Let be a codimension-one foliation on : for each point we define as the order of the first non-zero jet of a holomorphic 1-form defining at . The singular set of is . We prove (main Theorem 1.2) that a foliation satisfying for all has a non-constant rational first integral. Using this fact we are able to prove that any foliation of degree-three on , with , is either the pull-back of a foliation on , or has a transverse affine structure with poles. This extends previous results for foliations of degree at most two.
@article{ASNSP_2013_5_12_1_1_0, author = {Cerveau, Dominique and Lins Neto, Alcides}, title = {A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--41}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088436}, zbl = {1267.32030}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2013_5_12_1_1_0/} }
TY - JOUR AU - Cerveau, Dominique AU - Lins Neto, Alcides TI - A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 1 EP - 41 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2013_5_12_1_1_0/ LA - en ID - ASNSP_2013_5_12_1_1_0 ER -
%0 Journal Article %A Cerveau, Dominique %A Lins Neto, Alcides %T A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 1-41 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2013_5_12_1_1_0/ %G en %F ASNSP_2013_5_12_1_1_0
Cerveau, Dominique; Lins Neto, Alcides. A structural theorem for codimension-one foliations on $\protect \mathbb{P}^n$, $n\ge 3$, with an application to degree-three foliations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 1-41. http://archive.numdam.org/item/ASNSP_2013_5_12_1_1_0/
[1] W. Barth, Fortsetzung, meromorpher Funktionen in Tori und komplex-projektiven Räumen, Invent. Math. 5 (1968), 42–62. | EuDML | MR | Zbl
[2] M. Brunella, “Birational Geometry of Foliations”, Publicações Matemáticas do IMPA. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2004. | MR | Zbl
[3] M. Brunella, Sur les feuilletages de l’espace projectif ayant une composante de Kupka, Enseign. Math. 55 (2009), 1–8. | MR | Zbl
[4] G. Casale, Suites de Godbillon-Vey et intégrales premières, C. R. Math. Acad. Sci. Paris 335 (2002), 1003–1006. | MR | Zbl
[5] O. Calvo-Andrade, Foliations with a Kupka component on algebraic manifolds, Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), 183–197. | MR | Zbl
[6] O. Calvo-Andrade, Foliations with a radial Kupka set on projective spaces, (2008), preprint. | MR
[7] C. Camacho, A. Lins Neto and P. Sad, Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geom. 20 (1984), 143–174. | MR | Zbl
[8] C. Camacho, A. Lins Neto and P. Sad, Foliations with algebraic limit sets, Ann. of Math. 136 (1992), 429–446. | MR | Zbl
[9] C. Camacho and P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579–595. | MR | Zbl
[10] D. Cerveau and A. Lins Neto, Irreducible components of the space of holomorphic foliations of degree two in , , Ann. of Math. (2) 143 (1996), 577–612. | MR | Zbl
[11] D. Cerveau and A. Lins Neto, Codimension-one foliations in , , with Kupka components, Astérisque 222 (1994), 93–132. | MR | Zbl
[12] D. Cerveau, A. Lins-Neto, F. Loray, J. V. Pereira and F. Touzet, Complex codimension-one singular foliations and Godbillon-Vey sequences, Mosc. Math. J. 7 (2007), 21–54. | MR | Zbl
[13] D. Cerveau and J.-F. Mattei, “Formes intégrables holomorphes singulières”, Astérisque, Vol. 97, Société Mathématique de France, Paris, 1982. | Numdam | MR | Zbl
[14] C. Godbillon, “Feuilletages. Études géométriques. With a preface by G. Reeb”, Progress in Mathematics, Vol. 98, Birkhäuser Verlag, Basel, 1991. | MR | Zbl
[15] I. Kupka, The singularities of integrable structurally stable Pfaffian forms, Proc. Nat. Acad. Sci. USA 52 (1964), 1431–1432. | MR | Zbl
[16] A. Lins Neto, A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble) 49 (1999), 1369–1385. | EuDML | Numdam | MR | Zbl
[17] F. Loray, A preparation theorem for codimension-one foliations, Ann. of Math. (2) 163 (2006), 709–722. | MR | Zbl
[18] J. Martinet and J.-P. Ramis, Problème de modules pour des équations différentielles non lineaires du premier ordre, Publ. Math. Inst. Hautes Étud. Sci. 55 (1982), 63–124. | EuDML | Numdam | MR | Zbl
[19] J.-F. Mattei, Modules de feuilletages holomorphes singuliers. I. Équisingularité, Invent. Math. 103 (1991), 297–325. | EuDML | MR | Zbl
[20] J.-F. Mattei and R. Moussu, Holonomie et intégrales premires, Ann. Sci. École Norm. Sup. 13 (1980), 469–523. | EuDML | Numdam | MR | Zbl
[21] R. Meziani, Classification analytique d’équations différentielles et espace de modules, Bol. Soc. Brasil. Mat. (N.S.) 27 (1996), 23–53. | MR | Zbl
[22] H. Rossi, Continuation of subvarieties of projective varieties, Amer. J. Math. 91 (1969), 565–575. | MR | Zbl
[23] B. A. Scárdua, Transversely affine and transversely projective holomorphic foliations, Ann. Sci. École Norm. Sup. 30 (1997), 169–204. | EuDML | Numdam | MR | Zbl