On surfaces of general type with q=5
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, pp. 999-1007.

We prove that a complex surface S with irregularity q(S)=5 that has no irrational pencil of genus >1 has geometric genus p g (S)8. As a consequence, we are able to classify minimal surfaces S of general type with q(S)=5 and p g (S)<8. This result is a negative answer, for q=5, to the question asked in [13] of the existence of surfaces of general type with irregularity q that have no irrational pencil of genus >1 and with the lowest possible geometric genus p g =2q-3 (examples are known to exist only for q=3,4).

Published online:
Classification: 14J29
Lopes, Margarida Mendes 1; Pardini, Rita 2; Pirola, Gian Pietro 3

1 Departamento de Matemática Universidade Técnica de Lisboa Av. Rovisco Pais 1049-001 Lisboa, Portugal
2 Dipartimento di Matematica Università di Pisa Largo B. Pontecorvo, 5 56127 Pisa, Italy
3 Dipartimento di Matematica Università di Pavia Via Ferrata, 1 27100 Pavia, Italy
@article{ASNSP_2012_5_11_4_999_0,
     author = {Lopes, Margarida Mendes and Pardini, Rita and Pirola, Gian Pietro},
     title = {On surfaces of general type with $q=5$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {999--1007},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {4},
     year = {2012},
     mrnumber = {3060707},
     zbl = {1272.14030},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2012_5_11_4_999_0/}
}
TY  - JOUR
AU  - Lopes, Margarida Mendes
AU  - Pardini, Rita
AU  - Pirola, Gian Pietro
TI  - On surfaces of general type with $q=5$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2012
SP  - 999
EP  - 1007
VL  - 11
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2012_5_11_4_999_0/
LA  - en
ID  - ASNSP_2012_5_11_4_999_0
ER  - 
%0 Journal Article
%A Lopes, Margarida Mendes
%A Pardini, Rita
%A Pirola, Gian Pietro
%T On surfaces of general type with $q=5$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2012
%P 999-1007
%V 11
%N 4
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2012_5_11_4_999_0/
%G en
%F ASNSP_2012_5_11_4_999_0
Lopes, Margarida Mendes; Pardini, Rita; Pirola, Gian Pietro. On surfaces of general type with $q=5$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, pp. 999-1007. http://archive.numdam.org/item/ASNSP_2012_5_11_4_999_0/

[1] M. A. Barja, Numerical bounds of canonical varieties, Osaka J. Math. 37 (2000), 701–718. | MR | Zbl

[2] M. A. Barja, J. C. Naranjo and G. P. Pirola, On the topological index of irregular surfaces, J. Algebraic Geom. 16 (2007), 435–458. | MR | Zbl

[3] W. Barth, C. Peters and A. Van de Ven, “Compact Complex Surfaces”, Ergebnisse der Mathematik, 3. Folge, Band 4, Springer, Berlin, 1984. | MR | Zbl

[4] A. Beauville, L’application canonique pour les surfaces de type général, Invent. Math. 55 (1979), 121–140. | EuDML | MR | Zbl

[5] A. Beauville, L’inégalité p g 2q-4 pour les surfaces de type général, appendix to [10]. | Numdam | Zbl

[6] A. Beauville, “Complex Algebraic Surfaces”, second edition, L.M.S Student Texts 34, Cambridge University Press, Cambridge, 1996. | MR | Zbl

[7] W. Bruns and J. Herzog, “Cohen-Macaulay Rings”, revised edition, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1998. | MR | Zbl

[8] F. Catanese, C. Ciliberto and M. Mendes Lopes, On the classification of irregular surfaces of general type with non birational bicanonical map, Trans. Amer. Math. Soc. 350 (1998), 275–308. | MR | Zbl

[9] A. Causin and G. P. Pirola, Hermitian matrices and cohomology of Kaehler varieties, Manuscripta Math. 121 (2006), 157–168. | MR | Zbl

[10] O. Debarre, Inégalités numériques pour les surfaces de type général, with an appendix by A. Beauville, Bull. Soc. Math. France 110 (1982), 319–346. | EuDML | Numdam | MR | Zbl

[11] C. D. Hacon and R. Pardini, Surfaces with p g =q=3, Trans. Amer. Math. Soc. 354 (2002), 2631–2638. | MR | Zbl

[12] R. Lazarsfeld and M. Popa, Derivative complex BGG correspondence and numerical inequalities for compact Khaeler manifolds, Invent. Math. 182 (2010), 605–633. | MR | Zbl

[13] M. Mendes Lopes and R. Pardini, On surfaces with p g =2q-3, Adv. Geom. 10 (2010), 549–555. | MR | Zbl

[14] M. Mendes Lopes and R. Pardini, The geography of irregular surfaces, In: “Current Developments in Algebraic Geometry”, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press 59 (2012), 349–378. | MR | Zbl

[15] M. Mendes Lopes and R. Pardini, Severi type inequalities for surfaces with ample canonical class, Comment. Math. Helv. 86 (2011), 401–414. | MR | Zbl

[16] S. Mukai, “Curves and Grassmannians”, Algebraic geometry and related topics (Inchon, 1992), 19–40, Conf. Proc. Lecture Notes Algebraic Geom., I, Int. Press, Cambridge, MA, 1993. | MR | Zbl

[17] G. Pareschi and M. Popa, Strong generic vanishing and a higher dimensional Castelnuovo-de Franchis inequality, Duke Math. J. 150 (2009), 269–28. | MR | Zbl

[18] G. P. Pirola, Algebraic surfaces with p g =q=3 and no irrational pencils, Manuscripta Math. 108 (2002), 163–170. | MR | Zbl

[19] C. Schoen, A family of surfaces constructed from genus 2 curves, Internat. J. Math. 18 (2007), 585–612. | MR | Zbl

[20] G. Xiao, Irregularity of surfaces with a linear pencil, Duke Math. J. 55 (1987), 596–602. | MR | Zbl