Abstract framework for John-Nirenberg inequalities and applications to Hardy spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 3, pp. 475-501.

In this paper, we develop an abstract framework for John-Nirenberg inequalities associated to BMO-type spaces. This work can be seen as the sequel of [6], where the authors introduced a very general framework for atomic and molecular Hardy spaces. Moreover, we show that our assumptions allow us to recover some already known John-Nirenberg inequalities. We give applications to the atomic Hardy spaces too.

Published online:
Classification: 42B20, 46E30
Bernico, Frédéric 1; Zhao, Jiman 2

1 CNRS - Université de Nantes Laboratoire Jean Leray 2, rue de la Houssinière 44322 Nantes, France
2 School of Mathematical Sciences Beijing Normal University Key Laboratory of Mathematics and Complex Systems Ministry of Education Beijing 100875, P.R. China
@article{ASNSP_2012_5_11_3_475_0,
     author = {Bernico, Fr\'ed\'eric and Zhao, Jiman},
     title = {Abstract framework for {John-Nirenberg} inequalities and applications to {Hardy} spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {475--501},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {3},
     year = {2012},
     mrnumber = {3059835},
     zbl = {1266.42029},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2012_5_11_3_475_0/}
}
TY  - JOUR
AU  - Bernico, Frédéric
AU  - Zhao, Jiman
TI  - Abstract framework for John-Nirenberg inequalities and applications to Hardy spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 475
EP  - 501
VL  - 11
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2012_5_11_3_475_0/
LA  - en
ID  - ASNSP_2012_5_11_3_475_0
ER  - 
%0 Journal Article
%A Bernico, Frédéric
%A Zhao, Jiman
%T Abstract framework for John-Nirenberg inequalities and applications to Hardy spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 475-501
%V 11
%N 3
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2012_5_11_3_475_0/
%G en
%F ASNSP_2012_5_11_3_475_0
Bernico, Frédéric; Zhao, Jiman. Abstract framework for John-Nirenberg inequalities and applications to Hardy spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 3, pp. 475-501. http://archive.numdam.org/item/ASNSP_2012_5_11_3_475_0/

[1] P. Auscher, On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on n and related estimates, Mem. Amer. Math. Soc. 186 no.871 (2007). | MR | Zbl

[2] N. Badr and F. Bernicot, Abstract Hardy-Sobolev spaces and Interpolation, J. Funct. Anal. 259 (2010), 1169–1208. | MR | Zbl

[3] F. Bernicot, Use of abstract Hardy spaces, real interpolation and applications to bilinear operators, Math. Z. 265 (2010), 365–400. | MR | Zbl

[4] F. Bernicot, A T(1)-Theorem in relation to a semigroup of operators and applications to new paraproducts, Trans. Amer. Math. Soc. (2012), to appear. | MR | Zbl

[5] F. Bernicot and J. M. Martell, Self-improving properties for abstract Poincaré type inequalities, arxiv:1107.2260. | MR

[6] F. Bernicot and J. Zhao, New Abstract Hardy Spaces, J. Funct. Anal. 255 (2008), 1761–1796. | MR | Zbl

[7] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. | MR | Zbl

[8] D. Deng, X. T. Duong and L. Yan, A characterization of the Morrey-Campanato spaces, Math. Z. 250 (2005), 640–655. | MR | Zbl

[9] X.T. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943–973. | MR | Zbl

[10] X. T. Duong and L. Yan, New function spaces of BMO type, the John-Niremberg inequality, Interplation and Applications, Comm. Pures Appl. Math. 58 (2005), 1375–1420. | MR | Zbl

[11] J. Dziubański and M. Preisner, Remarks on spectral multiplier theorems on Hardy spaces associated with semigroups of operators, Rev. Un. Mat. Argentina 50 (2009), 201–215. | MR | Zbl

[12] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. | MR | Zbl

[13] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1971), 137–193. | MR | Zbl

[14] S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), 37–116. | MR | Zbl

[15] A. Jiménez-del-Toro and J. M. Martell, Self-improvement of Poincaré type inequalities associated with approximations of the identity and semigroups, submitted (2010). | MR | Zbl

[16] A. Jiménez-del-Toro, Exponential self-improvement of generalized Poincaré inequalities associated with approximations of the identity and semigroups, Trans. Amer. Math. Soc. 364 (2012), 637–660. | MR | Zbl

[17] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 785–799. | MR | Zbl

[18] W. Li, John-Nirenberg type inequalities for the Morrey-Campanato spaces, J. Inequal Appl. 2008 (2008). | EuDML | MR | Zbl

[19] E. M. Stein, “Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals”, Princeton Univ. Press, 1993. | MR | Zbl