We study the generalized boundary value problem for nonnegative solutions of in a bounded Lipschitz domain , when is continuous and nondecreasing. Using the harmonic measure of , we define a trace in the class of outer regular Borel measures. We amphasize the case where , . When is (locally) a cone with vertex , we prove sharp results of removability and characterization of singular behavior. In the general case, assuming that possesses a tangent cone at every boundary point and is subcritical, we prove an existence and uniqueness result for positive solutions with arbitrary boundary trace.
Classification : 35K60, 31A20, 31C15, 44A25, 46E35
@article{ASNSP_2011_5_10_4_913_0, author = {Marcus, Moshe and Veron, Laurent}, title = {Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {913--984}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {4}, year = {2011}, zbl = {1243.35054}, mrnumber = {2932897}, language = {en}, url = {archive.numdam.org/item/ASNSP_2011_5_10_4_913_0/} }
Marcus, Moshe; Veron, Laurent. Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 4, pp. 913-984. http://archive.numdam.org/item/ASNSP_2011_5_10_4_913_0/
[1] P. Baras and M. Pierre, Singularités éliminables pour des équations semi-lineaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185–206. | EuDML 74615 | Numdam | MR 743627 | Zbl 0519.35002
[2] S. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), 153–173. | MR 765409 | Zbl 0557.35033
[3] K. Bogdan, Sharp estimates for the Green function in Lipschitz domains, J. Math. Anal. Appl. 243 (2000), 326-337. | MR 1741527 | Zbl 0971.31005
[4] H. Brezis and F. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris (A-B) 287 (1978), A113–A115. | MR 511925 | Zbl 0381.46019
[5] B. E. Dalhberg, Estimates on harmonic measures, Arch. Ration. Mech. Anal. 65 (1977), 275–288. | MR 466593 | Zbl 0406.28009
[6] E. B. Dynkin, “Diffusions, Superdiffusions and Partial Differential Equations”, Amer. Math. Soc. Colloquium Publications, 50, Providence, RI, 2002. | MR 1883198 | Zbl 0999.60003
[7] E. B. Dynkin, “Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations”, University Lecture Series, 34, Amer. Math. Soc., Providence, RI, 2004. | MR 2089791 | Zbl 1079.60006
[8] E. B. Dynkin and S. E. Kuznetsov, Solutions of nonlinear differential equations on a Riemanian manifold and their trace on the boundary, Trans. Amer. Math. Soc. 350 (1998), 4217–4552. | MR 1443191 | Zbl 0911.60062
[9] J. Fabbri and L. Véron, Singular boundary value problems for nonlinear elliptic equations in non smooth domains, Adv. Differential Equations 1 (1996), 1075–1098. | MR 1409900 | Zbl 0863.35021
[10] N. Gilbarg and N. S. Trudinger, “Partial Differential Equations of Second Order”, 2nd ed., Springer-Verlag, Berlin/New-York, 1983. | MR 473443 | Zbl 0562.35001
[11] A. Gmira and L. Véron, Boundary singularities of solutions of nonlinear elliptic equations, Duke Math. J. 64 (1991), 271–324. | MR 1136377 | Zbl 0766.35015
[12] R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. | MR 274787 | Zbl 0193.39601
[13] D. S. Jerison and C. E. Kenig, Boundary value problems on Lipschitz domains, Studies in partial differential equations, MAA Stud. Math. 23, (1982) 1–68. | MR 716504 | Zbl 0529.31007
[14] D. S. Jerison and C. E. Kenig, The Dirichlet problems in non-smooth domains, Ann. of Math. 113 (1981), 367–382. | MR 607897 | Zbl 0434.35027
[15] C. Kenig and J. Pipher, The -path distribution of conditioned Brownian motion for non-smooth domains, Probab. Theory Related Fields 82 (1989), 615–623. | MR 1002903 | Zbl 0672.60079
[16] J. B. Keller, On solutions of , Comm. Pure Appl. Math. 10 (1957), 503–510. | MR 91407 | Zbl 0090.31801
[17] J. F. Le Gall, The Brownian snake and solutions of in a domain, Probab. Theory Related Fields 102 (1995), 393–432. | MR 1339740 | Zbl 0826.60062
[18] J. F. Le Gall, “Spatial Branching Processes, Random Snakes and Partial Differential Equations” Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. | MR 1714707 | Zbl 0938.60003
[19] M. Marcus, Complete classification of the positive solutions of , J. d’Analyse Math., to appear. | MR 2944095
[20] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. An. 144 (1998), 201–231. | MR 1658392 | Zbl 0924.35050
[21] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77 (1998), 481–521. | MR 1626800 | Zbl 0933.35081
[22] M. Marcus and L. Véron, Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879–900. | MR 1865379 | Zbl 1134.35365
[23] M. Marcus and L. Véron The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math. (6) 56 (2003), 689–731. | MR 1959738 | Zbl 1121.35314
[24] M. Marcus and L. Véron, The precise boundary trace of positive solutions of the equation in the supercritical case, Perspectives in nonlinear partial differential equations, Contemp. Math., Amer. Math. Soc., Providence, RI 446 (2007), 345–383. | MR 2376668 | Zbl 1200.35122
[25] M. Marcus and L. Véron, Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains, arXiv:0907.1006 (2009). | Numdam | MR 2932897 | Zbl 0917.35041
[26] B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Mem. Amer. Math. Soc. 168, 798 (2004). | MR 2031708 | Zbl 1274.35139
[27] R. Osserman, On the inequality , Pacific J. Math. 7 (1957), 1641–1647. | MR 98239 | Zbl 0083.09402
[28] N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure App. Math. 20 (1967), 721–747. | MR 226198 | Zbl 0153.42703
[29] L. Véron, “Singularities of Solutions of Second Order Quasilinear Equations”, Pitman Research Notes in Math. 353, Addison-Wesley-Longman, 1996. | MR 1424468 | Zbl 0858.35018