We prove that, under certain combinatorial conditions, the realization spaces of line arrangements on the complex projective plane are connected. We also give several examples of arrangements with eight, nine and ten lines that have disconnected realization spaces.
@article{ASNSP_2012_5_11_4_921_0, author = {Nazir, Shaheen and Yoshinaga, Masahiko}, title = {On the connectivity of the realization spaces of line arrangements}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {921--937}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {4}, year = {2012}, zbl = {06142478}, mrnumber = {3060685}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2012_5_11_4_921_0/} }
TY - JOUR AU - Nazir, Shaheen AU - Yoshinaga, Masahiko TI - On the connectivity of the realization spaces of line arrangements JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 921 EP - 937 VL - 11 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2012_5_11_4_921_0/ LA - en ID - ASNSP_2012_5_11_4_921_0 ER -
%0 Journal Article %A Nazir, Shaheen %A Yoshinaga, Masahiko %T On the connectivity of the realization spaces of line arrangements %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 921-937 %V 11 %N 4 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2012_5_11_4_921_0/ %G en %F ASNSP_2012_5_11_4_921_0
Nazir, Shaheen; Yoshinaga, Masahiko. On the connectivity of the realization spaces of line arrangements. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, pp. 921-937. http://archive.numdam.org/item/ASNSP_2012_5_11_4_921_0/
[1] E. Artal Bartolo, J. Carmona Ruber, J. I. Cogolludo-Agustín and M. Marco Buzunáriz, Topology and combinatorics of real line arrangements, Compos. Math. 141 (2005), 1578–1588. | MR | Zbl
[2] E. Artal Bartolo, J. Carmona Ruber, J. I. Cogolludo Agustín and M. Á. Marco Buzunáriz, Invariants of combinatorial line arrangements and Rybnikov’s example, In: “Singularity Theory and its Applications”, Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2006, 1–34. | MR | Zbl
[3] D. C. Cohen and A. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997), 285–315. | MR | Zbl
[4] M. Eliyahu, D. Garber and M. Teicher, A conjugation-free geometric presentation of fundamental groups of arrangements, Manuscripta Math. 133 (2010), 247–271. | MR | Zbl
[5] K. M. Fan, Position of singularities and fundamental group of the complement of a union of lines, Proc. Amer. Math. Soc. 124 (1996), 3299–3303. | MR | Zbl
[6] K. M. Fan, Direct product of free groups as the fundamental group of the complement of a union of lines, Michigan Math. J. 44 (1997), 283–291. | MR | Zbl
[7] D. Garber, M. Teicher and U. Vishne, -classification of real arrangements with up to eight lines, Topology 42 (2003), 265–289. | MR | Zbl
[8] T. Jiang and S. S.-T. Yau, Diffeomorphic types of the complements of arrangements of hyperplanes, Compositio Math. 92 (1994), 133–155. | EuDML | Numdam | MR | Zbl
[9] S. Nazir and Z. Raza, Admissible local systems for a class of line arrangements, Proc. Amer. Math. Soc. 137 (2009), 1307–1313. | MR | Zbl
[10] R. Randell, Lattice-isotopic arrangements are topologically isomorphic, Proc. Amer. Math. Soc. 107 (1989), 555–559. | MR | Zbl
[11] G. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement, Preprint available at arXiv:math.AG/9805056 | MR | Zbl
[12] I. R. Shafarevich, “Basic Algebraic Geometry. 2. Schemes and complex manifolds”, Second edition. Translated from the 1988 Russian edition by Miles Reid. Springer-Verlag, Berlin, 1994. xiv+269 pp. | MR | Zbl
[13] S. Wang and S.S.-T. Yau, Rigidity of differentiable structure for new class of line arrangements, Comm. Anal. Geom. 13 (2005), 1057–1075. | MR | Zbl