We consider functions that satisfy the identity
for a bounded domain in . Here and , and are suitable nonnegative coefficients such that . In particular, we show that these functions are uniquely determined by their boundary values, approximate -harmonic functions for (for a choice of that depends on and ), and satisfy the strong comparison principle. We also analyze their relation to the theory of tug-of-war games with noise.
@article{ASNSP_2012_5_11_2_215_0, author = {Manfredi, Juan J. and Parviainen, Mikko and Rossi, Julio D.}, title = {On the definition and properties of $p$-harmonious functions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {215--241}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {2}, year = {2012}, mrnumber = {3011990}, zbl = {1252.91014}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2012_5_11_2_215_0/} }
TY - JOUR AU - Manfredi, Juan J. AU - Parviainen, Mikko AU - Rossi, Julio D. TI - On the definition and properties of $p$-harmonious functions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 215 EP - 241 VL - 11 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2012_5_11_2_215_0/ LA - en ID - ASNSP_2012_5_11_2_215_0 ER -
%0 Journal Article %A Manfredi, Juan J. %A Parviainen, Mikko %A Rossi, Julio D. %T On the definition and properties of $p$-harmonious functions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 215-241 %V 11 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2012_5_11_2_215_0/ %G en %F ASNSP_2012_5_11_2_215_0
Manfredi, Juan J.; Parviainen, Mikko; Rossi, Julio D. On the definition and properties of $p$-harmonious functions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 215-241. http://archive.numdam.org/item/ASNSP_2012_5_11_2_215_0/
[1] S. N. Armstrong and C. K. Smart, An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equations 37 (2010), 381–384. | MR | Zbl
[2] S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc. 364 (2012), 595–636. | MR | Zbl
[3] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991), 271–283. | MR | Zbl
[4] E. Hopf, Über den funktionalen, insbesondere den analytischen charakter der lösungen elliptischer differentialgleichungen zweiter ordnung, Math. Z. 34 (1932), 194–233. | EuDML | JFM | MR
[5] P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation, SIAM J. Math. Anal. 33 (2001), 699–717. | MR | Zbl
[6] E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE , NoDEA Nonlinear Differential Equations Appl. 14 (2007), 29–55. | MR | Zbl
[7] E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal. 29 (1998), 279–292. | MR | Zbl
[8] H. Ishii and Nakamura, A class of integral equations and approximation of Laplace equations, Calc. Var. Partial Differential Equations 37 (2010), 485–522. | MR | Zbl
[9] R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math. 59 (2006), 344–407. | MR | Zbl
[10] R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully non-linear parabolic and elliptic equations, Comm. Pure Appl. Math. 63 (2010), 1298–1350. | MR | Zbl
[11] J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization of -harmonic functions, Proc. Amer. Math. Soc. 138 (2010), 881–889. | MR | Zbl
[12] J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games with noise, ESAIM Control Optim. Calc. Var. 81 (2012), 81–90. | EuDML | Numdam | MR | Zbl
[13] A. P. Maitra and W. D. Sudderth, “Discrete Gambling and Stochastic Games”, Applications of Mathematics, Vol. 32, Springer-Verlag, 1996. | MR | Zbl
[14] A. M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions, Math. Comp. 74 (2005), 1217–1230. | MR | Zbl
[15] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), 167–210. | MR | Zbl
[16] Y. Peres and S. Sheffield, Tug-of-war with noise: a game theoretic view of the -Laplacian, Duke Math. J. 145 (2008), 91–120. | MR | Zbl