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Stability of the Calabi flow near an extremal metric

HONGNIAN HUANG AND KAI ZHENG

Abstract. We prove that on a Kähler manifold admitting an extremal metric ω
and for any Kähler potential ϕ0 close to ω, the Calabi flow starting at ϕ0 exists for
all time and the modified Calabi flow starting at ϕ0 will always be close to ω. Fur-
thermore, when the initial data is invariant under the maximal compact subgroup
of the identity component of the reduced automorphism group, the modified Cal-
abi flow converges to an extremal metric near ω exponentially fast.

Mathematics Subject Classification (2010): 53C44 (primary); 32Q15, 32Q26
(secondary).

1. Introduction

Let M be a Kähler manifold and# be the Kähler class in H2(M, R)∩H1,1(M,C).
By the ∂∂̄-lemma, any Kähler metric ωϕ in # can be written as

ωϕ = ω +
√

−1∂∂̄ϕ

for some smooth real-valued Kähler potential ϕ. The space of Kähler metrics is
defined by

H = {ϕ ∈ C∞(M, R)|ω +
√

−1∂∂̄ϕ > 0}.
Donaldson [17], Mabuchi [20] and Semmes [21] independently defined a Weil-

Peterson type-metric onH, under whichH becomes a non-positively curved infinite
dimensional symmetric space. Chen [5] proved that any two points in H can be

connected by a C1,1 geodesic and that H is a metric space, which verifies two of

Donalson’s conjectures.

In order to tackle the existence of a constant scalar curvature Kähler metric

(cscK) problem, Calabi [2, 3] introduced a well-known functional

Ca(ϕ) =
∫

M

S(ϕ)2 ωn
ϕ,
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where S(ϕ) is the scalar curvature of ωϕ . The critical point of this Calabi functional

is called an extremal Kähler metric. Calabi discovered that an extremal Kähler

metric is a cscK if and only if the Calabi-Futaki invariant is equal to zero. Later,

he suggested that one may study the gradient flow of the K-energy to search for the

cscK. This flow is defined as

∂ϕ

∂t
= S − S (1.1)

and it decreases the Calabi energy. Since (1.1) is a fourth order equation, the maxi-

mal principle fails. In [18], Donaldson proposed a programme to study the conver-

gence of the Calabi flow. On a Riemannian surface, P. Chruściel [16] proved that

the flow exists for all time and converges to a cscK metric by using the Bondi mass.

Later Chen [6] and Struwe [22] gave a different proof assuming the uniformization

theorem. In Chen-Zhu [15], they removed the assumption of the uniformization the-

orem. For higher dimensions, the Calabi flow has been studied in Chen-He [8–10]

and Tosatti-Weinkove [23]. In Chen-He [8], they proved that the Calabi flow can

start from a C3,α Kähler potential and become smooth immediately as t > 0.

One defines the little Hölder space ck,α to be the closure of smooth functions

in the usual Hölder norm Ck,α .

Theorem 1.1 ([8]). If ωϕ0 = ω +
√

−1∂∂̄ϕ0 satisfies |ϕ0|c3,α(M,g) ≤ K , and

λω < ω0 = ωϕ0 < 'ω, where K , λ,' are positive constants, then the Calabi

flow initiating from ϕ0 admits a unique solution

ϕ(t) ∈ C([0, T ], c3,α(M, g)) ∩ C((0, T ], c4,α(M, g))

for small T = T (λ,', K ,ω). More specifically, for any t ∈ (0, T ], there is a
constant C = C(λ,', K ,ω) such that

t1/4(|ϕ̇(t)|c0,α (M) + |ϕ(t)|c4,α(M)) ≤ C, |ϕ(t)|c3,α(M) ≤ C.

Remark 1.2. He [19] shows that the Calabi flow can start from ωϕ where ϕ ∈
c2,α(M).

Theorem 1.3 ([8]). The solution obtained above belongs to

C0([0, T ], c3,α(M)) ∩ C0((0, T ],C∞(M)).

Chen and He then use an energy argument to show that when Kähler manifolds

admits a cscK ω and the initial Kähler potential is C3,α small, the Calabi flow

converges exponentially fast to a cscK nearby. In He [19], he improved this result

for C2,α small initial Kähler potentials.

In this short note, we prove a parallel theorem for extremal Kähler metrics

using a different method from Chen-Ding-Zheng [7]. In that paper, they defined

a flow called the pseudo-Calabi flow. They proved the short time existence from

c2,α initial Kähler potentials, the long time existence under uniform Ricci bounds
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and the stability near a cscK. Since the linearized operator of the pseudo-Calabi

flow is not self-adjoint, they set up a unified frame to tackle the stability problem

of the Kähler Ricci flow (cf. Zheng [24]), the Calabi flow and the pseudo-Calabi

flow. This method strongly relies on the geometric structure of the space of Kähler

metrics.

First, we will prove the long time existence of the Calabi flow.

Theorem 1.4. On Kähler manifolds admitting an extremal metric ω and for any

positive constant K, λ, there is a small constant ε depending on ω,K, λ, such that
for any Kähler potential ϕ0, if

|ϕ0|C2,α(M) < K, λω < ωϕ0,

∫

M

|ϕ0|2ωn < ε,

then the Calabi flow exists for all time.

Next we want to study the modified Calabi flow. Let K be a maximal compact

subgroup in the reduced automorphism group. Denote the corresponding Lie alge-

bra of K by h0(M), which is the ideal of holomorphic vector fields with zeros. For

any holomorphic vector field Ỹ ∈ h0(M), denote Ỹ = Y −
√

−1JY . Then there is
a real function θY such that

L
Ỹ
ω = LYω =

√
−1∂∂̄θY (t)

and ∫

M

θYωn = 0.

For an arbitrary metric

ωϕ = ω +
√

−1∂∂̄ϕ,

the corresponding θ
Ỹ
(ϕ) is

θ
Ỹ
(ϕ) = θY + Ỹ (ϕ).

Following Futaki-Mabuchi [1], suppose X̃ , Ỹ ∈ h0(M), then the bilinear form

B(X̃ , Ỹ ) =
∫

M

θ
X̃(ϕ)θỸ (ϕ)ω

n
ϕ

is independent of the choice of ωϕ in the Kähler class # = [ω].
Let ϕ(t) be a one parameter of Kähler potentials satisfying the Calabi flow

equation and let σ (t) be the holomorphic group generated by X , the real part of

the extremal vector field X̃ . Then σ ∗(t)ω = ω + i∂∂̄ρ(t) satisfies the Calabi flow
equation since

∂σ ∗(t)ω
∂t

= LXω(t) = i∂∂̄(S(t) − S).
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Hence we can choose ρ(t) to be a parameter of Kähler potentials satisfying the
Calabi flow equation starting from 0.

Let ψ(t) = σ (−t)∗(ϕ(t) − ρ(t)). Notice that, by definition, X = σ−1
∗ ( ∂

∂t σ ).
So we obtain the modified Calabi flow,

∂ψ

∂t
= −X (ψ(t)) + σ (−t)∗

(
∂ϕ(t)

∂t
− ∂ρ(t)

∂t

)

= −X (ψ(t)) + σ (−t)∗(S(ϕ(t)) − S) − (S(ω) − S)

= Sψ − S − θX − X (ψ)

= Sψ − S − θX (ψ).

Theorem 1.5. On Kähler manifolds admitting an extremal metric ω, for any K-
invariant Kähler potential ϕ0 close toω (in the sense of Theorem (1.4)), the modified
Calabi flow exponentially converges to a nearby extremal metric.
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2. Long time existence

First of all, we would like to give a rough estimate of the geodesic distance between

any two Kähler potentials ϕ0,ϕ1 when ωϕ0,ωϕ1 < 'ω.

Lemma 2.1. d(ϕ0,ϕ1) < C(')
(∫
M

|ϕ0 − ϕ1|2ωn
) 1
2 .

Proof. Let ϕt = (1− t)ϕ0 + tϕ1 for 0 ≤ t ≤ 1. Then

d(ϕ0,ϕ1) ≤ L(γt ) =
∫ 1

0

(∫

M

(
∂γt

∂t

)2
ωn

γt

) 1
2

dt

≤
∫ 1

0

(∫

M

(ϕ0 − ϕ1)
2ωn

γt

) 1
2

dt

≤ C(')

(∫

M

|ϕ0 − ϕ1|2ωn

) 1
2

.

We are ready to give a proof of Theorem 1.4.
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Proof. Suppose that the conclusion fails, then there exist positive constantsK, λ,'
and a sequence of ϕ0s such that

|ϕ0s |C2,α < K, λω < ωϕs0
< 'ω,

∫

M

|ϕ0s |2ωn <
1

s
s = 1, 2, 3 · · · .

By virtue of the short time existence theorem, we get a sequence of solutions ϕs(t)
satisfying the flow equation (1.1) with ϕs(0) = ϕ0s . Let Ts be the first time such that

|ϕs(Ts) − ρ(Ts)|c2,α(ω(Ts))
= 2C holds

or

λω(Ts) < ωϕs(Ts) < 'ω(Ts) fails,

where the constant C is from Theorem 1.1. Then Ts is bounded from below for

sufficiently large s. Otherwise there is a subsequence of ϕs(Ts) converging to ϕ∞
in the C2,α

′
(ω) sense, where α′ < α. Notice that λω ≤ ωϕ∞ ≤ 'ω, but that

λω < ωϕ∞ < 'ω fails.

On the other hand, Lemma 2.1 shows that d(0,ϕ0s ) → 0 as s → ∞. Since the

distance function decreases under the Calabi flow, we have

d(ρ(Ts),ϕs(Ts)) → 0

as s → ∞. Let ϕ∞(t) be one parameter potentials satisfying the Calabi flow equa-
tion initiating from ϕ∞. Then for t0 ≥ t ,

d(ρ(t0),ϕ∞(t0)) ≤ d(ρ(t),ϕ∞(t))

≤ d(ρ(t), ρ(Ts)) + d(ρ(Ts),ϕs(Ts)) + d(ϕs(Ts),ϕ∞(t)).

By Lemma 2.1, d(ϕs(Ts),ϕ∞(t)) → 0 as s → ∞ and t → 0. Hence ρ(t0) =
ϕ∞(t0), which implies 0 = ϕ∞, a contradiction.

Moreover, from Theorem 1.3, we obtain the higher order uniform bounds of

the sequence of the solutions:

|ϕs(Ts) − ρ(Ts)|Ck,α(ω(Ts))
≤ C(k), ∀k ≥ 0.

Therefore we can choose a subsequence of φs = σ (−Ts)∗(ϕs(Ts) − ρ(Ts)) so that

φs → φ∞ in Ck,α(ω),∀k ≥ 0,

and

|φ∞|C2,α(ω) = 2C (or λω < ωφ∞ < 'ω fails).

However, this contradicts the fact that d(0,φ∞) = 0.

Corollary 2.2. Given a Kähler potential ϕ0 close to 0 in the sense of Theorem 1.4,
then the modified Calabi flow stays in a neighborhood of 0. If ϕ0 is K-invariant,
then the modified Calabi flow converges to an extremal metric nearby.
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Proof. That the modified Calabi flow stays in a neighborhood of 0 can be easily

seen from the regularity Theorem 1.3. Notice that the Calabi flow decreases the

Calabi energy, i.e.
∂

∂t
Ca(ωϕ) = −2

∫

M

Lϕ(Sϕ)Sϕ ωn
ϕ,

where Lϕ is the Lichnerowicz operator with respect to ωϕ . It follows that we can

take a sequence of t j → ∞ such that

lim
j→∞

∫

M

Lϕ(t j )(Sϕ(t j ))Sϕ(t j ) ωn
ϕ(t j )

= 0.

Then there is a subsequence of t j such that ψ(t j ) converges to a potential ψ∞ in

C∞ and ∫

M

Lψ∞(Sψ∞)Sψ∞ ωn
ψ∞ = 0.

Hence ωψ∞ is an extremal metric. If ϕ0 is K-invariant, then ψ∞ is a fixed point

under the modified Calabi flow and the modified Calabi flow decreases the geodesic

distance between ψ(t) and ψ∞. Hence the flow converges to ψ∞.

3. Exponential decay

We define the modified Calabi energy as

C̃a(ψ) =
∫

M

(S(ψ) − S − θX (ψ))2ωn
ψ .

The evolution of the modified Calabi energy along the modified Calabi flow is

∂t

∫

M

ψ̇2ωn
ψ =

∫

M

(2ψ̇ψ̈ + ψ̇2,ψψ̇)ωn
ψ

= 2

∫

M

ψ̇(Ṡψ − θ̇X (t) − ψ̇i ψ̇
i )ωn

ψ

= 2

∫

M

ψ̇(−Lψ̇ + ψ̇ i Si − θ̇X (t) − ψ̇i ψ̇
i )ωn

ψ

= 2

∫

M

ψ̇(−Lψ̇ + ψ̇ i (ψ̇i + θX (t)i ) − θ̇X (t) − ψ̇i ψ̇
i )ωn

ψ

= 2

∫

M

ψ̇(−Lψ̇ + ψ̇ i ψ̇i + X (ψ̇) − X (ψ̇) − ψ̇i ψ̇
i )ωn

ψ

= −2
∫

M

ψ̇Lψ̇ωn
ψ .

In this computation we use the identities

ψ̇ i (θX i + (X (ψ))i ) = ψ̇ i (θX (t))i = X (ψ̇).
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The modified Calabi-Futaki invariant

F̃(Ỹ ) = F(Ỹ ) − B(X̃ , Ỹ ) =
∫

M

θ
Ỹ
(ψ)(S − S − θ

X̃
(ψ))ωn

ψ (3.1)

is equal to zero when M admits an extremal metric ω. This shows that the direction
of the modified Calabi flow is always perpendicular to the kernel of the Lichnerow-

icz operator. To obtain exponential convergence, one needs to give a uniform lower

bound of the the first eigenvalue of Lt along the modified Calabi flow. More pre-

cisely, we have the following lemma which is similar to Chen-Li-Wang [11].

Lemma 3.1. Along the modified Calabi flow, there is a positive constant λ > 0

such that for sufficiently large t and for any

f ∈ At = { f ∈ C∞
R (M)|

∫

M

f ωn
ψ(t) =0 and

∫

M

θY (t) f ωn
ψ(t) =0,∀Ỹ ∈ h0(M)},

we have ∫

M

Lt ( f ) f ω
n
ψ(t) ≥ λ

∫

M

f 2ωn
ψ(t).

Proof. If not, there must be a sequence ψs = ψ(s) and fs such that

∫

M

|( fs)i j |2ωn
ψs

<
1

s
;
∫

M

f 2s ωn
ψs

= 1;
∫

M

fsω
n
ψs

= 0. (3.2)

Since the Cl norm of ψs is uniformly bounded for any l ≥ 0. Using the Ricci

identity
∫

M

|( fs)i j̄ |2ωn
ψs

=
∫

M

|( fs)i j |2ωn
ψs

+
∫

M

Ri j̄ ( fs)i ( fs) j̄ω
n
ψs

and the interpolation inequality, we conclude that fs are uniformly W
2,2 bounded.

So we can pass to the limit and get
∫

M

|( f∞)i j |2ωn
ψ∞ = 0;

∫

M

f 2∞ωn
ψ∞ = 1;

∫

M

f∞ωn
ψ∞ = 0. (3.3)

Since in local coordinates, ↑ ∂̄ f∞ is holomorphic in the weak sense, f∞ is smooth

indeed. From the assumption of At we have
∫

M

θY (ψ∞) f∞ωn
ψ∞ = 0,∀Ỹ ∈ h0(M).

In particular, we may choose Ỹ =↑ ∂̄ f∞ ∈ h0(M). Hence,
∫

M

f 2∞ωn
∞ = 0.

This contradicts (3.3).



174 HONGNIAN HUANG AND KAI ZHENG

It is easy to see that C̃a(ψ(t)) ≤ Ce−λt . To get exponential convergence of ψ(t),
we calculate the evolution formula for

∫
M

|∇k(ψ(t) − ψ∞)|2 ωn :

∂

∂t

∫

M

|∇k(ψ(t) − ψ∞)|2 ωn

=
∫

M

∇k(S − S − θX (ψ)) ∗ ∇k(ψ(t) − ψ∞) ωn

=
∫

M

(S − S − θX (ψ)) ∗ ∇2k(ψ(t) − ψ∞) ωn

≤
(∫

M

(S − S − θ(X))2 ωn

)1/2 (∫

M

|∇2k(ψ(t) − ψ∞)|2 ωn

)1/2

≤ C ‖ S − S − θ(X) ‖L2(ω)

≤ C ‖ S − S − θ(X) ‖L2(ωt )
≤ Ce−λ2t .

By the Sobolev embedding, we conclude that

‖ ψt − ψ∞ ‖Cl (ω) ≤ ‖ ψt − ψ∞ ‖Wk,2(ω) ≤ Ce−λ2t .

Hence we obtain the result stated in Theorem 1.5.
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Case postale 8888, Succursale centre-ville
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