∫ h

η g(ξ)dξ
(1.11)

or written as

T =
√
2K f (1.12)

in terms of the transform K with δ = 1
2
, β = 2 in (1.1).

!
O

"
b

u

h

tT (h)

u(t)

Figure 1.2. The time-map.

The inverse time-map problem has been studied in many publications. The first

important contribution to the problem was given in Opial [23], which showed that

if two time-maps Ti (h) associated to continuous functions gi , i = 1, 2, satisfy

T1(h) ≤ T2(h) for all h > 0 then
∫ h
0 g1(ξ)dξ ≥

∫ h
0 g2(ξ)dξ for all h ≥ 0. The

uniqueness of a continuous g for each given T is immediate from this result. The

local existence of g was first established in Urabe [30, 31] (see also [32]) under the

assumption that the derivative of T is Lipschitz continuous. This local existence re-

sult was improved in Alfawicka [1, Theorem 3.2], which proved the local existence

of g under the assumption that T itself is Lipschitz continuous. The global version

of Alfawicka’s result has recently been established in Kamimura [18]:

Theorem 1.3 (18, Theorem 1.2 and equation (4.2)). Given a positive, Lipschitz

continuous function T on the interval [0, b], there exists a (unique) continuous
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function g defined on the interval [0, b], positive on the interval (0, b] and such that
the time-map associated to g equals T (h) for h ∈ [0, b]. Moreover,

g(h) = (π/T (0))2h + O(h2), as h → 0. (1.13)

It should be noticed that Alfawicka [2], Mañosas and Torres [22] studied the inverse

time-map problem in a framework of analytic functions. Also some related topics in

view of Hamiltonian systems may be found in Cima, Mañosas and Villadelprat [4],

Cima, Gasull and Mañosas [3]. A similar inverse problem concerning a time-map

assigning half-period (or period) to each energy level, in place of to each half-

amplitude, has been studied in detail by Schaaf [27]. This inverse problem, which

has been referred to as determination of the potential energy from the period of

oscillations, can be reduced to Abel’s integral equation (see Landau and Lifshitz

[20, Section 12], Keller [19], Gorenflo and Vessella [9, Section 2.4]). In [27] this

problem was discussed in connection with bifurcation theory. Also, in Henrard

and Zanolin [10], it was discussed in an application to Hamiltonian systems. A

class of inverse problem of determining g of u′′ = λg(u) from a sort of time-map
has also been considered in Denisov [6], Denisov and Lorenzi [7], Lorenzi [21],

Kamimura [16] (see also Denisov and Lorenzi [8]).

Theorem 1.3 presents a global existence result to the inverse time-map prob-

lem. In addition, since the method in its proof is constructive, we can get a general

strategy for reconstruction of g (see [18, Corollary 4.3]). However Theorem 1.3

mentions neither bijectivity, namely whether the correspondence g '→ T becomes

a bijection between any suitable function spaces nor stability, namely whether g

depends continuously on T in any reasonable topology. By applying Theorem 1.1

to the transform (1.12) we can give answers to these questions. For example, taking

η = α, we get the following answer:

Theorem 1.4. Let α be fixed in (0, 1/2). Then:

(1) A function T (h) is the time-map associated to a function g in the space

Xα :=
{
g ∈ C1,α[0, b] : g(0) = 0, g′(0) > 0, g(h) > 0 for any h ∈ (0, b]

}

if and only if T (h) belongs to the space

Yα :=
{
T ∈C+[0, b] ∩ C1(0, b] : lim

h→0
hT ′(h) = 0, |hT ′(h)|α+(1/2),α <∞

}
.

Here C1,α[0, b] denotes the standard Hölder space with exponent 1 + α and

| · |α+(1/2),α denotes a semi-norm defined by

|φ|α+(1/2),α := sup
0≤h %=k≤b

|h1/2φ(h) − k1/2φ(k)|
|h − k|α+(1/2)

.
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(2) The correspondence g '→ T is a continuous, one-to-one map from Xα onto Yα

and its inverse is also continuous with respect to the metrics

dX (g1, g2) := ‖g′
1 − g′

2‖α,

dY (T1, T2) := |T1(0) − T2(0)| + |h(T1 − T2)
′(h)|α+(1/2),α,

where ‖ · ‖α denotes a norm of C0,α[0, b]:

‖φ‖α := sup
0≤h≤b

|φ(h)| + sup
0≤h %=k≤b

|φ(h) − φ(k)|
|h − k|α .

Roughly speaking, the metric space Yα is of all positive functions such that the

Euler derivative hT ′(h) being Hölder continuous with exponent α + (1/2) at h %= 0

and with exponent α at h = 0, like T (h) = T (0) + O(hα) as h → 0.

Theorem 1.4 contains the following global existence result:

Corollary 1.5. Given a function T ∈ Yα , there exists a restoring force g in Xα such

that the time-map associated to g equals T .

Since a typical function g(h) = ch+hα+1 in Xα with some c > 0,α ∈ (0, 1/2)
does not satisfy (1.13), and so, the time-map associated to this function g is not

Lipschitz continuous. Thus it turns out that Theorems 1.3 and 1.4 are independent

of each other.

In our framework, the inverse bifurcation problem is equivalent to the inverse

time-map problem. The latter gives a vital, physical viewpoint to the former, while

the former gives a wider perspective, at least, in three directions: Firstly it has

a meaning even if λ is non-positive though the time-map has no physical sense.
Secondly, in ordinary differential equations, it can be posed even for the nth branch

bifurcating at the nth eigenvalue from trivial solutions. In fact the case n = 2 was

treated in Kamimura [15] for a different class of equation from (1.6). Thirdly it can

be formulated for a multi-dimensional equation, for example, -u + λg(u) = 0 in

an n-ball.

ACKNOWLEDGEMENTS. The author is very grateful to the referee for his valuable

suggestions that improved the original manuscript.

2. Local solvability

In this section we shall develop a local theory. Let I be a bounded, closed interval

containing 0 and set Iκ := {κx : x ∈ I } for κ > 0. Then our goal in this section

can be stated as follows:

Proposition 2.1. Let 0 < δ < 1, β > 0, let 0 < η ≤ α < 1 − δ, and let
F ∈ M1,α+δ(I )η. Then:

(1) If κ > 0 is sufficiently small then the equation K f = F on Iκ has a solution

inM1,α(Iκ)η.
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(2) If f1, f2 are solutions inM1,α(I )η of K f = F on I then f1 = f2 on Iκ for

sufficiently small κ > 0.

Proposition 2.1 is proved by means of the implicit function and a scaling operator.

Setting of a map and function spaces will be given as Lemmas 2.2 and 2.4 below.

The proof of Proposition 2.1 will be given after Lemma 2.5.

To solve K f = F , we may assume that F(0) equals to

γ :=
∫ 1

0

dt
(∫ 1

t
sβ−1ds

)1−δ
(2.1)

by redefining γ F(x)/F(0) so that we call F(x). Noting that a solution f of K f =
F for F with F(0) = γ satisfies f (0) = 1, we define a transform L by

(Lg)(x)=
∫ 1

0

dt
(∫ 1

t
sβ−1(1+ g(xs))ds

)1−δ
−

∫ 1

0

dt
(∫ 1

t
sβ−1ds

)1−δ
, x ∈ I. (2.2)

Then the equation K f = F has a solution f ∈ M1,α(I )η for F ∈ M1,α+δ(I )η
if and only if L( f − 1) = F − γ has a solution f − 1 ∈ C1,α(I )η for F − γ ∈
C1,α+δ(I )η.

We must solve Lg = G in C1,α(I )η for G ∈ C1,α+δ(I )η given in a neighbor-
hood of 0. We use the (local) implicit function theorem in the following framework.

Lemma 2.2. Let 0 < α < α + δ < 1, β > 0, let 0 ≤ η ≤ α, and set

U :=
{
g ∈ C1,α(I )η : 1+ g(x) > 0 for x ∈ I

}
.

Then L defined by (2.2) is a C1-map of U to C1,α+δ(I )η. The Fréchet derivative
L′(g0) of L at g0 ∈ U is given by

(L′(g0)g)(x) = (δ − 1)
∫ 1

0

tβ−1g(xt)dt
∫ t

0

dr
(∫ 1

r
sβ−1(1+ g0(xs))ds

)2−δ
. (2.3)

We omit the proof of Lemma 2.2, since it is standard. As a consequence of

Lemma 2.2, we obtain:

Lemma 2.3. Let 0 < α < α + δ < 1, β > 0, 0 ≤ η ≤ α. Then K defined by (1.1)
is a continuous map fromM1,α(I )η toM1,α+δ(I )η.

Proof. Define metric subspacesM1,α
0 (I)η⊂M1,α(I)η andM1,α+δ

0 (I)η⊂M1,α+δ(I)η
by

M1,α
0 (I )η := { f ∈ M1,α(I )η : f (0) = 1},

M1,α+δ
0 (I )η := {F ∈ M1,α+δ(I )η : F(0) = γ }.
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Moreover, let ωα be a map that assigns ( f (x)
f (0) , f (0)) to each f ∈ M1,α(I )η. It is

easy to see that ωα is a homeomorphism ofM1,α(I )η onto the product metric space

M1,α
0 (I )η × R+, where R+ := (0,∞) is viewed as a metric space with a usual

metric |b − c| for b, c ∈ R+. Similarly the map ωα+δ : F(x) '→ ( γ
F(0)F(x), F(0))

is a homeomorphism ofM1,α+δ(I )η onto the product metric spaceM1,α+δ
0 (I )η ×

R+. Furthermore we define a transformK0 fromM1,α
0 (I )η×R+ toM1,α+δ

0 (I )η×
R+ by K0( f0, c) := (K f0, γ /c1−δ). Then we have the following commutative
diagram:

M1,α(I )η
K−−−−→ M1,α+δ(I )η

ωα

8 ωα+δ

8

M1,α
0 (I )η × R+ K0−−−−→ M1,α+δ

0 (I )η × R+.

(2.4)

By Lemma 2.2, K0( f0, c) = (L( f0 − 1) + γ , γ /c1−δ) is a continuous map from

M1,α
0 (I )η × R+ toM1,α+δ

0 (I )η × R+. Since the vertical arrows ωα , ωα+δ are

homeomorphisms, K is a continuous map fromM1,α(I )η toM1,α+δ(I )η.

To apply the implicit function theorem to Lg = G, we require the following:

Lemma 2.4. Let 0 < α < α + δ < 1, β > 0 and let 0 ≤ η ≤ α. Then L′(0) is a
homeomorphism of C1,α(I )η onto C1,α+δ(I )η.

Proof. We use the notation (J0g)(x) =
∫ 1
0 0(t)g(xt)dt . Then, by (2.3),−L′(0) =

J00 , where

00(t) = (1− δ)tβ−1
∫ t

0

dr
(∫ 1

r
sβ−1ds

)2−δ
.

Moreover, by setting 0(t) := tη00(t), we have the following commutative dia-
gram:

C1,α(I )0
J0−−−−→ C1,α+δ(I )0

|x |η·
8 |x |η·

8

C1,α(I )η
−L′(0)−−−−→ C1,α+δ(I )η,

where the vertical arrows |x |η· are homeomorphisms. An elementary calculation
shows that

0(t) = Atβ(1− tβ)δ−1 + R(t), A = β1−δ

with R(t) satisfying the estimates

|R(t)| ≤ M, |R′(t)| ≤ Mt−1(1− t)δ−1, |R′′(t)| ≤ Mt−2(1− t)δ−2,
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with some constant M . This enables us to employ Theorem 3.1 in Iwasaki-Kami-

mura [13], which tells us that J0 is a homeomorphism of C1,α(I )0 onto C1,α+δ(I )0
if

D0(z) :=
∫ 1

0

0(t)t zdt %= 0,

in the half plane Re z ≥ 0. Note that the space Ck,α(I )0 in this paper is the same
space as Ck,α(I ) in [13].

But, for 0(t) = tη00(t), we have

D0(z) = (1− δ)

∫ 1

0

tη+β+z−1dt
∫ t

0

dr
(∫ 1

r
sβ−1ds

)2−δ

= (1− δ)

∫ 1

0

dr
(∫ 1

r
sβ−1ds

)2−δ

∫ 1

r

tη+β+z−1dt

= 1− δ

η + β + z
β2−δ

∫ 1

0

1− rη+β+z

(1− rβ)2−δ
dr,

which does not vanish if Re z ≥ 0, because

Re (1− rη+β+z) = 1− rη+β+Rez cos((Im z) log r) > 0

for r ∈ [0, 1). Thus J0 is a homeomorphism of C1,α(I )0 onto C1,α+δ(I )0, and
so, by the commutative diagram, −L′(0) is a homeomorphism of C1,α(I )η onto

C1,α+δ(I )η.

Lemmas 2.2 and 2.4 allow us to use the implicit function theorem (see, e.g.,

Schwartz [28, Theorem 1.20]). We draw the following conclusion:

Lemma 2.5. Under the same assumption as in Lemma 2.4, the transform L maps

a sufficiently small neighborhood U of 0 in C1,α(I )η homeomorphically onto a

neighborhood V of 0 in C1,α+δ(I )η. This map L : U → V is a C1-diffeomorphism.

We are now in a position to give:

Proof of Proposition 2.1. Let F be a function in M1,α+δ(I )η with F(0) = γ ,

where γ is a number given in (2.1). Then the equation K f = F for f ∈ M1,α(I )η
is equivalent to L( f − 1) = F − γ for f − 1 ∈ U . We set G := F − γ . Then
G ∈ C1,α+δ(I )η, γ + G(x) > 0 on I .

We employ a scaling operator Sκ for κ > 0 defined by (Sκφ)(x) = φ(κx).
We view Sκ as an operator from C1,ν(Iκ)η onto C1,ν(I )η, ν = α,α + δ. Since
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LSκ = SκL, we have the following commutative diagram:

C1,α(Iκ)η
L−−−−→ C1,α+δ(Iκ)η

Sκ

8 Sκ

8

C1,α(I )η
L−−−−→ C1,α+δ(I )η .

We denote the norm of φ ∈ C1,ν(Iκ)η by ‖φ‖1,ν,η;κ . Then Sκ has the norming prop-

erty: ‖Sκφ‖1,ν,η = κη‖φ‖1,ν,η;κ . Hence the vertical arrows in the above diagram
are homeomorphisms. Notice that S−1

κ = Sκ−1 (see Figure 2.1).
Let Gκ denote the section of G := F − γ on Iκ . Applying Sκ to G

κ , we have

‖SκG
κ‖1,α+δ,η = κη‖Gκ‖1,α+δ,η;κ .

!
O

"

!
O

"
"

#

I

"

#
Iκ

!L

"Sκ

Gκ

SκG
κ

#
Sκ

−1

gκ

g

x x

Figure 2.1. Diagram of the proof.

Since ‖Gκ‖1,α+δ,η;κ is not greater than the original norm ‖G‖1,α+δ,η of G in

C1,α+δ(I )η, if we take κ > 0 sufficiently small, then the norm ‖SκG
κ‖1,α+δ,η is

so small that SκG
κ is in the small neighborhood V stated in Lemma 2.5. (Note

that we assume η > 0.) Hence, by the lemma, there exists a solution g ∈ C1,α(I )η
of Lg = SκG

κ , and hence the pull-back gκ := Sκ
−1g, which belongs C1,α(Iκ)η,

satisfies Lgκ = G on Iκ , or equivalently, K(1 + gκ) = F on Iκ . Thus we get a

solution f κ := 1+ gκ ∈ M1,α(I )η of K f = F on Iκ .

We turn to the proof of assertion (2). Assume that there exist solutions fi −1 ∈
C1,α(I )η, i = 1, 2, of L( f − 1) = F − γ on I and let f κ

i and F
κ be the sections

of fi and F on Iκ respectively. Then L( f κ
i − 1) = Fκ − γ on Iκ , and hence

L(Sκ( f κ
i − 1)) = Sκ(Fκ − γ ), i = 1, 2. If we take κ > 0 sufficiently small then

Sκ( f κ
i − 1) ∈ U and Sκ(Fκ − γ ) ∈ V , because ‖Sκ( f κ

i − 1)‖1,α,η = κη‖ f κ
i −

1‖1,α,η;κ ≤ κη‖ fi − 1‖1,α,η and ‖Sκ(Fκ − γ )‖1,α+δ,η = κη‖Fκ − γ ‖1,α+δ,η;κ ≤
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κη‖F − γ ‖1,α+δ,η. Therefore, by Lemma 2.5, we have Sκ( f κ
1 − 1) = Sκ( f κ

2 − 1).
This shows that f κ

1 = f κ
2 , that is, f1 = f2 on Iκ . The proof is complete.

We conclude this section with the following:

Remark 2.6. Proposition 2.1 remains true even though the symbolsM1,ν , ν =
α,α + δ are replaced byM0,ν , ν = α,α + δ respectively. In other words, the local
solvability and uniqueness of the equation K f = F in the sense of the assertions

in Proposition 2.1 still hold for the transform K : M0,α(I ) → M0,α+δ(I ). We
omit the proof of this fact, because it is obtained by simply tracing the proof of

Proposition 2.1.

3. Fractional calculus

We view K as a transform fromM1,α(I )η toM1,α+δ(I )η, where I is a bounded,

closed interval containing 0. However, since φ ∈ C1,α(I )η if and only if sections

φ± of φ on I± := I ∩ R± belong to C1,α(I±)η respectively, it suffices to treat the
case either I = I+ or I = I−; here and hereafter, we treat the case I = [0, B],
B > 0. Throughout this section, for b > 0, C+[0, b] denotes the set of positive,
continuous functions on [0, b].

A crucial characteristic of the equation K f = F , namely,

∫ 1

0

dt
(∫ 1

t
sβ−1 f (xs)ds

)1−δ
= F(x), (3.1)

is that a solution f remains in the space M1,α [0, b]η as long as F lives in

M1,α+δ[0, b]η, which enables us to obtain an extension of a local solution we ob-
tained in the previous section. To describe the characteristic, it is convenient to

adopt the following

Definition 3.1. A function f is said to be regular on [0, b] if it satisfies

f ∈ C+[0, b] ∩ C1(0, b], |θ f |η < ∞ with some η > 0. (3.2)

Moreover, f is said to be a regular function on [0, b) if it is regular on [0, b′] for
any b′ < b. A function f is said to be a regular solution on [0, b] of K f = F if

it is regular on [0, b] and satisfies (3.1) on [0, b]. A regular function on [0, b) that
satisfies K f = F is said to be a regular solution on [0, b).

Our goal in this section is the following:

Proposition 3.2. Let 0 < α < α + δ < 1, β > 0 and suppose that F ∈
M1,α+δ[0, b]0. Then:
(1) A regular solution f on [0, b] of K f = F belongs toM1,α[0, b]0.
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(2) If f is a regular solution on [0, b) of K f = F , then there exists a regular

solution f̃ on [0, b] of K f = F such that f̃ = f on [0, b).
Proposition 3.2 implies that a regular solution f on [0, b) of K f = F converges

to a positive value and a function obtained by adding the value at x = b, which we

denote by f̃ , necessarily belongs toM1,α[0, b]0. The proof of this proposition is
divided into several steps and will be completed only after Lemma 3.10.

The equation K f = F is rewritten as

∫ x

0

dξ
(∫ x

ξ r
β−1 f (r)dr

)1−δ
= x1−β+βδF(x). (3.3)

In view of this recast, for a ≥ 0, we introduce a fractional integral operator I δa,w of

the following form:

(I δa,wφ)(x) = 1

*(δ)

∫ x

a

φ(ξ)
(∫ x

ξ r
β−1 f (r)dr

)1−δ
ξβ−1 f (ξ)dξ, (3.4)

where *( · ) is the Gamma function. Then (3.3) can be written as

I δ0,w
1

xβ−1 f (x)
= 1

*(δ)
x1−β+βδF(x). (3.5)

The operator I δa,w is a fractional integral by a weight functionw(x)=
∫ x

a
rβ−1 f (r)dr

(refer to Samko-Kilbas-Marichev [26, Section 18.2]). The reason for a ≥ 0 is the

term rβ−1. Let I δa be the Riemann-Liouville operator:

(I δaφ)(x) = 1

*(δ)

∫ x

a

φ(ξ)

(x − ξ)1−δ
dξ.

Then, provided that f > 0, the operator I δa,w may be connected with the Riemann-

Liouville operator I δa by the relation I
δ
a,w = QI δ0Q

−1 in terms of a substitution
operator Q defined by

(Qφ)(x) = φ(w(x)), w(x) =
∫ x

a

rβ−1 f (r)dr. (3.6)

Hence, characteristics of the fractional integral operator I δa,w are passed on from

those of the Riemann-Liouville operator I δ0 . In particular, the inverse of I
δ
a,w is

given by the associated differential operator Dδ
a,w defined as

Dδ
a,w = Dw I

1−δ
a,w , Dw = 1

xβ−1 f (x)
d

dx
, (3.7)

in an appropriate framework. Some remarks on these fractional operators may be

helpful at this stage:
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Lemma 3.3. Assume that f ∈ C+[a, b)∩ L1(a, b) and let I δa,w, D
δ
a,w be operators

defined by (3.4), (3.7). Then:

(1) If δ1, δ2 > 0 then I
δ1
a,w I

δ2
a,wφ = I

δ1+δ2
a,w φ for φ ∈ C[a, b].

(2) If 0 < δ < 1 then

(Dδ
a,wφ)(x)= 1

*(1− δ)





φ(a)

(∫ x

a
rβ−1 f (r)dr

)δ
+

∫ x

a

φ′(ξ)
(∫ x

ξ r
β−1 f (r)dr

)δ
dξ






for φ ∈ AC[a, b]. Here AC[a, b] denotes the set of absolutely continuous
functions on [a, b].

(3) If φ ∈ L1w(a, b), namely,
∫ b
a

|φ(x)|w′(x)dx < ∞, and if φ ∈ C(a, b], then

lim
δ→+0

(I δa,wφ)(x) = φ(x)

at each x ∈ (a, b].
(4) If 0 < δ < 1 then I δa,wφ ∈ C0,δw [a, b] for φ ∈ C[a, b]. Here C0,δw [a, b] is a

weighted Hölder space defined by

C0,δw [a, b] :=
{

φ ∈ C[a, b] : sup
a≤x %=y≤b

|φ(x) − φ(y)|
|w(x) − w(y)|δ < ∞

}
.

(5) If 0 < ε < δ + ε < 1 then D1−ε
a,w I δa,wφ = D

1−(δ+ε)
a,w φ for φ ∈ C0,1−δ

w [a, b].
(6) If 0 < δ < δ + ε < 1 then

(Dδ
a,wφ)(x) = 1

*(1− δ)

φ(x)
(∫ x

a
rβ−1 f (r)dr

)δ

+ δ

*(1− δ)

∫ x

a

φ(x) − φ(ξ)
(∫ x

ξ r
β−1 f (r)dr

)1+δ
ξβ−1 f (ξ)dξ, a< x≤b

for φ ∈ C0,δ+ε
w [a, b].

Proof. All the assertions are rewritings of well-known facts via the operation Q

in (3.6):

(1) follows from the semigroup property I
δ1
a I

δ2
a φ = I

δ1+δ2
a φ for φ ∈ C[a, b] (see,

e.g., [26, equation (2.21)]) of I δa ;

(2) is a recast of a formula ( [26, Lemma 2.2]) for a solution of the Abel’s integral

equation;

(3) follows from a well-known result [26, Theorem 2.7] for I δa .
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(4) is a recast of the fact ( [26, Corollary 2 of Theorem 3.1]) that I δa is a bounded

operator from L∞(a, b) into the Hölder space C0,δ[a, b];
(5) follows from (3.7) and (1) as D1−ε

a,w I δa,wφ = Dw I
ε
a,w I

δ
a,wφ = Dw I

δ+ε
a,w φ =

D
1−(δ+ε)
a,w φ;

(6) is known as the Marchaud fractional derivative (see [26, Section 13 and equa-

tion (18.30)]).

Lemma 3.3 is standard. We need another lemma concerning mapping properties of

the operator I δ0,w.

Lemma 3.4. Let 0 < α < α + δ < 1, β > 0. Then we have the followings:

(1) If f ∈ C+[0, b] then the operator I δ0,w is a homeomorphism of C0,α[0, b]1−β

onto C0,α+δ[0, b]1−β+βδ . The inverse is given by D
δ
0,w, which is expressed in

the Marchaud form

(Dδ
0,wφ)(x) = 1

*(1− δ)

φ(x)
(∫ x

0 r
β−1 f (r)dr

)δ

+ δ

*(1− δ)

∫ x

0

φ(x) − φ(ξ)
(∫ x

ξ r
β−1 f (r)dr

)δ+1 ξβ−1 f (ξ)dξ (3.8)

for φ ∈ C0,α+δ[0, b]1−β+βδ .

(2) If f is a regular function on [0, b], then the operator I δ0,w is a homeomorphism

of C1,α[0, b]1−β onto C1,α+δ[0, b]1−β+βδ . The inverse is given by D
δ
0,w.

Proof. We first prove the assertion (2). Let ρ > −1, put bQ :=
∫ b
0 r

β−1 f (r)dr ,
and set 0(t) = tρ(1 − t)δ−1/*(δ). Then it follows from [13, Theorem 3.1] that

an operator J0 defined by (J0g)(x) =
∫ 1
0 0(t)g(xt)dt is a homeomorphism of

C1,α[0, bQ]0 onto C1,α+δ[0, bQ]0, since
∫ 1
0 0(t)t zdt = B(ρ + z + 1, δ)/*(δ),

where B(·, ·) denotes the beta function, has no zeros in Re z ≥ 0 in view of ρ > −1.
Accordingly, by the commutative diagram

C1,α[0, bQ]0 J0−−−−→ C1,α+δ[1, bQ]0
|x |ρ ·

8 |x |ρ+δ ·
8

C1,α[0, bQ]ρ
I δ0−−−−→ C1,α+δ[0, bQ]ρ+δ,
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I δ0 is a homeomorphism of C1,α[0, bQ]ρ onto C1,α+δ[0, bQ]ρ+δ . The inverse (I δ0 )
−1

of I δ0 is given by

(I δ0 )
−1φ(x) = 1

*(1− δ)

φ(x)

xδ
+ δ

*(1− δ)

∫ x

0

φ(x) − φ(ξ)

(x − ξ)1+δ
dξ (3.9)

for φ ∈ C1,α+δ[0, bQ]ρ+δ (see [26, equation (13.2)]).

We now let Q be an operator defined by (3.6). Then it follows from an el-

ementary estimation that, for each ρ ∈ R, the operator Q is a homeomorphism

of C1,α[0, bQ]ρ onto C1,α[0, b]βρ provided that f is a regular function on [0, b].
Hence we have the commutative diagram

C1,α[0, bQ]ρ
I δ0−−−−→ C1,α+δ[0, bQ]ρ+δ

Q

8 Q

8

C1,α[0, b]βρ

I δ0,w−−−−→ C1,α+δ[0, b]β(ρ+δ).

(3.10)

Here the top and vertical arrows are homeomorphisms provided that ρ > −1, and so
is the bottom arrow. Accordingly, by setting ρ = β−1 − 1, we conclude that I δ0,w is
a homeomorphism of C1,α[0, b]1−β onto C1,α+δ[0, b]1−β+βδ . The expression (3.8)

follows from (3.9) via Q in (3.6). We have completed the proof of the assertion (2).

Following the same steps as above, with C0,ν instead of C1,ν , ν = α,α + δ, we may
prove the assertion (1). Unlike (2), no condition other than f ∈ C+[0, b] need be
imposed on f .

We now return to the equation K f = F . By means of Lemma 3.4 we can de-

rive its differential form of the order δ, which is useful in studying a priori properties
of its solutions:

Lemma 3.5. Let 0 < α < α + δ < 1, β > 0. Then we have the followings:

(1) Under the assumption F ∈ C0,α+δ[0, b]0, a regular function f on [0, b] satis-
fies K f = F on [0, b] if and only if f satisfies

π

sinπδ

1

f (x)
= F(x)

(∫ 1
0 s

β−1 f (xs)ds
)δ

+ δ

∫ 1

0

F(x) − t1−β+βδF(xt)
(∫ 1

t
sβ−1 f (xs)ds

)δ+1 t
β−1 f (xt)dt

(3.11)

on [0, b].
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(2) Under the assumption F ∈ C1,α+δ[0, b]0, if f is a regular solution on [0, b]
of K f = F or/and (3.11), then f (x) belongs to C1,α[0, b]0. In this case, for
each a ∈ (0, b], the equation K f = F on [a, b] is equivalent to

π

sinπδ

1

f (x)
= xβδF(x)

(∫ x

0 r
β−1 f (r)dr

)δ
− xβ−1 x

1−β+βδF(x) − a1−β+βδF(a)
(∫ x

a
rβ−1 f (r)dr

)δ

+ δ

∫ a

0

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f (r)dr

)δ+1 f (ξ)dξ

+ xβ−1
∫ x

a

d
dξ

(
ξ1−β+βδF(ξ)

)

(∫ x

ξ r
β−1 f (r)dr

)δ
dξ.

(3.12)

Proof. As is already noted, (3.1) is written as (3.5). Suppose that a regular function

f on [0, b] satisfies (3.1) on [0, b]. Then, by the estimate
∣∣∣∣
xα

f (x)
− yα

f (y)

∣∣∣∣ =
∣∣∣∣∣

∫ x

y

ξα−1(α f (ξ) − (θ f )(ξ))

f (ξ)2
dξ

∣∣∣∣∣

≤ ∃M1
∣∣∣∣

∫ x

y

ξα−1dξ

∣∣∣∣ ≤ M2|x − y|α,

f (x)−1 belongs to C0,α[0, b]0 for each α ∈ (0, 1), and hence (3.5) holds in the
framework stated in (1) of Lemma 3.4. Hence, applying the operator Dδ

0,w in

Lemma 3.4 to (3.5), we find that (3.1) is equivalent to

f (x)−1 = 1

*(δ)
xβ−1Dδ

0,wx
1−β+βδF(x). (3.13)

By means of (3.8) and *(δ)*(1− δ) = π/ sinπδ, this equality can be rewritten as

π

sinπδ

1

f (x)
= xβδF(x)

(∫ x

0 r
β−1 f (r)dr

)δ

+ δ

∫ x

0

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f (r)dr

)δ+1 f (ξ)dξ.

(3.14)

The corresponding substitutions show that this is equivalent to (3.11). If F ∈
C1,α+δ[0, b]0 then, by Lemma 3.4.(2), f (x)−1 belongs to C1,α[0, b]0. This, together
with f ∈ C+[0, b], yields |θ f |0 < ∞, |θ f |α,0 < ∞. Hence f ∈ C1,α[0, b]0.

Conversely, if a regular function f on [0, b] satisfies (3.11), then we have

1

xβ−1 f (x)
= 1

*(δ)
Dδ
0,wx

1−β+βδF(x), 0 ≤ x ≤ b.
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Applying I δ0,w to this equality, we arrive at (3.5).

We may rewrite (3.14) as

π

sinπδ

1

f (x)
= xβδF(x)

(∫ x

0 r
β−1 f (r)dr

)δ

+ δ

∫ a

0

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f (r)dr

)δ+1 f (ξ)dξ

+ δ

∫ x

a

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f (r)dr

)δ+1 f (ξ)dξ, a ≤ x ≤ b.

If F ∈ C1,α+δ[0, b]0 then, by an integration by parts, we have

δ

∫ x

a

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f (r)dr

)δ+1 f (ξ)dξ

= −xβ−1 x
1−β+βδF(x) − a1−β+βδF(a)

(∫ x

a
rβ−1 f (r)dr

)δ
+ xβ−1

∫ x

a

(
ξ1−β+βδF(ξ)

)′
(∫ x

ξ r
β−1 f (r)dr

)δ
dξ

for 0 < a ≤ x ≤ b. Hence we obtain (3.12).

We give three remarks regarding Lemma 3.5: (1) Lemma 3.5.(2) tells us that

if F ∈ M1,α+δ[0, b]0 then a regular solution f on [0, b] of K f = F neces-

sarily belongs to M1,α[0, b]0. When we know a priori the solution f to be in

M1,α[0, a]η with some a > 0, this implies that f ∈ M1,α[0, b]η, since if a func-
tion f ∈ M1,α[0, b]0 belongs toM1,α[0, a]η with some a > 0 then f belongs

toM1,α[0, b]η; (2) in the case where 1 − β + βδ ≥ 0, equation (3.12) becomes

much simpler because we can take a = 0; (3) equation (3.12) is a representation

of (3.13) via the Marchaud form. Hence, by Lemma 3.4.(2), the function in the

right-hand belongs to C1,α[0, b]0 provided that f is a regular function on [0, b] and
F ∈ C1,α+δ[0, b]0.

In what follows we shall study behaviors at b of regular solutions on [0, b)
of K f = F . We begin with the following lemma, which states that each regular

solution on [0, b) of K f = F keeps away from zero.

Lemma 3.6. Let 0 < α < α + δ < 1, β > 0, suppose that F ∈ M1,α+δ[0, b]0,
and let f be a regular solution on [0, b) of K f = F . Then inf

0≤x<b
f (x) > 0.

Proof. We fix numbers a, d so that 0 < a < d < b and let b′ be a number in (d, b).
By using Lemma 3.5.(2) with any b′ in (a, b) in place of b in the lemma, it follows
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that f satisfies (3.12) for a ≤ x < b′. Hence we have

π

sinπδ

1

f (x)
≤ xβδ|F(x)|

(∫ d
0 r

β−1 f (r)dr
)δ

+ xβ−1 x
1−β+βδF(x) + a1−β+βδF(a)

(∫ d
a
rβ−1 f (r)dr

)δ

+ δ

∫ a

0

|ξβ−1xβδF(x) − xβ−1ξβδF(ξ)|
(∫ d

a
rβ−1 f (r)dr

)δ+1 f (ξ)dξ

+ xβ−1
∫ x

a

∣∣∣ ddξ (ξ1−β+βδF(ξ))
∣∣∣

(∫ x

ξ r
β−1 f (r)dr

)δ
dξ

for d ≤ x ≤ b′. It follows from this inequality that

π

sinπδ

1

f (x)
≤ A0 + xβ−1

∫ x

a

∣∣∣ ddξ (ξ1−β+βδF(ξ))
∣∣∣

(∫ x

ξ r
β−1 f (r)dr

)δ
dξ, d ≤ x ≤ b′

with some constant A0. This constant is independent of b
′, since F ∈M1,α+δ[0,b]0.

In addition, for d ≤ x ≤ b′,

∫ x

a

∣∣∣ ddξ (ξ1−β+βδF(ξ))
∣∣∣

(∫ x

ξ r
β−1 f (r)dr

)δ
dξ =

∫ d

a

∣∣∣ ddξ (ξ1−β+βδF(ξ))
∣∣∣

(∫ x

ξ r
β−1 f (r)dr

)δ
dξ

+
∫ x

d

∣∣∣ ddξ (ξ1−β+βδF(ξ))
∣∣∣

(∫ x

ξ r
β−1 f (r)dr

)δ
dξ

≤
∫ d

a

∣∣∣ ddξ (ξ1−β+βδF(ξ))
∣∣∣

(∫ d
ξ r

β−1 f (r)dr
)δ
dξ

+
∫ x

d

∣∣∣ ddξ (ξ1−β+βδF(ξ))
∣∣∣

(∫ x

ξ r
β−1dr

)δ
dξ

(
min

d≤x≤b′
f (x)

)−δ

.

Hence there exist positive constants A1, A2 independent of b
′ such that

1

f (x)
≤ A1 + A2

(
min

d≤x≤b′
f (x)

)−δ

, d ≤ x ≤ b′.

By mind≤x≤b′ f (x) ≤ f (x) for d ≤ x ≤ b′, we arrive at

1 ≤ A1

(
min

d≤x≤b′
f (x)

)
+ A2

(
min

d≤x≤b′
f (x)

)1−δ

.
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Since A1X + A2X
1−δ approaches 0 as X → 0, this implies that there exists a

positive constant m independent of b′ such that m ≤ mind≤x≤b′ f (x). This proves
the lemma.

Hereafter we use the notation: m f = inf0≤x<b f (x). By Lemma 3.6, m f is a

positive number. With the aid of this fact we can draw the following conclusion:

Lemma 3.7. Under the same assumptions as in Lemma 3.6, there exists a limit of
f (x)−1 as x → b:

∃ lim
x→b

1

f (x)
< ∞.

Proof. We take a number a in (0,b) and let x→b in (3.12). Since
(∫ x

∗ r
β−1 f(r)dr

)−δ

is monotonically decreasing, the first three terms in the right-hand side in (3.12)

converge as x → b. Hence the proof of the lemma is reduced to showing that the

fourth term there converges as x → b. We rewrite it as

xβ−1
∫ x

a

d
dξ (ξ1−β+βδF(ξ))
(∫ x

ξ r
β−1 f (r)dr

)δ
dξ = xβδ

∫ 1

a/x

d
dt

(t1−β+βδF(xt))
(∫ x

xt
rβ−1 f (r)dr

)δ
dt

for a ≤ x < b. It follows from the assumption F ∈ M1,α+δ[0, b]0 that
∣∣∣∣∣

d
dt

(t1−β+βδF(xt))
(∫ x

xt
rβ−1 f (r)dr

)δ

∣∣∣∣∣ ≤ M

m f
δ

1
(∫ x

xt
rβ−1dr

)δ
≤ M1

(1− tβ)δ

for a ≤ x < b. Here M,M1 are constants independent of x ∈ [a, b). This enables
us to use Lebesgue’s convergence theorem. Thus we have

lim
x→b

xβ−1
∫ x

a

d
dξ (ξ1−β+βδF(ξ))
(∫ x

ξ r
β−1 f (r)dr

)δ
dξ = bβδ

∫ 1

a/b

d
dt

(t1−β+βδF(bt))
(∫ b

bt
rβ−1 f (r)dr

)δ
dt < ∞.

The proof is complete.

We now turn to a question of whether it can happen that a solution f of (3.1)

blows up. Actually, f does not blow up, namely, f converges to a finite value as

x → b. To prove it we require the following preliminary lemma:

Lemma 3.8. Under the same assumptions as in Lemma 3.6,

∫ b

0

rβ−1 f (r)dr < ∞.
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Proof. We rewrite (3.3) as

∫ 1

0

dt
(∫ x

xt
rβ−1 f (r)dr

)1−δ
= x−β+βδF(x). (3.15)

By Lemma 3.6, the integrand is estimated as, for 0 < a ≤ x ≤ b,

1
(∫ x

xt
rβ−1 f (r)dr

)1−δ
≤ 1

m f
1−δ

(∫ x

xt
rβ−1dr

)1−δ
≤ ∃M

(1− tβ)1−δ
,

where M is a constant independent of x . Hence, by applying Lebesgue’s conver-

gence theorem to (3.15), we have

∫ 1

0

dt
(∫ b

bt
rβ−1 f (r)dr

)1−δ
= b−β+βδF(b).

Accordingly, if
∫ b
0 r

β−1 f (r)dr = ∞ then F(b) = 0. This contradicts the assump-

tion F(x) > 0 on [0, b]. Thus we have proved the lemma.

The following lemma assures that a solution f (x) of (3.1) never blows up as x
tends to b as long as F ∈ M1,α+δ[0, b]0.
Lemma 3.9. Under the same assumptions as in Lemma 3.6, the solution f con-

verges to a finite value as x → b:

∃ lim
x→b

f (x) < ∞.

Proof. By Lemma 3.7, we have the alternative: either f (x) converges to a finite
value or f (x) tends to ∞ as x → b. We shall show that the latter case does not

occur by contradiction; let us suppose that

lim
x→b

f (x) = ∞. (3.16)

We take d so that 0 < d < b and rewrite (3.3) as

∫ d

0

dξ
(∫ x

ξ r
β−1 f (r)dr

)1−δ
+

∫ x

d

dξ
(∫ x

ξ r
β−1 f (r)dr

)1−δ
= x1−β+βδF(x)

for d ≤ x < b. Thus, by setting

q(x) :=
∫ d

0

dξ
(∫ x

ξ r
β−1 f (r)dr

)1−δ
, d ≤ x ≤ b,
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we have
∫ x

d

dξ
(∫ x

ξ r
β−1 f (r)dr

)1−δ
= x1−β+βδF(x) − q(x), d ≤ x ≤ b.

This is written as

I δd,w

1

xβ−1 f (x)
= 1

*(δ)

(
x1−β+βδF(x) − q(x)

)
(3.17)

in terms of the fractional integral operator I δd,w defined in (3.4). Since

q ′(x) = (δ − 1)

∫ d

0

dξ
(∫ x

ξ r
β−1 f (r)dr

)2−δ
xβ−1 f (x) < 0, (3.18)

we have
∫ b
d

|q ′(x)|dx = q(d) − q(b) < ∞. This implies that q(x) ∈ AC[d, b].
Therefore x1−β+βδF(x) − q(x) ∈ AC[d, b] ∩ C1(d, b].

We now let 0 < ε < 1− δ and apply the fractional differential operator D1−ε
d,w

defined in (3.7) to (3.17). Then

D1−ε
d,w I

δ
d,w

1

xβ−1 f (x)
= 1

*(δ)
D1−ε
d,w

(
x1−β+βδF(x) − q(x)

)
. (3.19)

We shall first consider the limit as ε → 0 of the right-hand side in (3.19) at x = b.

By observing that d1−β+βδF(d) − q(d) = 0 and using Lemma 3.3.(2) it follows

that

D1−ε
d,w

(
x1−β+βδF(x) − q(x)

)
= 1

*(ε)

∫ x

d

(
ξ1−β+βδF(ξ) − q(ξ)

)′

(∫ x

ξ r
β−1 f (r)dr

)1−ε
dξ

= I εd,w

{(
x1−β+βδF(x) − q(x)

)′

xβ−1 f (x)

}

for d ≤ x ≤ b. We let ε → 0. Then, by Lemma 3.3.(3), (3.16), (3.18), we obtain

lim
ε→0

I εd,w

{(
x1−β+βδF(x)−q(x)

)′

xβ−1 f (x)

}∣∣∣∣∣
x=b

=
(
x1−β+βδF(x) − q(x)

)′

xβ−1 f (x)

∣∣∣∣∣
x=b

= (1− δ)

∫ d

0

dξ
(∫ b

ξ r
β−1 f (r)dr

)2−δ
> 0.

This shows that

lim
ε→0

1

*(δ)

(
D1−ε
d,w

(
x1−β+βδF(x) − q(x)

))
(b) > 0. (3.20)
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We shall next consider the limit as ε → 0 of the left-hand side in (3.19) at x = b.

We employ (3.12) with a ∈ (0, d) to show that x1−β f (x)−1 belongs to the weighted
Hölder space C0,1−δ

w [d, b] defined in Lemma 3.3.(4). Notice that (3.12) still holds
at x = b in view of Lemma 3.8. Moreover, by Lemma 3.8, we see that |w(x) −
w(y)| ≤

∫ b
d
rβ−1 f (r)dr =: M for any x, y ∈ [d, b]. Hence, by the estimation

∣∣∣∣∣
1

(∫ x

0 r
β−1 f (r)dr

)δ
− 1

(∫ y

0 r
β−1 f (r)dr

)δ

∣∣∣∣∣ =

∣∣∣∣∣∣∣
δ

∫ x

y

ξβ−1 f (ξ)
(∫ ξ
0 r

β−1 f (r)dr
)δ+1 dξ

∣∣∣∣∣∣∣

≤ δ
(∫ d
0 r

β−1 f (r)dr
)δ+1

∣∣∣∣

∫ x

y

ξβ−1 f (ξ)dξ

∣∣∣∣

≤ δ
(∫ d
0 r

β−1 f (r)dr
)δ+1 |w(x) − w(y)|1−δ Mδ, d ≤ x, y ≤ b,

we can show that the first term of the right-hand side in (3.12) belongs to the

weighted Hölder space C0,1−δ
w [d, b]. In a similar way, we can verify that the second

and third terms there also belong to C0,1−δ
w [d, b]. Moreover, by Lemma 3.3.(4), the

fourth term belongs to C0,1−δ
w [a, b] because it is written as

xβ−1*(1− δ)I 1−δ
a,w

((
x1−β+βδF(x)

)′

xβ−1 f (x)

)
, where

(
x1−β+βδF(x)

)′

xβ−1 f (x)
∈ C[a, b].

Thus the function x1−β f (x)−1 belongs to the weighted Hölder space C0,1−δ
w [d, b],

and hence, by using of Lemma 3.3.(5),(6), we obtain

D1−ε
d,w I

δ
d,w

1

xβ−1 f (x)
= D

1−(δ+ε)
d,w

1

xβ−1 f (x)

= 1

*(δ + ε)

1
(∫ x

d
rβ−1 f (r)dr

)1−δ−ε
xβ−1 f (x)

+ 1− δ − ε

*(δ + ε)

∫ x

d

ξβ−1 f (ξ)
(∫ x

ξ r
β−1 f (r)dr

)2−δ−ε

(
1

xβ−1 f (x)
− 1

ξβ−1 f (ξ)

)
dξ

for d < x ≤ b. This, combined with (3.16), yields

(
D1−ε
d,w I

δ
d,w

1

xβ−1 f (x)

)
(b) = δ + ε − 1

*(δ + ε)

∫ b

d

dξ
(∫ b

ξ r
β−1 f (r)dr

)2−δ−ε
.

This must converge to a positive value as ε → 0 in view of (3.19), (3.20). But

it is impossible because the right-hand side of the above equality is negative for

δ + ε < 1. The proof is complete.
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By Lemmas 3.7 and 3.9, a regular solution f on [0, b) of K f = F converges

to a finite, positive value as x → b. Our next task is to prove the following:

Lemma 3.10. Under the same assumptions as in Lemma 3.6, the derivative f ′(x)
of the solution f (x) converges to a finite value as x → b.

Proof. Differentiating (3.11) we get

− π

sinπδ

f ′(x)
f (x)2

=




F(x)

(∫ 1
0 s

β−1 f (xs)ds
)δ





′

+ δ

∫ 1

0

F(x) − t1−β+βδF(xt)
(∫ 1

t
sβ−1 f (xs)ds

)δ+1 t
β f ′(xt)dt

− δ(δ + 1)

∫ 1

0

∫ 1
t
sβ f ′(xs)ds

(∫ 1
t
sβ−1 f (xs)ds

)δ+2 (F(x) − t1−β+βδF(xt))tβ−1 f (xt)dt

+ δ

∫ 1

0

F ′(x) − t2−β+βδF ′(xt)
(∫ 1

t
sβ−1 f (xs)ds

)δ+1 tβ−1 f (xt)dt

for 0 < x < b. The second term of the right-hand side is rewritten as

δxβ−2
∫ x

0

∫ x

ξ

(
r1−β+βδF(r)

)′
dr

(∫ x

ξ r
β−1 f (r)dr

)δ+1 ξβ f ′(ξ)dξ.

Also, by an interchange of the order of integration, the third term is rewritten as

−δ(δ + 1)xβ−2
∫ x

0

ξβ f ′(ξ)dξ

∫ ξ

0

∫ x

τ

(
r1−β+βδF(r)

)′
dr

(∫ x

τ r
β−1 f (r)dr

)δ+2 τβ−1 f (τ )dτ.

Therefore, by setting

K (x, ξ) = −sinπδ

π
xβ−2 f (x)2ξβ ×





δ

∫ x

ξ

(
r1−β+βδF(r)

)′
dr

(∫ x

ξ r
β−1 f (r)dr

)δ+1 − δ(δ + 1)

∫ ξ

0

∫ x

τ

(
r1−β+βδF(r)

)′
dr

(∫ x

τ r
β−1 f (r)dr

)δ+2 τβ−1 f (τ )dτ





,

p(x) := −sinπδ

π
f (x)2 ×






(
xβδF(x)

(∫ x

0 r
β−1 f (r)dr

)δ

)′
+ δ

∫ 1

0

F ′(x) − t2−β+βδF ′(xt)
(∫ 1

t
sβ−1 f (xs)ds

)δ+1 tβ−1 f (xt)dt





,
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we have

f ′(x) −
∫ x

0

K (x, ξ) f ′(ξ)dξ = p(x), 0 < x < b.

Let a be fixed in (0, b). By Lemmas 3.7 and 3.9, we may view f as a function in

C+[0, b]. Hence we get the estimate |K (x, ξ)| ≤ M(x − ξ)−δ for a ≤ x ≤ b,

ξ < x with a constant M independent of x, ξ . Moreover, by the assumption F ∈
M1,α+δ[0, b]0 with α > 0, we can show that p ∈ C[a, b]. Therefore p1(x) :=
p(x) +

∫ a
0 K (x, ξ) f ′(ξ)dξ belongs to C[a, b]. In this way we arrive at

f ′(x) = p1(x) +
∫ x

a

K (x, ξ) f ′(ξ)dξ, a ≤ x < b, (3.21)

where K (x, ξ) satisfies |K (x, ξ)| ≤ M(x−ξ)−δ . By setting L := maxa≤x≤b p1(x)
this yields

| f ′(x)| ≤ L + M

∫ x

a

| f ′(ξ)|
(x − ξ)δ

dξ, a ≤ x < b.

From this it is readily seen by the Gronwall inequality that supa≤x<b | f ′(x)| < ∞.

Hence, by letting x → b in (3.21), it follows that f ′(x) converges to a finite value
as x → b. The proof is complete.

We are now in a position to give:

Proof of Proposition 3.2. A function f belongs toM1,α[0, b]0 if (and only if) f is
positive and belongs to C1,α[0, b]0. Hence assertion (1) is immediate from Lemma
3.5.(2). By the assumption in the proposition and Definition 3.1, f satisfies (3.1)

for 0 ≤ x < b, and so, by Lemma 3.5, satisfies (3.12) for 0 ≤ x < b. Hence,

by Lemmas 3.7 and 3.9, the solution f converges to a finite, positive value fb.

This implies that a natural extension f̃ that is defined by just setting f̃ (b) = fb
in addition to f̃ (x) = f (x) for 0 ≤ x < b belongs to C+[0, b]. But, by Lemma
3.10, f ′(x) also converges to a finite value. This implies that f̃ ∈ C1(0, b], as is
immediately checked by the mean value theorem. Thus f̃ is a regular solution on

[0, b] of K f = F .

4. Extension

In the previous section we have shown that each regular solution on [0, b) ofK f =
F can be extended to a regular solution on [0, b] of the equation. In this section we
shall show that the solution can be extended beyond b. Our goal in this section is to

show that K : M1,α(I )η →M1,α+δ(I )η is a bijection (Proposition 4.3).
We adopt the following:

Definition 4.1. A solution f1 ofK f = F is said to be a regular extension on [0, b1]
of solution f if f is a regular solution on [0, b], f1 is a regular solution on [0, b1],
b < b1, and f1(x) = f (x) on [0, b].
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Then we have:

Proposition 4.2. Let F ∈ M1,α+δ[0, B]0, let 0 < b < B, and let f (x) be a
regular solution of K f = F on [0, b]. Then there exist a number b1 ∈ (b, B] and
a regular extension f1 on [0, b1] of f . This extension is unique; if f2 is a regular
extension on [0, b2], then f2(x) = f1(x) for 0 ≤ x ≤ min(b1, b2).

Proof. We proceed in four steps.

Step 1. By Lemma 3.5, the equation K f = F on [0, B] is equivalent to (3.11) on
[0, B]. We shall prove the proposition by applying the implicit function theorem to
(3.11). Let fL(x) be a linear function in the interval [b, B] defined by

fL(x) := f (b) + f ′(b)(x − b).

We take a number c ∈ (b, B] so that fL(x) > 0 in [b, c] and define a function fc
on [0, c] by

fc(x) :=
{
f (x) for 0 ≤ x ≤ b,

fL(x) for b ≤ x ≤ c.

Then fc is a regular function on [0, c]. Next we define a function 4 on [b, c] by

4(x) := fL(x)





F(x)

(∫ 1
0 s

β−1 fc(xs)ds
)δ

+δ

∫ 1

0

F(x)−t1−β+βδF(xt)
(∫ 1
t
sβ−1 fc(xs)ds

)δ+1 t
β−1 fc(xt)dt





.

(4.1)

By remark (3) just after the proof of Lemma 3.5, the function 4(x) belongs to
the Hölder space C1,α[b, c]. In particular 4(x) ∈ C1[b, c]. Moreover we have
4(b) = π

sinπδ , 4
′(b) = 0, since fL(b) = f (b), f ′

L(b) = f ′(b) and f (x) satisfies
(3.11) on [0, b]. In view of 4(b) > 0, we may assume that 4(x) > 0 on [b, c] by
retaking c near b if need be. In what follows let both fL(x) and 4(x) be positive
on [b, c]. (See Figure 4.1.)

Let C10 [b, c] be a Banach space defined by
C10 [b, c] := {h ∈ C1[b, c] : h(b) = h′(b) = 0}

with the norm

‖h‖ := max
b≤x≤c

|h′(x)|,

and consider a mapping T on C10 [b, c] defined by

(T (h))(x) := ( fL(x) + h(x))





F(x)

(∫ 1
0 s

β−1( fc(xs) + h̃(xs))ds
)δ

+δ

∫ 1

0

F(x) − t1−β+βδF(xt)
(∫ 1

t
sβ−1( fc(xs) + h̃(xs))ds

)δ+1 t
β−1( fc(xt) + h̃(xt))dt





−4(x),
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where

h̃(x) :=
{
0 for 0 ≤ x ≤ b,

h(x) for b ≤ x ≤ c.

If h ∈ C10 [b, c] then h̃ ∈ C1[0, c] and h̃(x) = h̃′(x) = 0 on [0, b]. Hence
(T (h))(b) = (T (h))′(b) = 0 for each h ∈ C10 [b, c]. Thus T maps C10 [b, c] into
itself. Moreover T (0) = 0. Notice that (3.11) is rewritten as T (h) = π

sinπδ −4(x).

As is easily verified, T is a C1-mapping of an open neighborhood of 0 in

C10 [b, c] into C10 [b, c]. The Fréchet derivative T ′(0) at 0 of T is given as

(T ′(0)h)(x) = 4(x)

fL(x)

{
h(x) −

∫ x

b

L(x, ξ)h(ξ)dξ

}

for h ∈ C10 [b, c], where

L(x, ξ) := δ
fL(x)

2

4(x)





ξβ−1xβδF(x)

(∫ x

0 r
β−1 fc(r)dr

)δ+1 − ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 fc(r)dr

)δ+1

+(δ + 1)ξβ−1
∫ ξ

0

sβ−1xβδF(x) − xβ−1sβδF(s)
(∫ x

s
rβ−1 fc(r)dr

)δ+2 fc(s)ds

}
, b≤ξ < x≤c.

By the assumption F ∈ M1,α+δ[0, B]0, F belongs to C1[b, c]. Hence there exists
a constant M0 independent of x, ξ such that |L(x, ξ)| ≤ M0(x − ξ)−δ .

!
O

"

4(x)

4(x − b1 + b)

π
sinπδ

Hh

!
O

"

f

fL
!T

x x
c

b

b1

Figure 4.1. Diagram of the proof.

Step 2. Given H(x) ∈ C10 [b, c], we consider T ′(0)h = H , which is written as

h(x) −
∫ x

b

L(x, ξ)h(ξ)dξ = fL(x)

4(x)
H(x), b ≤ x ≤ c. (4.2)
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We set L1(x, ξ) :=
∫ x

ξ L(x, z)dz. Then, for h ∈ C10 [b, c], equation (4.2) is rewrit-
ten as

h(x) −
∫ x

b

L1(x, ξ)h′(ξ)dξ = fL(x)

4(x)
H(x), b ≤ x ≤ c. (4.3)

Observing that

∫ x

ξ

zβ−1xβδF(x) − xβ−1zβδF(z)
(∫ x

z
rβ−1 fc(r)dr

)δ+1 dz =
∫ 1

ξ/x

tβ−1F(x) − tβδF(xt)
(∫ 1

t
sβ−1 fc(xs)ds

)δ+1 dt, (4.4)

∫ x

ξ
zβ−1dz

∫ z

0

sβ−1xβδF(x) − xβ−1sβδF(s)
(∫ x

s
rβ−1 fc(r)dr

)δ+2 fc(s)ds

=
∫ x

ξ
zβ−1dz

(∫ ξ

0

+
∫ z

ξ

)
· · · ds

= 1

β
(xβ − ξβ)

∫ ξ

0

sβ−1xβδF(x) − xβ−1sβδF(s)
(∫ x

s
rβ−1 fc(r)dr

)δ+2 fc(s)ds

+ 1

β

∫ 1

ξ/x

(1− tβ)
(
tβ−1F(x) − tβδF(xt)

)

(∫ 1
t
sβ−1 fc(xs)ds

)δ+2 fc(xt)dt,

and noting that F ∈M1,α+δ[0,b]0 with α>0, we obtain the estimate | ∂
∂x L1(x,ξ)|≤

M1(x−ξ)−δ with a constant M1. Hence, differentiating (4.3) and setting L2(x,ξ) :=
∂
∂x L1(x,ξ), we get

h′(x) −
∫ x

b

L2(x, ξ)h′(ξ)dξ = d

dx

(
fL(x)

4(x)
H(x)

)
, b ≤ x ≤ c. (4.5)

The kernel L2(x, ξ) satisfies |L2(x, ξ)| ≤ M2(x − ξ)−δ with some constant M2.

Moreover the right-hand side of this equation belongs to the Banach space

C00 [b, c] := {h ∈ C[b, c] : h(b) = 0},

equipped with the norm ‖h‖ := maxb≤x≤c |h(x)|. Hence, by a standard method
of successive approximation for the Volterra equation of the second kind, equation

(4.5) has a unique solution h′ in C00 [b, c]. Moreover, as is easily verified by in-
tegrating (4.5) from b to x , the function h(x) :=

∫ x

b
h′(y)dy ∈ C10 [b, c] satisfies

(4.3), and hence (4.2). This shows that T ′(0) : C10 [b, c] → C10 [b, c] has a bounded
linear inverse. Hence, by the implicit function theorem, T maps a sufficiently small
neighborhood U of 0 in C10 [b, c] homeomorphically onto a neighborhood V of 0 in
C10 [b, c].
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Step 3. For p ∈ (b, c] we define a function Hp on [b, c] by

Hp(x) :=
{ π

sinπδ
− 4(x) for b ≤ x ≤ p,

4(x − p + b) − 4(x) for p ≤ x ≤ c.

Then Hp ∈ C10 [b, c] by virtue of 4(b) = π
sinπδ , 4

′(b) = 0. Recalling that 4 ∈
C1,α[b, c] we have

‖Hp‖= sup
b≤x≤c

|H ′
p(x)|= sup

b≤x≤p

|4′(x)| + sup
p≤x≤b

|4′(x − p + b) − 4′(x)|

≤ sup
b≤x≤p

|4′(x)|+
(

sup
b≤x %=y≤c

|4′(x)−4′(y)|
|x − y|α

)
(p−b)α,

which tends to 0 as p approaches b because of 4′(b) = 0. Accordingly there

exists a number b1 ∈ (b, c] such that Hb1(x) is in the neighborhood V stated above.
For this function H = Hb1(x), the equation T (h) = H has a solution h in the

neighborhood U . Since Hb1(x) = π
sinπδ − 4(x) for b ≤ x ≤ b1, the solution h

satisfies T (h) = π
sinπδ − 4(x) for b ≤ x ≤ b1.

We finally set

f1(x) :=
{
f (x) for 0 ≤ x ≤ b,

fL(x) + h(x) for b ≤ x ≤ b1.

Then f1 is a regular function on [0, b1]. By T (h) = π
sinπδ − 4(x) for b ≤ x ≤ b1,

the function f1 satisfies (3.11) on [b, b1]. Thus f1 is a regular extension on [0, b1]
of f . We have proved the existence of a regular extension.

Step 4. We shall prove the uniqueness of the extension. Let fi , i = 1, 2, be regular
extensions on [0, bi ] of f . Then f2(x) = f1(x) for 0 ≤ x ≤ b and, by (3.14),

f2(x)





xβδF(x)

(∫ x

0 r
β−1 f2(r)dr

)δ
+ δ

∫ x

0

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f2(r)dr

)δ+1 f2(ξ)dξ






= f1(x)





xβδF(x)

(∫ x

0 r
β−1 f1(r)dr

)δ
+ δ

∫ x

0

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f1(r)dr

)δ+1 f1(ξ)dξ






for b ≤ x ≤ c, where c = min(b1, b2). We set f (τ, x) := (1− τ ) f1(x) + τ f2(x).
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Then we get

( f2(x) − f1(x))

{
xβδF(x)

(∫ x

0 r
β−1 f2(r)dr

)δ

+δ

∫ x

0

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f2(r)dr

)δ+1 f2(ξ)dξ






= − f1(x)

{∫ 1

0

d

dτ

xβδF(x)
(∫ x

0 r
β−1 f (τ, r)dr

)δ
dτ

+δ

∫ 1

0

d

dτ

∫ x

0

ξβ−1xβδF(x) − xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f (τ, r)dr

)δ+1 f (τ, ξ)dξ dτ





.

Computing the right-hand side of this equality by an interchange of the order of

integration, observing that the left-hand side of this equality equals to ( f2(x) −
f1(x))

π
sinπδ f2(x)

−1, and noting f2(x) − f1(x) = 0 for 0 ≤ x ≤ b, we obtain

f2(x) − f1(x) =
∫ x

b

*0(x, ξ)( f2(ξ) − f1(ξ))dξ, b ≤ x ≤ c, (4.6)

where we define a function *0(x, ξ) on b ≤ ξ < x ≤ c by

*0(x, ξ) := δ
sinπδ

π
f1(x) f2(x) ×






∫ 1

0

ξβ−1xβδF(x)
(∫ x

0 r
β−1 f (τ,r)dr

)δ+1 dτ −
∫ 1

0

ξβ−1xβδF(x)−xβ−1ξβδF(ξ)
(∫ x

ξ r
β−1 f (τ, r)dr

)δ+1 dτ

+(δ + 1)ξβ−1
∫ 1

0

dτ

∫ ξ

0

sβ−1xβδF(x)−xβ−1sβδF(s)
(∫ x

s
rβ−1 f (τ, r)dr

)δ+2 f (τ, s)ds

}
.

By noting that f (τ, x) is a positive function on [0, 1]×[b, c] and that F ∈ C1[b, c],
it follows that there exists a constant M independent of x, ξ such that |*0(x, ξ)| ≤
M(x − ξ)−δ . Hence, by applying the Gronwall inequality to (4.6), we get f2(x) −
f1(x) = 0 for each x ∈ [b, c].

We are now in a position to establish the following:

Proposition 4.3. Under the same assumptions as in Theorem 1.1, the transform
K : M1,α(I )η →M1,α+δ(I )η is a bijection.
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Proof. As was stated in the beginning of Section 3, it suffices to prove the propo-

sition in the case I = [0, B], B > 0. We shall first show that K is injective.

To do so, let fi ∈ M1,α[0, B]η, i = 1, 2, be solutions of K f = F , where

F ∈ M1,α+δ[0, B]η. Then, by Proposition 2.1.(2), we get f1 = f2 on [0, κB]
for sufficiently small κ > 0. Let f0 denote this solution f1(= f2) on [0, κB]. Then
f1, f2 are regular extensions on [0, B] of f0. Thus, by Proposition 4.2, we conclude
that f1 = f2 on [0, B].

We shall next show that K is surjective. To do so, given F ∈ M1,α+δ[0, B]η,
we define an interval J ⊂ [0, B] by

J := {b ∈ (0, B] : there exists a regular solution on [0, b] of K f = F}.

By Proposition 2.1.(1), we get a solution f0 ∈ M1,α[0, κB]η on [0, κB] of K f =
F provided that κ > 0 is sufficiently small. Since a function f ∈ M1,α[0, b]η with
η > 0 is a regular function on [0, b], this solution is a regular solution on [0, κB]
of the equation. This implies that J is not empty; we put b∗ := sup J . Then, for

any b′ < b∗, there exists b′′ ∈ (b′, b∗) for which we have a regular solution on
[0, b′′] of the equation. We define f (x) on [0, b′] as the section of the solution
on [0, b′]. By the uniqueness of the extensions, this definition is independent of
the particular point b′′ ∈ (b′, b∗). Thus we get a regular solution f on [0, b∗) of
K f = F . But, by Proposition 3.2.(2), this solution is extended to a regular solution

on [0, b∗] of the equation. If b∗ < B then, by Proposition 4.2, this regular solution

on [0, b∗] is further extended beyond b∗, contradicting the definition of b∗. This
implies that b∗ = B. By repeating the above argument at b∗ it follows that there
exists a regular solution f on [0, B] of K f = F . But, by Proposition 3.2.(1), this

solution f must belong toM1,α[0, B]0. By the uniqueness of the extensions, this
solution is an extension of f0 on [0, κB], which belongs toM1,α[0, κB]η. This
shows that f ∈ M1,α[0, B]η. The proof is complete.

Remark 4.4. An inspection to Step 4 in the proof of Proposition 4.2 shows that the

assumptions f1, f2 ∈ C[b, c] and F ∈ C1[b, c] with c = min(b1, b2) are enough
for the uniqueness of the extensions. This, combined with the fact described in

Remark 2.6, yields the following conclusion: if f1, f2 ∈ M0,α(I )η satisfyK f = F

for F ∈ M1,α+δ(I )η, then f1(x) = f2(x) for any x ∈ I .

We conclude this section with an example:

Example 4.5. Let β = 1 and consider the function fµ(x) = (1 − x)µ on [0, 1].
Note that this function belongs toM1,α[0, B]η for any positive B < 1 and any α, η

such that 0 < η ≤ α < 1−δ, while it does not belong toM1,α[0, 1]η unless µ = 0;

if µ > 0 then fµ(x) is not positive at x = 1 and, by contraries, if µ < 0 then fµ(x)
diverges to +∞ as x → 1: unless µ = 0, the function fµ has the point x = 1 as a

singularity in the sense that either fµ(1) = ∞ or fµ(1) = 0.
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We shall first treat the case where µ > −1. Then we get

(K fµ)(x) = (1+ µ)1−δ

∫ 1

0

(
x

(1− xt)1+µ − (1− x)1+µ

)1−δ

dt

= (1+ µ)1−δ

∫ 1

0




1−

(
1−x
1−xt

)

1−
(
1−x
1−xt

)1+µ





1−δ

dt

(1− t)1−δ(1− xt)µ(1−δ)
.

Since (1 − s)/(1 − s1+µ) is a positive, continuous function on [0, 1], the function
(K fµ)(x) diverges to +∞ as x → 1 if µ ≥ δ

1−δ , and converges to a positive value

then if µ < δ
1−δ . Even in the case µ < δ

1−δ , the function K fµ does not belong to

C1[0, 1] unless µ = 0. To see it, we note that

(K fµ)′(x) = δ − 1

x

∫ 1

0

∫ 1
t
s d
ds
fµ(xs)ds

(∫ 1
t
fµ(xs)ds

)2−δ
dt

= δ − 1

x

∫ 1

0

fµ(x) − t fµ(xt)
(∫ 1

t
fµ(xs)ds

)2−δ
dt + 1− δ

x
(K fµ)(x)

and that

(1+ µ)δ−2
∫ 1

0

fµ(x) − t fµ(xt)
(∫ 1

t
fµ(xs)ds

)2−δ
dt (4.7)

=
∫ 1

0




1−

(
1−x
1−xt

)

1−
(
1−x
1−xt

)1+µ





2−δ

(1− x)µ − t (1− xt)µ

(1− t)2−δ(1− xt)µ(2−δ)
dt

=−
∫ 1

0




1−

(
1−x
1−xt

)

1−
(
1−x
1−xt

)1+µ





2−δ 


1−

(
1−x
1−xt

)µ

1−
(
1−x
1−xt

)




x

(1− t)1−δ(1− xt)1+µ(1−δ)
dt

+
∫ 1

0




1−

(
1−x
1−xt

)

1−
(
1−x
1−xt

)1+µ





2−δ

1

(1− t)1−δ(1− xt)µ(1−δ)
dt.

The second term in the right-hand side of the above equality converges as x → 1

provided that µ < δ
1−δ , while the first term there diverges then because of (1 +

µ)(1−δ) > 0, unless µ = 0. Hence (K fµ)′(x) → ∞ even though µ < δ
1−δ where

K fµ ∈ C[0, 1]. Thus, in the case of µ > −1, µ %= 0, the function (K fµ)(x) has

the point x = 1 as a singularity in the sense that K fµ /∈ C1[0, 1].
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We shall next treat the case µ ≤ −1. Then we get

(K fµ)(x) = (−(1+ µ))1−δ

∫ 1

0

(
x

(1−x)1+µ − (1− xt)1+µ

)1−δ

dt

=(−(1+µ))1−δ(1−x)−(1+µ)(1−δ)

∫ 1

0




1−

(
1−x
1−xt

)

1−
(
1−x
1−xt

)−(1+µ)





1−δ(
1−xt

1−t

)1−δ

dt,

provided that µ %= −1. By −(1 + µ)(1 − δ) > 0 this implies that (K fµ)(1) = 0.

Also when µ = −1 we can draw the same conclusion by an easy computation.
Thus, in the case µ ≤ −1, the function (K fµ)(x) has the point x = 1 as a singular-

ity in the sense that (K fµ)(1) = 0. In this way we have shown that, for each µ %= 0,

the function fµ(x) = (1− x)µ is transformed by K to a function that has the point
x = 1 as a singularity in the sense that either K fµ /∈ C1[0, 1] or (K fµ)(1) = 0.

This situation is illustrated in Figure 4.2.

!
O K fµ1/δ

1

"

"

−1 ≥ µ

Fµ

#

0 > µ > −1

#

δ
1−δ > µ > 0

$ µ ≥ δ
1−δ

!
O fµ1

1

"

!µ ≥ δ
1−δ

#

δ
1−δ > µ > 0

#

0 > µ > −1

"
−1 ≥ µ

!K

x x

Figure 4.2. (1− x)µ and K(1− x)µ.

It is of worth to mention that Example 4.5 means that the transform K is not

necessarily bijective from M0,α(I )η onto M0,α+δ(I )η. We focus on the case
δ−1
2−δ < µ < δ

1−δ , µ %= 0 and define Fµ := K fµ in this case. It follows from

(4.8) that F ′
µ(x) can be estimated as

F ′
µ(x) = O

(∫ 1

0

dt

(1− t)1−δ(1− xt)1+µ(1−δ)

)

when x → 1. Here O stands for Landau’s symbol. With the aid of the formula
∫ 1

0

dt

(1− t)1−δ(1− xt)1+µ(1−δ)
= (1− x)−(1+µ)(1−δ)

∫ 1

0

ds

s1−δ(1− xs)δ−µ(1−δ)

(a transformation formula on Gauss’ hypergeometric function), which is verified by

the substitution t = (1− s)/(1− xs), we have

F ′
µ(x) = O((1− x)−(1+µ)(1−δ))
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as x → 1. Noting that −1 < −(1+ µ)(1− δ) < 0, we get the estimate

|Fµ(x) − Fµ(y)| =
∣∣∣∣

∫ x

y

|F ′
µ(ξ)|dξ

∣∣∣∣

≤ ∃M
∣∣∣(1− x)1−(1+µ)(1−δ) − (1− y)1−(1+µ)(1−δ)

∣∣∣

≤ ∃M ′|x − y|1−(1+µ)(1−δ)

for 0 ≤ x, y ≤ 1, where M,M ′ are constants independent of x, y. Let us now
confine further ourselves to the case δ−1

2−δ < µ < 0. In this case we can take a

number α so that 0 < α ≤ (1 − δ)(−µ) since (1 − δ)(−µ) > 0. Then α satisfies
α + δ ≤ 1 − (1 + µ)(1 − δ) < 1. Hence, by the above estimate, we see that

Fµ ∈ M0,α+δ[0, 1]η for each η ∈ (0,α]. Thus if δ−1
2−δ < µ < 0, then, by taking

α, η so that 0 < η ≤ α ≤ (1− δ)(−µ), the function Fµ belongs toM0,α+δ[0, 1]η.
However there is not a function f ∈ M0,α[0, 1]η such that K f = Fµ, because, by

Remark 4.4, the function fµ(x) = (1− x)µ is the only solution inM0,α[0, B]η of
K f = Fµ for each B < 1, and so, if there were a solution f ∈ M0,α[0, 1]η then
it would equal to fµ(x) on [0, 1); it is impossible since fµ(x) → ∞ as x → 1 in

view of µ < 0.

5. Continuity

In Proposition 4.3, we have established that the transform K : M1,α(I )η →
M1,α+δ(I )η is a bijection. In this section we shall show that the inverse K−1 :
M1,α+δ(I )η →M1,α(I )η is continuous. Throughout the section, let fi ∈M1,α(I )η,

i = 1, 2, be solutions ofK fi = Fi for Fi ∈ M1,α+δ(I )η respectively. We first treat
the case where F1(0) = F2(0) = γ , where γ is a number defined in (2.1). This
additional condition implies that f1(0) = f2(0) = 1.

Lemma 5.1. Let F1 ∈ M1,α+δ(I )η, F1(0) = γ , and let f1 ∈ M1,α(I )η satisfy

K f1 = F1. Then there exist constants κ0 and M0 such that if F2 ∈ M1,α+δ(I )
satisfies F2(0) = F1(0) then the solution f2 ∈ M1,α(I )η of K f2 = F2 satisfies

‖ f κ
2 − f κ

1 ‖1,α,η;κ ≤ M0‖F2 − F1‖1,α+δ,η.

for any κ ≤ κ0. Here f
κ
i , i = 1, 2, denote the sections of fi on Iκ := {κx : x ∈ I },

and ‖ · ‖1,α,η;κ denotes the norm in C1,α(Iκ)η.

Proof. By the assumption, L( fi − 1) = Fi − γ , i = 1, 2, on I . By Lemma 2.5, L
maps a neighborhood U of 0 in C1,α(I )η homeomorphically onto a neighborhood

V of 0 in C1,α+δ(I )η. Since this map is a C
1-diffeomorphism, there is a constant

M0 independent of G1,G2 such that

‖L−1(G2) − L−1(G1)‖1,α,η ≤ M0‖G2 − G1‖1,α+δ,η (5.1)

for G1,G2 ∈ V .
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As in the proof of Proposition 2.1, let κ > 0 and let f κ
i , F

κ
i be sections of

fi and Fi on Iκ . By ‖Sκ(Fκ
1 − γ )‖1,α+δ,η = κη‖Fκ

1 − γ ‖1,α+δ,η;κ ≤ κη‖F1 −
γ ‖1,α+δ,η, there exists a positive number κ0 such that if κ ≤ κ0 then Sκ(Fκ

1 − γ )
belongs to the neighborhood V mentioned above. Moreover

‖Sκ(Fκ
2 − γ ) − Sκ(Fκ

1 − γ )‖1,α+δ,η = κη‖Fκ
2 − Fκ

1 ‖1,α+δ,η;κ
≤ κη‖F2 − F1‖1,α+δ,η.

Hence there exists a positive number ρ such that if ‖F2 − F1‖1,α+δ,η < ρ then
Sκ(Fκ

2 − γ ) also belongs to V . Since L(Sκ( f κ
i − 1)) = Sκ(Fκ

i − γ ), i = 1, 2, and,

in view of Proposition 4.3, the solution g of L(g) = G is unique in C1,α(I )η we see
from Lemma 2.5 that Sκ( f κ

i − 1) belong to U . Thus

L−1(Sκ(Fκ
i − γ )) = Sκ( f κ

i − 1)

by L−1 : V → U . By applying (5.1) to Gi = Sκ(Fκ
i − γ ), we get

‖Sκ( f κ
2 − f κ

1 )‖1,α,η ≤ M0‖Sκ(Fκ
2 − Fκ

1 )‖1,α+δ,η ≤ M0κ
η‖F2 − F1‖1,α+δ,η.

Since ‖Sκ( f κ
2 − f κ

1 )‖1,α,η = κη‖ f κ
2 − f κ

1 ‖1,α,η;κ , we arrive at

‖ f κ
2 − f κ

1 ‖1,α,η;κ ≤ M0‖F2 − F1‖1,α+δ,η.

This completes the proof.

Let Rκ be the restriction operation which assigns to each f ∈ M1,α(I )η
the restriction f |Iκ on Iκ . Lemma 5.1 tells us that RκK−1 : M1,α+δ(I )η →
M1,α(Iκ)η is continuous if κ is sufficiently small. We turn our attention to the

continuity of Rc
κK−1, where Rc

κ denotes a restriction operation which assigns to

each f ∈ M1,α(I )η the restriction of f on the closure I \ Iκ of the complement of
Iκ . It is enough to consider the case where I = [0, B], I \ Iκ = [κB, B]. We take
κ so that 0 < κ < κ0 and set b := κB.

Lemma 5.2. The mapping

Rc
κK−1 : {F ∈ M1,α+δ[0, B]η : F(0) = γ } → C1[b, B]

is continuous. In particular, there are positive constants ρ, M such that

‖F2 − F1‖1,α+δ,η < ρ =⇒ ‖ f2 − f1‖C1[b,B] ≤ M‖F2 − F1‖1,α+δ,η.

Proof. We proceed in four steps.

Step 1. Let F1∈M1,α+δ[0,B]η be fixed and let f1∈M1,α[0,B]η be the solution of
K f1 = F1. We may assume that F1(0)=γ and so f1(0)=1. If F2∈M1,α+δ[0, B]η
satisfies F2(0)=γ and is sufficiently near F1, say ‖F2 − F1‖1,α+δ,η < ε/M0 with
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M0 in Lemma 5.1 and sufficiently small ε, then, by the lemma, the solution f2
of K f2 = F2 satisfies max0≤x≤b | f2(x) − f1(x)| < ε and so min0≤x≤b f2(x) >
min0≤x≤b f1(x) − ε. Moreover an inspection to the proof of Lemma 3.6 shows that
for any M > 0 there existsm > 0 such that if maxb≤x≤B |F(x)|+|F ′(x)| ≤ M then

a solution f of K f = F satisfies minb≤x≤B f (x) ≥ m. Hence there are positive

numbers ρ, m0 such that

if ‖F2 − F1‖1,α+δ,η < ρ then min
0≤x≤B

fi (x) ≥ m0, i = 1, 2. (5.2)

Step 2. Since K f = F is equivalent to (3.14), we obtain

f2(x)





xβδF2(x)

(∫ x

0 r
β−1 f2(r)dr

)δ
+ δ

∫ x

0

ξβ−1xβδF2(x) − xβ−1ξβδF2(ξ)
(∫ x

ξ r
β−1 f2(r)dr

)δ+1 f2(ξ)dξ






= f1(x)





xβδF1(x)

(∫ x

0 r
β−1 f1(r)dr

)δ
+δ

∫ x

0

ξβ−1xβδF1(x)−xβ−1ξβδF1(ξ)
(∫ x

ξ r
β−1 f1(r)dr

)δ+1 f1(ξ)dξ





.

By setting (δF)(x) := F1(x) − F2(x), f (τ, x) := (1 − τ ) f1(x) + τ f2(x), this is
rewritten as

( f2(x) − f1(x))

{
xβδF2(x)

(∫ x

0 r
β−1 f2(r)dr

)δ

+δ

∫ x

0

ξβ−1xβδF2(x) − xβ−1ξβδF2(ξ)
(∫ x

ξ r
β−1 f2(r)dr

)δ+1 f2(ξ)dξ






= f1(x)

{
xβδ(δF)(x)

(∫ x

0 r
β−1 f1(r)dr

)δ

+δ

∫ x

0

ξβ−1xβδ(δF)(x) − xβ−1ξβδ(δF)(ξ)
(∫ x

ξ r
β−1 f1(r)dr

)δ+1 f1(ξ)dξ






− f1(x)

{∫ 1

0

d

dτ

xβδF2(x)
(∫ x

0 r
β−1 f (τ, r)dr

)δ
dτ

+δ

∫ 1

0

d

dτ

∫ x

0

ξβ−1xβδF2(x) − xβ−1ξβδF2(ξ)
(∫ x

ξ r
β−1 f (τ, r)dr

)δ+1 f (τ, ξ)dξdτ





.
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Hence, by operations similar to those carried out for the deduction of (4.6), we have

f2(x) − f1(x) = R(x) +
∫ x

0

*(x, ξ)( f2(ξ) − f1(ξ))dξ, 0 ≤ x ≤ B, (5.3)

where we define a function R(x) and a function *(x, ξ) on 0 ≤ ξ < x ≤ B by

R(x) = f1(x)

{
xβδ(δF)(x)

(∫ x

0 r
β−1 f1(r)dr

)δ

+δ

∫ x

0

ξβ−1xβδ(δF)(x) − xβ−1ξβδ(δF)(ξ)
(∫ x

ξ r
β−1 f1(r)dr

)δ+1 f1(ξ)dξ






and

*(x, ξ) := δ
sinπδ

π
f1(x) f2(x) ×






∫ 1

0

ξβ−1xβδF2(x)
(∫ x

0 r
β−1 f (τ, r)dr

)δ+1 dτ −
∫ 1

0

ξβ−1xβδF2(x)−xβ−1ξβδF2(ξ)
(∫ x

ξ r
β−1 f (τ, r)dr

)δ+1 dτ

+(δ + 1)ξβ−1
∫ 1

0

dτ

∫ ξ

0

sβ−1xβδF2(x) − xβ−1sβδF2(s)
(∫ x

s
rβ−1 f (τ, r)dr

)δ+2 f (τ, s)ds

}
.

Step 3. We suppose that ‖F2 − F1‖1,α+δ,η < ρ. Then, by (5.2), we get

∣∣∣∣∣∣∣

ξβ−1xβδF2(x) − xβ−1ξβδF2(ξ)
(∫ x

ξ r
β−1 f (τ, r)dr

)δ+1

∣∣∣∣∣∣∣
≤ βδ+1

mδ+1
0

ξβ−1xβ−1
∫ x

ξ |(r1−β+βδF2(r))
′|dr

(xβ − ξβ)δ+1

≤ βδ+1

mδ+1
0

ξβ−1xβ−1 ξ
−β+βδ(x − ξ)(|F2|0 + |θF2|0)

(xβ − ξβ)δ+1
≤ M0

1

ξ

(
ξ

x

)βδ
xδ

(x − ξ)δ
,

where M0 is a constant independent of F2, f2. This leads to the estimates

|*(x, ξ)| ≤ M* f2(x)
1

ξ

(
ξ

x

)βδ
xδ

(x − ξ)δ
, 0 < ξ < x ≤ B, (5.4)

|R(x)| ≤ MR‖δF‖1,α+δ,η = MR‖F2 − F1‖1,α+δ,η, (5.5)

where M* , MR are constants independent of F2, f2.
We set *0(x, ξ) := *(x, ξ)/ f2(x) and

R1(x) := R(x) + f1(x)

∫ b

0

*0(x, ξ)( f2(ξ) − f1(ξ))dξ.
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Then, for b ≤ x ≤ B, equation (5.3) is recast as

(
1−

∫ x

0

*0(x, ξ)( f2(ξ) − f1(ξ))dξ

)
( f2(x) − f1(x)) (5.6)

= R1(x) + f1(x)

∫ x

b

*0(x, ξ)( f2(ξ) − f1(ξ))dξ, b ≤ x ≤ B.

By (5.4) we have |*0(x, ξ)| ≤ M*ξβδ−1x−βδ(1− (ξ/x))−δ . Accordingly,

d(x) :=
∣∣∣∣

∫ x

0

*0(x, ξ)( f2(ξ) − f1(ξ))dξ

∣∣∣∣ ≤ M*B(βδ, 1−δ) max
0≤ξ≤x

| f2(ξ)− f1(ξ)|

for b ≤ x ≤ B. By Lemma 5.1, if ‖F2 − F1‖1,α+δ,η is sufficiently small, then

d(b) ≤ 1
4
, and so, if c > b is enough near b then d(c) ≤ 1

2
and hence

(
1−

∫ x

0

*0(x, ξ)( f2(ξ) − f1(ξ))dξ

)−1
≤ 2 (5.7)

on the interval [b, c]. Similarly, it follows from (5.4), (5.5), Lemma 5.1 that there
exists a constant Mb

R such that |R1(x)| ≤ 2−1Mb
R‖F2 − F1‖1,α+δ,η for b ≤ x ≤ B.

Further, by (5.4), we get the estimate |*0(x, ξ)| ≤ 2−1Mb
*(x − ξ)−δ for b ≤ ξ <

x ≤ B. In this way, from (5.6), we have the integral inequality

| f2(x)− f1(x)| ≤ Mb
R‖F2−F1‖1,α+δ,η +Mb

* f1(x)

∫ x

b

1

(x − ξ)δ
| f2(ξ)− f1(ξ)|dξ

for b ≤ x ≤ c. Here the constants Mb
R and M

b
* are independent of F2, f2. By the

Gronwall inequality, this inequality is solved as

| f2(x) − f1(x)| ≤ Mb
R‖F2 − F1‖1,α+δ,η + L

∫ x

b

1

(x − ξ)δ
Mb
R‖F2 − F1‖1,α+δ,ηdξ

for b ≤ x ≤ c with a constant L independent of F2, f2. Hence, if ‖F2− F1‖1,α+δ,η

is sufficiently small then maxb≤x≤c | f2(x) − f1(x)| is enough small so that
∣∣∣∣

∫ c

b

*0(c, ξ)( f2(ξ) − f1(ξ))dξ

∣∣∣∣ ≤ 1

8

as long as d(c) ≤ 1
2
. This shows that (5.7) still holds even at x = B, because if

d(x) > 1
2
for some x ∈ [b, B] then, at a point x∗ for which d(x∗) = 1

2
, we would

have the contradiction

d(x∗) =
∣∣∣∣∣

∫ b

0

*0(x∗, ξ)( f2(ξ) − f1(ξ))dξ +
∫ x∗

b

*0(x∗, ξ)( f2(ξ) − f1(ξ))dξ

∣∣∣∣∣

≤ 1

4
+ 1

8
<
1

2
.
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Hence we conclude that there is a constant M0
B such that

| f2(x) − f1(x)| ≤ M0
B‖F2 − F1‖1,α+δ,η

for b ≤ x ≤ B.

Step 4. We set *1(x, ξ) :=
∫ x

ξ *(x, z)dz = f2(x)
∫ x

ξ *0(x, z)dz. Then, by (5.4),

we have the estimate |*1(x, ξ)| ≤ M(1− (ξ/x))1−δ with a constant M . Hence an

integration by parts to (5.3) shows that

f2(x) − f1(x) = R(x) −
∫ x

0

*1(x, ξ)( f ′
2(ξ) − f ′

1(ξ))dξ. (5.8)

Here we used f2(0) = f1(0) that follows from the assumption F2(0) = F1(0). By
a similar computation to that in (4.4), it is verified that | ∂

∂x*1(x, ξ)| ≤ M1(x−ξ)−δ

for b ≤ x ≤ B, 0 ≤ ξ < x ≤ B with a constant M1. Hence, differentiating (5.8)

and setting *2(x, ξ) := ∂
∂x*1(x, ξ), we get

f ′
2(x) − f ′

1(x) = R′(x) −
∫ x

0

*2(x, ξ)( f ′
2(ξ) − f ′

1(ξ))dξ, b ≤ x ≤ B.

It is easy to see that R′(x) ∈ C[b, B] satisfies |R′(x)| ≤ MR′‖F2 − F1‖1,α+δ,η

with a constant MR′ independent of F2, f2. By the decomposition −*2(x, ξ) =
f ′
2(x)*21(x, ξ) + *22(x, ξ) with *21(x, ξ) = −*1(x, ξ)/ f2(x) and *22(x, ξ) =

− f2(x)
∂
∂x

∫ x

ξ *0(x, z)dz, this is written as

f ′
2(x) − f ′

1(x) = R′(x) + f ′
2(x)

∫ x

0

*21(x, ξ)( f ′
2(ξ) − f ′

1(ξ))dξ

+
∫ x

0

*22(x, ξ)( f ′
2(ξ) − f ′

1(ξ))dξ.

From this, in a similar manner to that for the derivation of (5.6), we have

(
1−

∫ x

0

*21(x, ξ)( f ′
2(ξ) − f ′

1(ξ))dξ

)
( f ′
2(x) − f ′

1(x))

= R2(x) +
∫ x

b

*1(x, ξ)( f ′
2(ξ) − f ′

1(ξ))dξ, b ≤ x ≤ B,

where R2(x) satisfies |R2(x)| ≤ Mb
R2

‖F2 − F1‖1,α+δ,η and *1(x, ξ) satisfies

|*1(x, ξ)| ≤ Mb
*1

(x − ξ)−δ for b ≤ x ≤ B, 0 ≤ ξ < x ≤ B with constants

Mb
R2
, Mb

*1
independent of F2, f2. Hence, as in Step 3, we conclude that there is a

constant M1
B such that

| f ′
2(x) − f ′

1(x)| ≤ M1
B‖F2 − F1‖1,α+δ,η

for b ≤ x ≤ B.
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Our next task is to prove the following:

Lemma 5.3. The inverse transform

K−1 : {F ∈ M1,α+δ[0, B]η : F(0) = γ } → { f ∈ M1,α(I )η : f (0) = 1}
is continuous.

Proof. Assume that F1(0) = F2(0) = γ and let fi ∈ M1,α[0, B]η, i = 1, 2, be

solutions of K fi = Fi for Fi ∈ M1,α+δ[0, B]η respectively. Then, by (3.5),

I δ0,w1

(
1

xβ−1 f2(x)
− 1

xβ−1 f1(x)

)

= 1

*(δ)
x1−β+βδ(F2(x) − F1(x)) −

(
I δ0,w2 − I δ0,w1

) 1

xβ−1 f2(x)
.

(5.9)

By setting ρ = η+1
β − 1 in the commutative diagram (3.10), it follows that I δ0,w1

is

a homeomorphism of C1,α[0, B]η+1−β onto C1,α+δ[0, B]η+1−β+βδ and the inverse

is given by Dδ
0,w1

.

The function x1−β+βδ(F2(x)−F1(x)) belongs to C1,α+δ[0,B]η+1−β+βδ . Since

the multiplication operator by x1−β+βδ is a homeomorphism of C1,α+δ[0,B]η onto
C1,α+δ[0, B]η+1−β+βδ ,

‖x1−β+βδ(F2(x) − F1(x))‖1,α+δ,η+1−β+βδ ≤ C1‖F2 − F1‖1,α+δ,η,

where C1 is a constant. On the other hand, by Lemma 5.1, if κ ≤ κ0 then ‖ f2 −
f1‖1,α,η;κ ≤ M0‖F2 − F1‖1,α+δ,η and so, by (5.2),

∥∥∥∥
1

xβ−1 f2(x)
− 1

xβ−1 f1(x)

∥∥∥∥
1,α,η+1−β;κ

≤ C2‖F2 − F1‖1,α+δ,η,

where C2 is a constant. Hence, by (5.9),
∥∥∥∥
(
I δ0,w2 − I δ0,w1

) 1

xβ−1 f2(x)

∥∥∥∥
1,α+δ,η+1−β+βδ;κ

≤ C3‖F2 − F1‖1,α+δ,η (5.10)

with a constant C3. In other words, the second term in the right-hand side of (5.9)

is small enough in C1,α+δ[0, κB]η+1−β+βδ , provided that F2 − F1 is sufficiently

small in C1,α+δ[0, B]η and 0 < κ ≤ κ0.
Let b < κ0B be fixed and consider the function

p(x) := *(δ)
(
I δ0,w2 − I δ0,w1

) 1

xβ−1 f2(x)

=
∫ x

0




ξβ−1 f2(ξ)

(∫ x

ξ r
β−1 f2(r)dr

)1−δ
− ξβ−1 f1(ξ)

(∫ x

ξ r
β−1 f1(r)dr

)1−δ




dξ

ξβ−1 f2(ξ)
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on the interval [b, B]. We take a so that 0 < a < b and, using an integration by

parts, we decompose p(x) as p(x) = p1(x) + p2(x) + p3(x) where

p1(x) :=
∫ a

0





ξβ−1 f2(ξ)

(∫ x

ξ r
β−1 f2(r)dr

)1−δ
− ξβ−1 f1(ξ)

(∫ x

ξ r
β−1 f1(r)dr

)1−δ





dξ

ξβ−1 f2(ξ)
,

p2(x) :=
1

δ

{(∫ x

a

rβ−1 f2(r)dr
)δ

−
(∫ x

a

rβ−1 f1(r)dr
)δ

}
1

aβ−1 f2(a)
,

p3(x) :=
1

δ

∫ x

a

{(∫ x

ξ
rβ−1 f2(r)dr

)δ

−
(∫ x

ξ
rβ−1 f1(r)dr

)δ
}(

d

dξ

1

ξβ−1 f2(ξ)

)
dξ.

It is easily seen from (5.2) that p1(x) is twice differentiable and

|p1′′(x)| ≤ const.
{
‖ f2 − f1‖C1[b,B] + ‖ f κ

2 − f κ
1 ‖1,α,η;κ

}

for x ∈ [b, B]. This, together with Lemmas 5.1 and 5.2, leads to

|p1′′(x)| ≤ const.‖F2 − F1‖1,α+δ,η

for x ∈ [b, B]. Hence we have

‖p1(x)‖C1,α[b,B] ≤ const. ‖F2 − F1‖1,α+δ,η, (5.11)

where ‖ · ‖C1,α[b,B] is the standard norm of the Hölder space C
1,α[b, B]. Similarly

we have

‖p2(x)‖C1,α[b,B] ≤ const. ‖F2 − F1‖1,α+δ,η. (5.12)

A computation shows that

p3
′(x) =

∫ x

a





xβ−1 f2(x)

(∫ x

ξ r
β−1 f2(r)dr

)1−δ
− xβ−1 f1(x)

(∫ x

ξ r
β−1 f1(r)dr

)1−δ





×

(
d

dξ

1

ξβ−1 f2(ξ)

)
dξ

= xβ−1( f2(x) − f1(x))

∫ x

a

1
(∫ x

ξ r
β−1 f1(r)dr

)1−δ

(
d

dξ

1

ξβ−1 f2(ξ)

)
dξ

+ xβ−1 f2(x)
∫ x

a





1

(∫ x

ξ r
β−1 f2(r)dr

)1−δ
− 1

(∫ x

ξ r
β−1 f1(r)dr

)1−δ





×

(
d

dξ

1

ξβ−1 f2(ξ)

)
dξ.
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Hence, by setting

q1(x) :=
∫ x

a

1
(∫ x

ξ r
β−1 f1(r)dr

)1−δ

(
d

dξ

1

ξβ−1 f2(ξ)

)
dξ,

q2(x) :=
∫ x

a




∫ 1

0

∫ x

ξ r
β−1( f2(r) − f1(r))dr

(∫ x

ξ r
β−1 f (τ, r)dr

)2−δ
dτ




(
d

dξ

1

ξβ−1 f2(ξ)

)
dξ,

we have

p3
′(x) = xβ−1( f2(x) − f1(x))q1(x) + (δ − 1)xβ−1 f2(x)q2(x). (5.13)

Set φ(ξ) := d
dξ

1
ξβ−1 f2(ξ)

, which belongs to C0,α[b, B], and let b ≤ y < x ≤ B.

Then, as in [12, p.488], we decompose q1(x) − q1(y) as

q1(x) − q1(y)

=
∫ x

a

φ(ξ)
(∫ x

ξ r
β−1 f1(r)dr

)1−δ
dξ −

∫ y

a

φ(ξ)
(∫ y

ξ r
β−1 f1(r)dr

)1−δ
dξ

=
∫ x

y

φ(ξ) − φ(y)
(∫ x

ξ r
β−1 f1(r)dr

)1−δ
dξ (5.14)

+
∫ y

a





1

(∫ x

ξ r
β−1 f1(r)dr

)1−δ
− 1

(∫ y

ξ r
β−1 f1(r)dr

)1−δ





(φ(ξ) − φ(y))dξ

+






∫ x

a

dξ
(∫ x

ξ r
β−1 f1(r)dr

)1−δ
−

∫ y

a

dξ
(∫ y

ξ r
β−1 f1(r)dr

)1−δ





φ(y).

=: I1 + I2 + I3.

The first term I1 of the right-hand side is estimated as

|I1| ≤ ‖φ‖C0,α[b,B]M
∫ x

y

(ξ − y)α

(x − ξ)1−δ
dξ = M1‖φ‖C0,α[b,B](x − y)α+δ,

where ‖φ‖C0,α[b,B] denotes the standard norm of the Hölder space C0,α[b, B],
namely the norm with w(x) = x in Lemma 3.3.(4), M depends only on f1, β,
and M1 = MB(α + 1, δ). By the substitutions ξ = yt , r = ys, the second term I2
of the right-hand side of (5.14) is written as

I2 =
∫ 1

a/y
(6(x/y, t) − 6(1, t)) (φ(yt) − φ(y))ydt

=
∫ 1

a/y
(φ(yt) − φ(y))ydt

∫ x/y

1

∂6

∂u
(u, t)du,



INTEGRAL TRANSFORM AND INVERSE BIFURCATION 905

where 6(u, t) = (
∫ u
t
yβsβ−1 f1(ys)ds)δ−1. Since

∣∣∣∣
∂6

∂u
(u, t)

∣∣∣∣ ≤ M(u − t)δ−2,
a

B
≤ a

y
≤ t < u ≤ B

b
,

with a constant M independent of y, t, u, the term I2 is estimated as

|I2| ≤ M‖φ‖C0,α[b,B]

∫ 1

a/y
(y − yt)α ydt

∫ x/y

1

(u − t)δ−2du

= M‖φ‖C0,α[b,B]

∫ 1

a/y
(1− t)α

{
(1− t)δ−1 −

(
x

y
− t

)δ−1}
dt.

But, by the L’Hôpital rule and the substitution t = (1− s)/(1− (y/x)s), we have

lim
x
y
→1

1
(
x
y

− 1
)α+δ

∫ 1

0

(1− t)α

{
(1− t)δ−1 −

(
x

y
− t

)δ−1}
dt

= lim
x
y
→1

1− δ

α + δ

1
(
x
y

− 1
)α+δ−1

∫ 1

0

(1− t)α
(
x

y
− t

)δ−2
dt

= 1− δ

α + δ
lim
x
y
→1

( y
x

)α+1 ∫ 1

0

sα

(
1− y

x
s
)α+δ

ds = 1− δ

α + δ

∫ 1

0

sα

(1− s)α+δ
ds < ∞.

Hence, |I2| ≤ M2‖φ‖C0,α[b,B](x − y)α+δ for b ≤ y ≤ x ≤ B with a constant M2
independent of x, y. By the substitution ξ = xt , ξ = yt , the third term I3 of the

right-hand side of (5.14) is written as

I3 = x1−β(1−δ)

∫ a/y

a/x

dt
(∫ 1

t
sβ−1 f1(xs)ds

)1−δ
φ(y)

+
∫ 1

a/y
dt

∫ x

y

d

dz

z1−β(1−δ)

(∫ 1
t
sβ−1 f1(zs)ds

)1−δ
dz φ(y).

Since |(1− (a/x))δ − (1− (a/y))δ| ≤ ∃M|x − y| for b ≤ y ≤ x ≤ B in view of

a < b, the term I3 is estimated as |I3| ≤ M3‖φ‖C0,α[b,B](x − y)α+δ for b ≤ y <
x ≤ B with a constant M3 independent of x, y. Thus, there exists a constant M
such that

‖q1(x)‖C0,α+δ[b,B] ≤ M

∥∥∥∥
d

dx

1

xβ−1 f2(x)

∥∥∥∥
C0,α[b,B]

.

In view of (5.2), this is the same as saying that

‖q1(x)‖C0,α+δ[b,B] ≤ const.‖ f2‖C1,α[b,B]. (5.15)
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In a similar way, we can show that there exists a constant independent of f2 such

that

‖q2(x)‖C0,α+δ[b,B] ≤ const.‖ f2 − f1‖C1[b,B].
This, together with (5.13) and (5.15), implies that

‖p3‖C1,α+δ[b,B] ≤ const. ‖ f2 − f1‖C1[b,B]‖ f2‖C1,α[b,B].

Hence, by Lemma 5.2,

‖p3‖C1,α+δ[b,B] ≤ const. ‖F2 − F1‖1,α+δ,η‖ f2‖C1,α[b,B]. (5.16)

Combining this with (5.11), (5.12), we arrive at
∥∥∥∥
(
I δ0,w2− I δ0,w1

) 1

xβ−1 f2(x)

∥∥∥∥
C1,α+δ[b,B]

≤const.‖F2−F1‖1,α+δ,η(1+‖ f2‖C1,α[b,B]).

This, together with (5.10), yields
∥∥∥∥
(
I δ0,w2− I δ0,w1

) 1

xβ−1 f2(x)

∥∥∥∥
1,α+δ,η+1−β+βδ

≤const.‖F2−F1‖1,α+δ,η(1+‖ f2‖C1,α[b,B]).

Therefore, by (5.9),
∥∥∥∥

1

xβ−1 f2(x)
− 1

xβ−1 f1(x)

∥∥∥∥
1,α,η+1−β

≤ const. ‖F2− F1‖1,α+δ,η(1+‖ f2‖C1,α[b,B])

(5.17)

because I δ0,w1
is a homeomorphism of C1,α[0,B]η+1−β onto C1,α+δ[0, B]η+1−β+βδ .

This implies that

‖ f2 − f1‖C1,α[b,B] ≤ const. ‖F2 − F1‖1,α+δ,η(1+ ‖ f2‖C1,α[b,B]).

Hence

‖ f2‖C1,α[b,B] ≤ ‖ f1‖C1,α[b,B] + ‖ f2 − f1‖C1,α[b,B]
≤ ‖ f1‖C1,α[b,B] + const. ‖F2 − F1‖1,α+δ,η(1+ ‖ f2‖C1,α[b,B]).

It follows from this estimate that if ‖F2 − F1‖1,α+δ,η is sufficiently small then

‖ f2‖C1,α[b,B] ≤ ∃M1. Hence, by (5.17), if ‖F2 − F1‖1,α+δ,η is sufficiently small

then ∥∥∥∥
1

xβ−1 f2(x)
− 1

xβ−1 f1(x)

∥∥∥∥
1,α,η+1−β

≤ M2‖F2 − F1‖1,α+δ,η.

By (5.2) we arrive at ‖ f2 − f1‖1,α,η ≤ M‖F2 − F1‖1,α+δ,η, provided that ‖F2 −
F1‖1,α+δ,η is sufficiently small. The proof is complete.

We are now in a position to establish the continuity of the transform K.
Proposition 5.4. Under the same assumptions as in Theorem 1.1, the inverse trans-
form K−1 : M1,α+δ(I )η →M1,α(I )η is continuous.

Proof. It suffices to treat the case where I = [0, B]. By Lemma 5.3, the inverse of
the map K0 in the diagram (2.4) is continuous. Since the vertical arrows ωα , ωα+δ

in the diagram are homeomorphisms, the inverse transformK−1 is continuous.
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6. Bifurcation transform

It is well-known in a general framework of bifurcation theory (see, e.g., Crandall

and Rabinowitz [5], Rabinowitz [24]) that if f is a continuous function on R with

f (0) > 0 then the n-th bifurcating branch of the nonlinear Sturm-Liouville equation

{
u′′ + λu f (u) = 0 on (0, 1),

u(0) = u(1) = 0
(6.1)

bifurcates at the point
(

(nπ)2

f (0) , 0
)
from the set {(λn, 0) : λ ∈ R} of the trivial

solutions, where λn := (nπ)2

f (0) , n = 1, 2, · · · , are the eigenvalues of the linearized
problem {

u′′ + λu f (0) = 0 on (0, 1),

u(0) = u(1) = 0

of (6.1). Here, by a solution to (6.1), we mean a pair (λ, u) inR×C2[0, 1] satisfying
(6.1). Let E be the space ofC1 functions on [0, 1] satisfying the boundary condition
in (6.1), let Sn be the set of solutions (λ, u) to (6.1) in which u has exactly n − 1

zeros in (0, 1), and let Sn be the closure of Sn in R × E . A maximal (with respect

to inclusion), closed connected subset of Sn containing (λn, 0) is referred to as the
nth bifurcating branch of (6.1). For each n = 1, 2, · · · , the nth bifurcating branch
is an unbounded set (see Rabinowitz [24,25]).

We now suppose that f (u) > 0 on I where I is a bounded, closed interval

containing 0 on R and focus our attention on the first bifurcating branch, in which

u is a positive or negative solution of (6.1). Then we have the following:

Lemma 6.1. We suppose that f is a positive continuous function on I . If (λ, u) is
a solution of (6.1) satisfying u %= 0 on the interval (0, 1) then λ > 0 and u attains

its maximum value or minimum value at the middle point 1
2
of the interval (0, 1).

The value h ∈ I \ {0} and λ are related via

∫ 1

0

dt
(∫ 1

t
s f (hs)ds

)1/2 =
√

λ

2
. (6.2)

Proof. Let (λ, u) be a solution of (6.1). Then, by an integration by parts, we have

0 =
∫ 1

0

u(t)u′′(t) + λu(t)2 f (u(t))dt = −
∫ 1

0

u′(t)2dt + λ

∫ 1

0

u(t)2 f (u(t))dt.

Since f > 0, this implies that λ > 0. By a standard calculation, it follows that

u = u(t) satisfies

u′(t)2 + 2λ

∫ u(t)

0

r f (r)dr = u′(0)2, t ∈ [0, 1]. (6.3)
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This shows that u′(0) %= 0 and the value of u at the point t0 where u
′(t0) = 0

is uniquely determined by this identity. We denote this value u(t0) by h. Then

u′(0)2 = 2λ
∫ h
0 r f (r)dr , and therefore, by (6.3),

u′(t)2 = 2λ

∫ h

u(t)
r f (r)dr. (6.4)

Therefore, if u(t) > 0 for t ∈ (0, 1), namely if h > 0, then

t0 =
∫ h

0

dt

du
du = 1√

2λ

∫ h

0

du
√∫ h

u
r f (r)dr

,

1− t0 =
∫ 0

h

dt

du
dt = − 1√

2λ

∫ 0

h

du
√∫ h

u
r f (r)dr

.

This shows that t0 = 1
2
and

∫ h

0

du
√∫ h

u
r f (r)dr

=
√

λ

2
.

By the substitutions u = ht , r = hs, we arrive at (6.2). The case h < 0 can be

treated in a similar manner.

Let S I1 be the set of solutions (λ, u) in (0,∞) × E to (6.1) in which u %= 0

on (0, 1) and u(t) ∈ I on [0, 1]. We define a map 7 : S I1 → (0,∞) × I by

7 : (λ, u) '→ (λ, u(1
2
)). Then 7 is a continuous map from S I1 onto *( f ), where

*( f ) is the set defined in (1.7).
Lemma 6.1 tells us that *( f ) is written as *( f ) = {(λ(h), h) : h ∈ I \ {0}},

where λ(h) is a function on I defined by (1.8). The correspondence B : f (u) '→
λ(h) is referred to as the bifurcation transform:

(B f )(h) = 2




∫ 1

0

dt
√∫ 1

t
s f (hs)ds




2

. (6.5)

The inverse bifurcation problem we are concerned with consists of three questions:

Problem 6.2.

1. (Existence) Given a positive function λ on I , does there exist a positive function
f on I such that B f = λ ?

2. (Uniqueness) Is f unique for each λ ?
3. (Stability) Does f depend on λ continuously ?
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By (6.5), the bifurcation transform B is written as B f = 2(K f )2 in terms of the
transform K with δ = 1

2
, β = 2 in (1.1). But, as is easily verified, the transform

g '→ 2g2 is a homeomorphism ofM1,α+ 1
2 (I )η onto itself when η > 0. Accord-

ingly, as an immediate consequence of Theorem 1.1, we obtain the following an-

swer (Theorem 1.2): the bifurcation transform B is a homeomorphism ofM1,α(I )η

ontoM1,α+ 1
2 (I )η, provided that 0 < η ≤ α < 1

2
.

Example 6.3. Let I = [a, b] with −1 < a ≤ 0 ≤ b < ∞, and, for a given

function λ(h) := (
√
h + 1 + π

2
− 1)2, consider B f = λ. Obviously, λ(h) is a

positive function on I belonging to C2(I ). Hence, for each α, η such that 0 < η ≤
α < 1

2
, the function λ(h) belongs toM1,α+ 1

2 (I )η. By Theorem 1.2, there exists a

unique function f = f (u) inM1,α(I )η such that B f = λ. The function f (u) is
determined as

f (u) = 8

u + 1+
√
u + 1

,

because, for the function f ,

(B f )(h) = 1

4

(∫ 1

0

h
√

(
√
h + 1− 1)2 − (

√
ht + 1− 1)2

dt

)2

=
(∫ π

2

0

(1+ (
√
h + 1− 1) sinϕ)dϕ

)2
=

(√
h + 1+ π

2
− 1

)2
,

where we have used the substitution
√
ht + 1− 1 = (

√
h + 1− 1) sinϕ. Thus we

conclude that

B−1
(√

h + 1+ π

2
− 1

)2
(u) = 8

u + 1+
√
u + 1

, 0 ≤ u ≤ b.

The solution u = u(t; h) on the point (λ(h), h) (see Figure 6.1) is given as the
inverse function of

t (u) = 1

2
√

λ(h)

{
A −

√
A2 − (

√
u + 1− 1)2 + sin−1

√
u + 1− 1

A

}
,

where A =
√
h + 1 − 1. The set SI1 of solutions (λ, u) to (6.1) in which u(t) %= 0

on (0, 1) and u(t) ∈ I is determined as {(λ(h), u(t; h)) : h > 0}. It should be noted
that, since f determines all the solutions such that u(t) ∈ I , λ(h) determines all the
solutions in SI1 .

Though the function f = B−1λ belongs toM1,α[a, b]η for any b > 0, it

does not belong to M1,α[−1, b]η since it blows up at h = −1. The reason is
that the function λ does not belong to M1,α+ 1

2 [−1, b]η (the derivative λ′(h) is
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!
O

"h

b

−1
λ4(π

2

)2

!B
f λ$

B−1

Figure 6.1. Case where λ(h) =
(√

h + 1+ π
2

− 1
)2
.

not continuous at h = −1). This situation is the same as that in the case δ−1
2−δ <

µ < 0 of Example 4.5; unlike the conclusion in Theorem 1.2, it does not hold in

general that the bifurcation transform B gives a homeomorphism ofM0,α(I )η onto

M0,α+ 1
2 (I )η.
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