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On the entangled ergodic theorem

TANJA EISNER AND DÁVID KUNSZENTI-KOVÁCS

Abstract. We study the convergence of the so-called entangled ergodic averages
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where k  m and ↵ : {1, . . . ,m} ! {1, . . . , k} is a surjective map. We show that,
on general Banach spaces and without any restriction on the partition ↵, the above
averages converge strongly as N ! 1 under some quite weak compactness
assumptions on the operators Tj and A j . A formula for the limit based on the
spectral analysis of the operators Tj and the continuous version of the result are
presented as well.

Mathematics Subject Classification (2010): 47A35 (primary); 37A30 (sec-
ondary).

1. Introduction

The classical mean ergodic theorem has inspired many mathematicians and led to
several generalisations and extensions. We mention Berend, Lin, Rosenblatt, Tem-
pelman [3] for modulated and subsequential ergodic theorems and e.g. Kra [13] for
an overview on multiple ergodic theorems as well as for the history of the subjects
and further references.

In this note we study a further extension of the mean ergodic theorem, namely
the so-called entangled ergodic theorem. Let ↵ : {1, . . . ,m}! {1, . . . , k} be a sur-
jective map for some positive integers km, and take T1, . . . ,Tm and A1, . . . ,Am�1
to be linear operators on a Banach space X . We investigate the convergence of the
entangled Cesàro means
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This type of ergodic theorems was introduced by Accardi, Hashimoto, Obata [1]
motivated by quantum stochastics and was then studied by Liebscher [15] and
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F. Fidaleo [9, 11]. In their studies, T1 = . . . = Tm =: U is a unitary operator on
a Hilbert space. Besides a technical assumption of Liebscher [15], there were two
basic situations in which weak or strong convergence of the entangled ergodic aver-
ages could be proved. The first is when A j are arbitrary and the unitary operator U
is almost periodic (see Definition 2.1 below), see Liebscher [15] and Fidaleo [11].
The second is when the operators A j are compact and U is arbitrary unitary, see
Fidaleo [9].

In this paper we consider a more general situation. We assume the operators
Tj belong to a large class including power bounded operators on reflexive Banach
spaces. Further, we require a quite general compactness condition on the pairs
(A j , Tj ) generalising both of the above cases. More precisely, we make the fol-
lowing assumptions.

(A1) (Weakly compact orbits of Tj )
The operator Tm is power bounded and totally mean ergodic and each of
T1, . . . , Tm�1 has relatively weakly compact orbits, i.e., {T nj x : n 2 N} is rela-
tively compact in X in the weak topology for every x 2 X and 1  j  m�1.

(A2) (Joint compactness of (A j , Tj ))
Every A j is compact on the orbits of Tj , i.e., {A jT nj x : n 2 N} is relatively
compact in X for every x 2 X and 1  j  m � 1.

Recall that an operator T is called power bounded if supn2N kT nk < 1. More-
over, T is called totally mean ergodic if the operators �T are mean ergodic for
every � 2 T, T the unit circle. Every operator with relatively weakly compact or-
bits is automatically totally mean ergodic. Note that assumption (A1) is not very
restrictive. As mentioned above, every power bounded operator on a reflexive Ba-
nach space has relatively weakly compact orbits by the Banach–Alaoglu theorem.
Another important class of examples is given by power bounded positive opera-
tors on a Banach lattice L1(µ) preserving an order interval generated by a strictly
positive function, see e.g. Schaefer [18, Theorem II.5.10(f) and Proposition II.8.3]
or [7, Section I.1] for further information. While forming a large class, operators
with relatively weakly compact orbits admit good asymptotic properties, see Theo-
rem 3.1 below.

Under the assumptions (A1) and (A2) we show that the entangled Cesàro
means (1.1) converge strongly and describe their limit operator, see Theorem 3.4.
It turns out that only specially interacting projections corresponding to unimodular
eigenvalues of Tj (in combination with the operators A j ) contribute to the limit.

The paper is organised as follows. We first treat the special case assuming that
all but the last Tj are almost periodic (Section 2). Here we show how to reduce the
problem to the case when T1 = . . . = Tm�1 and A1 = . . . = Am�1. In the context of
Hilbert spaces and pair partitions, this case was considered recently in Fidaleo [11].
In Section 3 the general case is treated. We further discuss the connection to non-
commutative multiple ergodic theorems, them being an important recent field of
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research. In Section 5, we finally study the case of strongly continuous semigroups
and the strong convergence of the ergodic averages

1
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Z

[0,t]k
Tm(s↵(m))Am�1Tm�1(s↵(m�1))Am�2 . . . A1T1(s↵(1)) ds1 . . . dsk .

Note that the study of convergence of entangled ergodic averages for the continuous
time scale seems to be new.

Before proceeding we first show by an example that one cannot drop assump-
tion (A2) even when m = 2 and the operator T1 = T2 =: U is unitary and weakly
stable, i.e., satisfies limn!1Un = 0 in the weak operator topology.

Proposition 1.1. There exists a Hilbert space H , a weakly stable unitary operator
U on H and an operator A 2 L(H) such that the Cesàro means

1
N

NX

n=1
Un AUn

do not converge weakly.

Proof. Let H := `2(Z) and consider the standard orthonormal base {eb}b2Z. Let
thenU be the unitary left shift operator. Let further ( f (n))n2N+ be a 0�1 sequence
that is not Cesàro-summable, and define A by

Aeb :=

⇢
e f (�b)�b whenever b < 0,
eb whenever b � 0.

Then A is a bounded operator, and we have Un AUne0 = e f (n) for all n 2 N.
Hence hUn AUne0, e0i = 1� f (n), and since ( f (n))n2N+ is not Cesàro-summable,
the Cesàro-means 1

N
PN

n=1Un AUn cannot converge weakly either.

ACKNOWLEDGEMENTS. The authors are grateful to Rainer Nagel and Marco
Schreiber for valuable discussions and comments.

2. The almost periodic case

We first consider the situation when all operators Tj are almost periodic. In the case
when ↵ is a pair partition, X is a Hilbert space and the operators Tj are all equal to
a unitary operator, this has been studied by Liebscher [15] and Fidaleo [11].
Definition 2.1. An operator T 2 L(X) acting on a Banach space is called almost
periodic if it is power bounded and satisfies

X = lin
�
x 2 X

�
�9� 2 T : T x = �x

 
.
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The following result is the first step towards the general situation.

Theorem 2.2. Let X be a Banach space, T1, . . . ,Tm�1 be almost periodic opera-
tors on X , Tm 2L(X) be power bounded and totally mean ergodic, A1, . . . , Am�12
L(X), and ↵ : {1, . . . ,m} ! {1, . . . , k} be surjective for some k  m. Then the
entangled Cesàro means
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m�1 Am�2 . . . A1T

n↵(1)
1 (2.1)

converge strongly as N ! 1.

Proof. We shall proceed by induction on m, giving an explicit form for the limit.
First recall that any operator with relatively weakly compact orbits (in particu-

lar any almost periodic operator) is mean ergodic, see e.g. [7, Theorem I.2.9], and to
have relatively weakly compact orbits is an invariant property under multiplication
by a unimodular constant. We may therefore introduce the mean ergodic projections

P( j)
� := lim

N!1

1
N

NX

n=1
(��1Tj )n,

where 1  j  m and |�| = 1.
We now show that the limit of the entangled Cesàro means (2.1) is given by

the formal sum
X

� j2� j (1 jm)Q
i2↵�1(a) �i=1 (1ak)
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�m
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. (2.2)

Here, � j denotes the point spectrum of Tj (1  j  m) and (2.2) should be under-
stood as the strong limit of the net

8
>>><

>>>:

X

� j2Fj (1 jm)Q
i2↵�1(a) �i=1 (1ak)

P(m)
�m

Am�1P(m�1)
�m�1

Am�2 . . . A1P(1)
�1

9
>>>=

>>>;
Fj⇢� jfinite (1 jm)

.

As seen above, this holds for m = 1. Suppose we know that it holds for any choice
of (m�2) almost periodic operators Tj and (m�2) bounded operators Ai (m � 2).
We may suppose without loss of generality that ↵(1) = 1.

If now ↵�1(1) = {1}, then (2.1) can be written as
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By the induction hypotheses and the joint continuity of multiplication in the strong
operator topology, this expression converges to

0
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B
B
@
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If, on the other hand, there exists an 1 < l  m with ↵(l) = 1, then consider an
eigenvector x 2 X of T1 pertaining to some eigenvalue � 2 T. We can rewrite the
entangled means applied to x as
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This reduces the problem to the (m�2) almost periodic operators T2, ..., �Tl , ...,Tm ,
and (m � 2) bounded operators A2, . . . , Am�1. The induction hypotheses together
with x = P(1)

� x yields that the limit is
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Since the eigenvectors of T1 corresponding to unimodular eigenvalues span X and
the entangled Cesàro means are uniformly bounded, we obtain the convergence on
X to the required limit.
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The following proposition shows that for the study of convergence of the en-
tangled ergodic averages, it may be assumed without loss of generality that all op-
erators A j are equal, and the same for the operators Tj (1  j  m � 1). This trick
will be used later, to simplify the proofs of Theorem 3.4 and Theorem 5.5.
Proposition 2.3. Suppose we know that Theorem 2.2 and the form of the limit given
by (2.2) hold under additional assumption T1 = . . . = Tm�1 and A1 = . . . =
Am�1. Then it also holds in full generality.
Proof. Consider the space X := Xm with the diagonal operators

T := diag(T1, T2, . . . , Tm�1, I ) 2 L(X ),

S := diag(I, I, . . . , I, Tm) 2 L(X )

and the off-diagonal operator

A := ((�a�1,b Aa))a,b 2 L(X ),

where � is the Kronecker symbol. Since all the Tj ’s (1  j  m � 1) are almost
periodic, so is T , and S is clearly totally mean ergodic on X . We can hence apply
the weaker statement of Theorem 2.2 to the operators T , S and A. For the vector
(x, 0, . . . , 0)T 2 X for some x 2 X , this yields the existence of

lim
N!1
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n1,...,nk=1
Sn↵(m)AT n↵(m�1)A . . .AT n↵(1) (x, 0, . . . , 0)T . (2.3)

However, each of the summands has the form
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1 x)T ,

and hence the convergence of (2.3) in the last coordinate implies the required con-
vergence of (2.1). Concerning the explicit form of the limit in question, the expres-
sion (2.2) yields that it is the last coordinate of

X
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(x, 0, . . . , 0)T , (2.4)

where PS
� and PT

� are the mean ergodic projections onto the eigenspace corre-
sponding to � of S and T , respectively. Due to the diagonality of T and S , each of
the components in X = Xm is T - and S-invariant, hence we in fact have PT

� =

diag(P(1)
� , . . . , P(m�1)

� , 1{1}(�)I ) and PS
� = diag(1{1}(�)I, . . . , 1{1}(�)I, P(m)

� )

where 1M denotes the charasteristic function of a set M . The summands in (2.4)
thus have the form

(0, . . . , 0, P(m)
�m

Am�1P(m�1)
�m�1

Am�2 . . . A1P(1)
�1
x)T .

Taking into consideration that the mean ergodic projections satisfy RanP( j)
� =

�
y 2 X | Tj y = �y

 
, and hence P( j)

� = 0 whenever � 62 � j , the limit reduces to
the required form.
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3. The general case

We now extend the results from the previous section to the case when only the orbits
along the family of operators

�
AiT ni

 
n2N+ are relatively compact for all 1  i 

m � 1, i.e., assuming (A2).
The key for our considerations will be the following extended version of a clas-

sical decomposition theorem, see e.g. Krengel [14, Section 2.2.4] or [7, Theorem
II.4.8].

Theorem 3.1 (Jacobs-Glicksberg-de Leeuw decomposition). Let X be a Banach
space and let T 2 L(X) have relatively weakly compact orbits. Then X = Xr �Xs ,
where

Xr := lin {x 2 X | T x = �x for some � 2 T} ,

Xs :=

⇢
x 2 X | lim

j!1
T n j x=0 weakly for some sequence {n j }1j=1 with density 1

�
,

with both subspaces being invariant under T . In addition, if X 0 is separable, then
there exists a sequence {n j }1j=1 with density 1 such that lim j!1 T n j |Xs = 0
weakly.

Recall that the density of a set M ⇢ N is defined by

d(M) = lim
n!1

|M \ {1, . . . , n}|
n

 1,

whenever the above limit exists.
We further need the following well-known facts.

Lemma 3.2 (Koopman-von Neumann). For a bounded sequence {an}1n=1⇢ [0,1)
the following assertions are equivalent.

(a) lim
n!1

1
n

nX

k=1
ak = 0.

(b) There exists a subsequence {n j }1j=1 ofNwith density 1 such that lim
j!1

an j = 0.

We refer to e.g. Petersen [17, page 65] for the proof.

Lemma 3.3. Let X be a Banach space and let {Tn}1n=1, {Sn}
1
n=1 ⇢ L(X). If both

{Tnx : n 2 N} and {Snx : n 2 N} are relatively compact in X for every x 2 X ,
then so is {TnSnx : n 2 N} for every x 2 X .

Proof. Since compact sets are bounded and by the uniform boundedness principle,
there exists M > 0 such that kTnk  M and kSnk  M holds for every n 2 N+.
Take now x 2 X and a sequence {n j } ⇢ N. Then there exists a subsequence {m j }
of {n j } such that lim j!1 Sm j x = y for some y 2 X . Furthermore, there exists a
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subsequence of {m j } which we again denote by {m j } such that lim j!1 Tm j y = z
for some z 2 X . This yields

kTm j Sm j x � zk  MkSm j x � yk + kTm j y � zk ! 0 as j ! 1,

proving relative compactness of {TnSnx : n 2 N}.

The following is the main result of the paper.

Theorem 3.4. Let X be a Banach space and ↵ : {1, . . . ,m} ! {1, . . . k} be sur-
jective for some k  m. Let further T1, . . . , Tm, A1, . . . , Am�1 2 L(X) satisfy
assumptions (A1) and (A2). Then the entangled ergodic averages
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n1,...,nk=1
T n↵(m)
m Am�1T

n↵(m�1)
m�1 Am�2 . . . A1T

n↵(1)
1

converge strongly, and their limit is given by
X

� j2� j (1 jm)Q
i2↵�1(a) �i=1 (1ak)

P(m)
�m

Am�1P(m�1)
�m�1

Am�2 . . . A1P(1)
�1

,

where � j = P� (Tj ) \ T and P( j)
� j

is the projection onto the eigenspace of Tj corre-
sponding to � j , i.e., the mean ergodic projection of the operator � j Tj .

Proof. As in the proof of Corollary 2.3 we may assume Tj = T and A j = A for
some T, A 2 L(X) and all 1  j  m�1. For x 2 X , we have to show convergence
of

1
Nk

NX

n1,...,nk=1
T n↵(m)
m AT n↵(m�1) A . . . AT n↵(1)x . (3.1)

By Theorem 3.1, the summands in (3.1) satisfy

T n↵(m)
m AT n↵(m�1) A . . . AT n↵(1)x

=
m�1X

a=1
T n↵(m)
m A . . . AT n↵(a)Ps AT n↵(a�1)Pr A . . . AT n↵(1)Pr x

+T n↵(m)
m AT n↵(m�1)Pr A . . . AT n↵(1)Pr x,

where Pr and Ps are the projections onto Xr and Xs pertaining to T from Theorem
3.1, respectively. By Theorem 2.2, the averages of the second summand above con-
verge to the desired limit. It remains to show that the averages of the first summand
converge to 0, i.e., that for every x 2 X and 1  a  m � 1 one has

lim
N!1

1
Nk

NX

n1,...,nk=1
T n↵(m)
m AT n↵(m�1) A...AT n↵(a)Ps AT n↵(a�1)Pr A...AT n↵(1)Pr x=0.

(3.2)
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Consider
K := {AT na�1Pr A . . . AT n1Pr x | na�1, . . . , n1 2 N}

which is relatively compact by assumption and Lemma 3.3(a). We now show that
the dual space of the smallest T -invariant subspace Y containing K is separa-
ble. Observe first that Y = lin{T nx | n 2 N, x 2 K }. We first show that the set
Orb(K ) := {T nx | n 2 N, x 2 K } is relatively weakly compact. Take a sequence
{T n j x j }1j=1 with x j 2 K and n j 2 N. Since K is relatively compact, there exists a
subsequence of {x j } (which we again denote by {x j }) converging to some z. More-
over, since T has relatively weakly compact orbits, there is a subsequence of {n j }
(which we again denote by {n j }) such that lim j!1 T n j z = w weakly for some
w 2 X . So we have

|hT n j x j � w, yi|  |hT n j x j � T n j z, yi| + |hT n j z � w, yi| ! 0 8y 2 X 0,

i.e., lim j!1 T n j x j = w weakly, and therefore Orb(K ) is relatively weakly com-
pact. Since Y is separable, and the weak topology is metrisable on weakly com-
pact subsets of separable spaces (see e.g. Dunford, Schwartz [5, Theorem V.6.3]),
the weak topology on Orb(K ) is metrisable. So it is induced by countably many
{yn} ⇢ Y 0, implying separability of Y 0 by Y = linOrb(K ).

Theorem 3.1 assures now the existence of a sequence {n j } ⇢ N with density 1
such that lim j!1 T n j Ps y = 0 weakly for every y 2 K . This implies

lim
j!1

AT n j Ps y = 0 weakly for every y 2 K . (3.3)

We now show that

lim
j!1

kAT n j Ps yk = 0 uniformly in y 2 K . (3.4)

Indeed, assume that for some y 2 K , AT n j Ps y does not converge strongly to zero.
Then there exist � > 0 and a subsequence {m j } of {n j } such that kATm j Ps yk �
� for every j . By relative compactness of {AT n Ps y : n 2 N}, the sequence
{ATm j Ps y}1j=1 has a strong accumulation point which by (3.3) must be zero, a con-
tradiction. Thus, lim j!1 kAT n j Ps yk = 0 for every y 2 K and therefore uniform
in y 2 K , since strong convergence in L(X) implies uniform strong convergence
on compact sets. Since the sequence {n j } has density 1, the equation (3.2) follows
from (3.4) and Lemma 3.2.

4. Connection to convergence of multiple ergodic averages

In this section we discuss connection between the considered above entangled er-
godic theorems and the important topic as multiple ergodic averages. The latter is
concerned with non-commutative dynamical systems and was studied by Niculescu,
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Ströh and Zsidó [16], Duvenhage [6], Beyers, Duvenhage and Ströh [4], Fida-
leo [10], and Austin, Eisner, Tao [2].

We first introduce what we mean by a non-commutative dynamical system and
corresponding multiple ergodic averages.
Definition 4.1. A von Neumann (or non-commutative) dynamical system is a triple
(M, ⌧,�), where M is a von Neumann algebra, ⌧ : M ! C is a faithful normal
trace, and � : M ! M is a ⌧ -preserving ⇤-automorphism. We say for k 2 N that
the multiple ergodic averages

1
N

NX

n=1
�n(a1)�2n(a2) . . .�kn(ak) (4.1)

converge strongly if they converge in the ⌧ -norm defined by kak⌧ :=
p

⌧ (aa⇤). The
averages in (4.1) are called weakly convergent if

1
N

NX

n=1
⌧ (a0�n(a1)�2n(a2) · · ·�kn(ak))

converges as N ! 1 for every a0 2 M.
We recall that by the Gel’fand–Neumark–Segal theory, M can be identified

with a dense subspace of a Hilbert space, where the Hilbert space H can be obtained
as the completion of M with respect to the ⌧ -norm. Thus, identifying elements of
M with elements in H and by the standard density argument, strong convergence
of the multiple ergodic averages (4.1) corresponds to norm convergence in H and
weak convergence of (4.1) corresponds to weak convergence in H .

Recall further that for the automorphism � there exists a unitary operator u 2
L(H) such that �(a) = uau�1, see e.g. [12, Proposition 4.5.3]. (Note that u does
not necessarily belong toM.) Thus, averages (4.1) take the form

1
N

NX

n=1
una1una2 · · · unaku�kn, (4.2)

i.e., are a special case of entangled ergodic averages for the constant partition
↵( j) = 1 for every j 2 1, . . . , k and the operators u, . . . , u, u�k .

It is well-known that strong (weak) topology and strong (weak) operator topol-
ogy on M coincide on bounded sets. Therefore, there is a direct correspondence
between strong (weak) convergence of multiple ergodic averages (4.1) and strong
(weak) operator convergence of the entangled ergodic averages (4.2), cf. also Fida-
leo [10].

Proposition 4.2. Let (M, ⌧,�) be a von Neumann dynamical system and H and
u as above. Let further a1, . . . , ak 2 M. Then the multiple ergodic averages (4.1)
converge strongly (weakly) if and only if the entangled averages (4.2) converge in
the strong (weak) operator topology.
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As was shown in [2], multiple ergodic averages (4.1) do not converge in general
for k � 3. Theorem 3.4 shows now that for every von Neumann dynamical system
there is a class K depending on the system such that the multiple ergodic averages
converge strongly whenever a1, . . . , ak 2 K, and K can be chosen as the subspace
of all elements a 2 M such that {aun : n 2 N} is relatively compact in L(H) for
the strong operator topology.
Remark 4.3. Note that also more general sequences of powers than arithmetic se-
quences for the multiple ergodic averages can be treated by a slight modification
in the last inductive step of the proof of Theorem 2.2. For instance, consider the
averages

1
Nk

NX

n1,...,nk=1
�n↵(1) (a1)�n↵(1)+n↵(2) (a2) · · ·�

Pm
j=1 n↵( j) (am). (4.3)

These can then be rewritten as

1
Nk

NX

n1,...,nk=1
un↵(1)a1un↵(2)a2 · · · un↵(m)amu�

Pm
j=1 n↵( j) . (4.4)

The last exponent being a sum of n↵( j)’s rather than a single one does not matter
on the almost weakly stable part, the compactness arguments of the proof of Theo-
rem 3.4 still hold. On the almost periodic part however, suppose x is an eigenvector
to the unimodular eigenvalue �. Then

1
Nk

NX

n1,...,nk=1
un↵(1)a1un↵(2)a2 · · · un↵(m)amu�

Pm
j=1 n↵( j)x

=
1
Nk

NX

n1,...,nk=1
un↵(1)a1un↵(2)a2 · · · un↵(m)am��

Pm
j=1 n↵( j)x,

and the powers of the eigenvalue � have to be pulled forward to not only a single
operator as in the inductive proof of Theorem 2.2, but distributed amongst all of
them to get back to the standard form:

1
Nk

NX

n1,...,nk=1
un↵(1)a1un↵(2)a2 · · · un↵(m)am��

Pm
j=1 n↵( j)x

=
1
Nk

NX

n1,...,nk=1
(��1u)n↵(1)a1(��1u)n↵(2)a2 · · · (��1u)n↵(m)amx .

Hence the averages (4.3) converge strongly if {a jun : n 2 N} is relatively compact
in L(H) for the strong operator topology for every 1  j  m.
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5. Continuous case

In this section we treat the continuous time scale, where the operators Tj and their
powers are replaced by strongly continuous (C0-) semigroups (Tj (t))t�0. The study
of the continuous version for entangled ergodic averages seems to be new. Some
steps in the proofs are similar to the discrete case and will be skipped. For the
general theory of strongly continuous semigroups we refer to e.g. Engel, Nagel [8].
For a semigroup (T (t))t�0 we often write T (·).
Definition 5.1. A C0-semigroup of operators (T (t))t�0 ⇢ L(X) acting on a Ba-
nach space X is called almost periodic if it is bounded (i.e. supt�0 kT (t)k < 1)
and satisfies

X = lin
n
x 2 X

�
�9' 2 R : T (t)x = ei't x 8 t � 0

o
.

Recall that by the spectral mapping theorem (see e.g. [8, Corollary IV.3.8]), T (t)x=
ei't x for every t � 0 if and only if Bx = i'x for the generator B of T (·).

We again treat the almost periodic case first.

Theorem 5.2. Let X be a Banach space, T1(·), . . . , Tm�1(·) be almost periodic C0-
semigroups on X , Tm(·) a bounded totally mean ergodic C0-semigroup on X and
A1, . . . , Am�1 2 L(X). Then the entangled Cesàro means

1
tk

Z

[0,t]k
Tm(s↵(m))Am�1Tm�1(s↵(m�1))Am�2 . . . A1T1(s↵(1)) ds1 . . . dsk (5.1)

converge strongly as t ! 1.

The integrals in (5.1) are defined strongly. Recall that a semigroup (T (t))t�0 is
called totally mean ergodic if the semigroup (ei't T (t))t�0 is mean ergodic for every
' 2 R.

Proof. Since almost periodic C0-semigroups are totally mean ergodic by the stan-
dard density argument, we can for each Tj (·) (1  j  m) define the projec-
tions P( j)

' as the mean ergodic projections of (e�i't Tj (t))t�0 with range {y 2
X | Tj (t)y = ei't y 8 t � 0}. Let � j denote the point spectrum of the generator
Bj of the semigroup Tj (·) on iR (1  j  m).

The proof can then be concluded by an induction argument on m analogous
to the discrete case showing that the limit of the entangled Cesàro means (5.1) is
given by

X

' j2� j (1 jm)P
i2↵�1(a) 'i=0 (1ak)

P(m)
'm Am�1P(m�1)

'm�1 Am�2 . . . A1P(1)
'1 . (5.2)
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We shall use the following analogue of Theorem 3.1, see e.g. [7, Theorem III.5.7].

Theorem 5.3 (Continuous Jacobs-Glicksberg-deLeeuw decomposition). Let X
be a Banach space and let T (·) ⇢ L(X) be a C0-semigroup with relatively weakly
compact orbits, i.e., such that {T (t)x : t 2 [0,1)} is relatively compact in X in
the weak topology for every x 2 X . Then X = Xr � Xs , where

Xr = lin
n
x 2 X | T (t)x = ei't x 8 t � 0 for some ' 2 R

o
,

Xs =

⇢
x 2 X | lim

M3 j!1
T (t)x = 0 weakly for some M ⇢ [0,1) with density 1

�
,

with both subspaces being invariant under T . In addition, if X 0 is separable, then
there exists a set M ⇢ [0,1) with density 1 such that limM3t!1 T (t)|Xs = 0
weakly.

The density of a set M ⇢ [0,1) is defined by

d(M) = lim
t!1

�(M \ [0, t])
t

 1,

with �(·) denoting the Lebesgue measure, whenever the above limit exists.
We further need the following continuous version of Lemma 3.2.

Lemma 5.4 (Koopman-von Neumann, continuous version). For a continuous
function f : [0,1) ! [0,1) the following assertions are equivalent.

(a) lim
t!1

1
t

Z

[0,t]
f (s) ds = 0.

(b) There exists a subset M of [0,1) with density 1 such that lim
s2M, s!1

f (s) = 0.

For the proof, which is analogous to the discrete case, see e.g. [7, Lemma III.5.2].
The main result of this section is the following:

Theorem 5.5. Let X be a Banach space, m2N, Tm(·), ..., Tm(·) be C0-semigroups
on X , A1, . . . , Am�1 2 L(X), and ↵ : {1, . . . ,m} ! {1, . . . , k} be a surjective
map for some k,m 2 N. Assume the following.

(A1c) The semigroup Tm(·) is bounded and totally mean ergodic and Tj (·) has
relatively weakly compact orbits for every 1  j  m � 1.

(A2c) Every A j is compact on the orbits of Tj (·), i.e., {A jTj (t)x : t 2 [0,1)} is
relatively compact in X for every x 2 X and 1  j  m � 1.

Then the entangled ergodic averages

1
tk

Z

[0,t]k
Tm(s↵(m))Am�1Tm�1(s↵(m�1))Am�2 . . . A1T1(s↵(1)) ds1 . . . dsk
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converge strongly. Denoting the generator of Tj (·) by Bj (1  j  m), the strong
limit is given by the formula

X

i' j2� j (1 jm)P
j2↵�1(a) ' j=0 (1ak)

P(m)
'm Am�1P(m�1)

'm�1 Am�2 . . . A1P(1)
'1 ,

where � j = P� (Bj )\iR and P( j)
' j is the projection onto the eigenspace of Bj corre-

sponding to i' j , i.e., the mean ergodic projection of the semigroup (e�i' j t Tj (t))t�0.

Proof. Using the arguments from Proposition 2.3, we may again assume that we
have Tj (·) = T (·) and A j = A for 1  j  m � 1. It is to be shown that

1
tk

Z

[0,t]k
Tm(s↵(m))AT (s↵(m�1))A . . . AT (s↵(1))x ds1 . . . dsk (5.3)

converges for every x 2 X . By Theorem 5.3, the integrand can be split with the
help of the projections Pr and Ps onto Xr and Xs , respectively, and we have

Tm(s↵(m))AT (s↵(m�1))A . . . AT (s↵(1))x

=
m�1X

a=1
Tm(s↵(m))A . . . AT (s↵(a))Ps AT (s↵(a�1))Pr A . . . AT (s↵(1))Pr x

+ Tm(s↵(m))AT (s↵(m�1))Pr A . . . AT (s↵(1))Pr x .

The integral means of the second term converge by Theorem 5.2 to the desired limit,
and so it is enough to show that the rest converges in mean to 0, i.e. for every x 2 X
and 1  a  m � 1 one has

lim
t!1

1
tk

Z

[0,t]k
Tm(s↵(m))A . . . AT (s↵(a))Ps AT (s↵(a�1))Pr A . . . AT (s↵(1))Pr x = 0.

(5.4)
Consider

K := {AT (sa�1)Pr A . . . AT (s1)Pr x | sa�1, . . . , s1 2 [0,1)}.

This set is relatively compact by Lemma 3.3 and the assumption. As in the discrete
case, one can show that the dual space of the smallest T (·)-invariant subspace Y
containing K is separable. Note that the separability of Y itself follows from the
strong continuity of the semigroup, as it yields a dense countable subset

{AT (sa�1)Pr A . . . AT (s1)Pr x | sa�1, . . . , s1 2 [0,1) \ Q}

of K .
Theorem 5.3 then assures the existence of a set M ⇢ [0,1) with density 1

such that
lim

s j2M, s j!1
T (s j )Ps y = 0 weakly for every y 2 K
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implying lims j2M, s j!1 AT (s j )Ps y=0 weakly for every y2K . Since {AT (s)Ps y :
s 2 [0,1)} is relatively compact, and strong convergence in L(X) implies uniform
strong convergence on compact subsets of X , we obtain

lim
s j2M, s j!1

kAT (s j )Ps yk = 0 uniformly in y 2 K .

Since the set M has density 1, the equation (5.4) follows from Lemma 5.4.

Note that, as in the discrete case, the class of semigroups satisfying assumption
(A1c) is large including e.g. bounded C0-semigroups on reflexive Banach spaces.
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