Resonant nonlinear Neumann problems with indefinite weight
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, pp. 729-788.

We consider nonlinear Neumann problems driven by the p-Laplacian plus an indefinite potential. First we develop the spectral properties of such differential operators. Subsequently, using these spectral properties and variational methods based on critical point theory, truncation techniques and Morse theory, we prove existence and multiplicity theorems for resonant problems.

Published online:
Classification: 35J20,  35J65,  58E05
Mugnai, Dimitri 1; Papageorgiou, Nikolaos S. 2

1 Dipartimento di Matematica      e Informatica Università di Perugia Via Vanvitelli, 1 06123 Perugia, Italia
2 Department of Mathematics National Technical University Zografou Campus Athens 15780, Greece
@article{ASNSP_2012_5_11_4_729_0,
     author = {Mugnai, Dimitri and Papageorgiou, Nikolaos S.},
     title = {Resonant nonlinear {Neumann} problems with indefinite weight},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {729--788},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {4},
     year = {2012},
     zbl = {1270.35215},
     mrnumber = {3060699},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2012_5_11_4_729_0/}
}
TY  - JOUR
AU  - Mugnai, Dimitri
AU  - Papageorgiou, Nikolaos S.
TI  - Resonant nonlinear Neumann problems with indefinite weight
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
DA  - 2012///
SP  - 729
EP  - 788
VL  - Ser. 5, 11
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2012_5_11_4_729_0/
UR  - https://zbmath.org/?q=an%3A1270.35215
UR  - https://www.ams.org/mathscinet-getitem?mr=3060699
LA  - en
ID  - ASNSP_2012_5_11_4_729_0
ER  - 
%0 Journal Article
%A Mugnai, Dimitri
%A Papageorgiou, Nikolaos S.
%T Resonant nonlinear Neumann problems with indefinite weight
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 729-788
%V Ser. 5, 11
%N 4
%I Scuola Normale Superiore, Pisa
%G en
%F ASNSP_2012_5_11_4_729_0
Mugnai, Dimitri; Papageorgiou, Nikolaos S. Resonant nonlinear Neumann problems with indefinite weight. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, pp. 729-788. http://archive.numdam.org/item/ASNSP_2012_5_11_4_729_0/

[1] S. Aizicovici, N. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. (4) 188 (2009), 679–719. | MR | Zbl

[2] W. Allegretto and Y.X. Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998), 819–830. | MR | Zbl

[3] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. 7 (1983), 981–1012. | MR | Zbl

[4] T. Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001), 117–152. | MR | Zbl

[5] T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal. 28 (1997), 419–441. | MR | Zbl

[6] P. A. Binding and B. P. Rynne, Variational and non-variational eigenvalues of the p-Laplacian, J. Differential Equations 244 (2008), 24–39. | MR | Zbl

[7] I. Birindelli and F. Demengel, Existence of solutions for semi-linear equations involving the p-Laplacian: the non coercive case, Calc. Var. Partial Differential Equations 20 (2004), 343–366. | MR | Zbl

[8] H. Brezis and L. Nirenberg, H 1 versus C 1 local minimizers, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 465–472. | MR | Zbl

[9] K.-C. Chang, “Infinite-dimensional Morse Theory and Multiple Solution Problems”, In: Progress in Nonlinear Differential Equations and their Applications 6, Birkhäuser Boston, MA, 1993. | MR | Zbl

[10] K.-C. Chang, “Methods in Nonlinear Analysis”, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. | MR | Zbl

[11] M. Cuesta, Eigenvalue problems for the p-Laplacian with indefinite weights, Electron. J. Differential Equations 2001, No. 33, 1–9. | EuDML | MR | Zbl

[12] M. Cuesta and H. Ramos Quoirin, A weighted eigenvalue problem for the p-Laplacian plus a potential, NoDEA Nonlinear Differential Equations Appl. 16 (2009), 469–491. | MR | Zbl

[13] M. Cuesta, D. de Figueiredo and J. P. Gossez, The beginning of the Fučik spectrum for the p-Laplacian, J. Differential Equations 159 (1999), 212–238. | MR | Zbl

[14] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 493–516. | EuDML | Numdam | MR | Zbl

[15] L. M Del Pezzo, J. Fernández Bonder and J. D. Rossi, An optimization problem for the first weighted eigenvalue problem plus a potential, Proc. Amer. Math. Soc. 138 (2010), 3551–3567. | MR | Zbl

[16] J. Fernández Bonder and L. M. Del Pezzo, An optimization problem for the first eigenvalue of the p-Laplacian plus a potential, Commun. Pure Appl. Anal. 5 (2006), 675–690. | MR | Zbl

[17] J. P. García Azorero, I. Peral Alonso and J. J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385–404. | MR | Zbl

[18] L. Gasinski and N. S. Papageorgiou, “Nonlinear analysis”, Series in Mathematical Analysis and Applications 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. | MR | Zbl

[19] N. Ghoussoub, “Duality and Perturbation Methods in Critical Point Theory”, Cambridge Tracts in Mathematics 107, Cambridge University Press, Cambridge, 1993. | MR | Zbl

[20] S. Goldberg, “Unbounded Linear Operators. Theory and Applications”, McGraw-Hill Book Co., New York, 1966. | MR | Zbl

[21] A. Granas and J. Dugundji, “Fixed Point Theory”, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. | MR | Zbl

[22] Z. Guo and Z. Zhang, W 1,p versus C 1 local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003), 32–50. | MR | Zbl

[23] S. Hu and N. S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous differential operator, Commun. Pure Appl. Anal. in press. | MR | Zbl

[24] Q. Jiu and J. Su, Existence and multiplicity results for perturbations of the p-Laplacian, J. Math. Anal. Appl. 281 (2003), 587–601. | MR | Zbl

[25] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), 1057–1099. | MR | Zbl

[26] L. Leadi and A. Yechoui, Principal eigenvalue in an unbounded domain with indefinite potential, NoDEA Nonlinear Differential Equations Appl. 17 (2010), 391–409. | MR | Zbl

[27] C. Li, The existence of infinitely many solutions of a class of nonlinear elliptic equations with Neumann boundary condition for both resonance and oscillation problems, Nonlinear Anal. 54 (2003), 431–443. | MR | Zbl

[28] Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl. 354 (2009), 147–158. | MR | Zbl

[29] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219. | MR | Zbl

[30] S. Liu and S. Li, Existence of solutions for asymptotically ‘linear’ p-Laplacian equations, Bull. London Math. Soc. 36 (2004), 81–87. | MR | Zbl

[31] J. Liu and S. Wu, Calculating critical groups of solutions for elliptic problem with jumping nonlinearity, Nonlinear Anal. 49 (2002), 779–797. | MR | Zbl

[32] J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations 127 (1996), 263–294. | MR | Zbl

[33] E. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index, Nonlinear Anal. 71 (2009), 3654–3660. | MR | Zbl

[34] D. Motreanu, V. Motreanu and N.S. Papageorgiou, Nonlinear Neumann problems near resonance, Indiana Univ. Math. J. 58 (2009), 1257–1279. | MR | Zbl

[35] D. Mugnai, Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA Nonlinear Differential Equations Appl. 11 (2004), 379–391, and a comment on the generalized Ambrosetti-Rabinowitz condition, NoDEA Nonlinear Differential Equations Appl. 19 (2004), 299–301. | MR | Zbl

[36] N. S. Papageorgiou and S. T. Kyritsi, “Handbook of Applied Analysis”, Advances in Mechanics and Mathematics 19, Springer, New York, 2009. | MR | Zbl

[37] P. Pucci and J. Serrin, “The Maximum Principle”, Progress in Nonlinear Differential Equations and their Applications 73, Birkhäuser Verlag, Basel, 2007. | MR | Zbl

[38] A. Qian, Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem, Bound. Value Probl. 2005, 329–335. | EuDML | MR | Zbl

[39] R. E. Showalter, “ Hilbert Space Methods for Partial Differential Equations”, Monographs and Studies in Mathematics 1, Pitman, London, 1977. | MR | Zbl

[40] M. Struwe, “Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems”, Fourth edition, Springer-Verlag, Berlin, 2008. | MR | Zbl

[41] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. | MR | Zbl

[42] J. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202. | MR | Zbl

[43] M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials, J. London Math. Soc. (2) 64 (2001), 125–143. | MR | Zbl