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Torus action on Sn and sign-changing solutions
for conformally invariant equations

MANUEL DEL PINO, MONICA MUSSO, FRANK PACARD AND ANGELA PISTOIA

Abstract. We construct sequences of sign-changing solutions for some confor-
mally invariant semilinear elliptic equation which is defined Sn , when n � 4.
The solutions we obtain have large energy and concentrate along some special
submanifolds of Sn . For example, for n � 4 we obtain sequences of solutions
whose energy concentrates along one great circle or finitely many great circles
which are linked to each other (and they correspond to Hopf links embedded in
S3 ⇥ {0} ⇢ Sn). In dimension n � 5 we obtain sequences of solutions whose en-
ergy concentrates along a two-dimensional torus (which corresponds to a Clifford
torus embedded in S3 ⇥ {0} ⇢ Sn).

Mathematics Subject Classification (2010): 53C21 (primary); 35J65 (sec-
ondary).

1. Introduction and statement of the result

1.1. Introduction

We are interested in the existence of sign-changing solutions for the Yamabe-type
equation

1g̊u � n (n�2)
4 (1� |u|

4
n�2 ) u = 0, (1.1)

in Sn , where g̊ denotes the standard metric on Sn and n � 3. Obviously u1 ⌘ 1 is a
solution of (1.1). The classification of solutions of (1.1) which do not change sign
goes back to the result of M. Obata [7] that states that all positive solutions of (1.1)
arise as the functions u which appear in the identity

K ⇤g̊ = u
4

n�2 g̊,
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where K is a conformal transformation of the sphere Sn . As far as sign-changing
solutions are concerned, we recall the result of W. Ding [5] (see also [3] and [4] for
related results) on the existence of solutions which are invariant under the action of
the Lie group O(k)⇥O(n+1� k), for k = 2, . . . , n�1. There is also a vast liter-
ature about the existence of sign-changing solutions using variational methods; we
address to [2] and [1] for references. It is known that (1.1) has infinitely many sign-
changing solutions, however the structure of these solutions is not well-understood.

Equation (1.1) has a variational structure and the associated energy reads

E(u) :=
Z

Sn
e(u) dvolg̊,

where the energy density is defined by

e(u) := 1
2 |ru|2g̊ + n(n�2)

8 |u|2 � (n�2)2
8 |u|

2n
n�2 .

We introduce the constant
E1 := n�2

4 Vol (Sn),

which corresponds to the energy of the solution u1 ⌘ 1.
In this paper we provide a wealth of sign-changing solutions of (1.1). To state

precisely our result, we need to introduce some notation and definitions. We will
then give the statement of a rather general result and we will provide many examples
which explain how this general result can be applied. In contrast with previous
existence results, we have a rather precise description of the solutions we obtain:
they can be described as the superposition of the constant solution u1 ⌘ 1 with a
large number of copies of negative solutions of (1.1) which are highly concentrated
at points that in turn are evenly arranged along some special submanifolds of Sn .

As a byproduct of the main result of this paper, we have the:

Theorem 1.1. Assume that 1  d  n � 3 satisfy

n + 1 � 2d.

Then there exists a d-dimensional flat torus Td embedded in Sn , a sequence (uk) of
sign-changing solutions of (1.1) and constants c1 > c2 > 0 and c3 > 0 such that
the following holds:

(a) The function uk is positive away from a tubular neighborhood of radius c1/k
around Td and negative in a tubular neighborhood of radius c2/k around Td .

(b) As k tends to infinity, uk converges uniformly on compact subsets of Sn � Td

to the constant function u1 ⌘ 1.
(c) As k tends to infinity, the renormalized energy density

1
kd

e(uk) dvolg̊ * c3Hd xTd ,

in the sense of measures.
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Here, if3 is a smooth d-dimensional embedded submanifold ofRn ,Hdx3 denotes
the d-dimensional Hausdorff measure restricted to 3, namely

Hd x3(�) := Hd(3 \�).

1.2. Notation

To state the general result, we need to fix the notation and digress slightly. We
assume that we are given integers m, n � 1 satisfying

n + 1 � 2m.

The integer n corresponds to the dimension of the sphere Sn over which (1.1) is
defined. It will be convenient to identify the Euclidean space Rn+1 with Cm ⇥
Rn+1�2m , in which case we agree that the coordinates of a point x 2 Rn+1 are
given by (z1, . . . , zm, x̂) where z1, . . . , zm 2 C and x̂ 2 Rn+1�2m . In terms of
these coordinates, we define the point

p := 1p
m

⇣
1, . . . , 1, 0̂

⌘
2 Sn ⇢ Cm ⇥ Rn+1�2m, (1.2)

where 0̂ := (0, . . . , 0) 2 Rn+1�2m . Let G ⇢ O(n + 1) be the finite subgroup of
isometries of Sn which is generated by the symmetries

s(z1, . . . , zm, x̂) := (z1, . . . , zm,�x̂), s̄(z1, . . . , zm, x̂) := (z̄1, . . . , z̄m, x̂),

and
c(z1, z2, . . . , zm�1, zm, x̂) := (z2, z3, . . . , zm, z1, x̂),

which corresponds to a cyclic permutation of the firstm-th complex coordinates. To
begin with, observe that the point p is fixed under the action of any element of the
group G, but the choice of the finite group G is really motivated by the following
elementary but key result:

Proposition 1.2. Any linear form defined on Rn+1 which is invariant under the
action of G is collinear to

Rn+1 3 x 7�! p · x 2 R,

where · denotes the scalar product in Rn+1.

Proof. Given the identification of Rn+1 with Cm ⇥ Rn+1�2m , any (real valued)
linear form ' on Rn+1 can be written as

'(z1, . . . , zm, x̂) = < (a1 z1 + . . . + am zm) + â · x̂,

for some a1, . . . , am 2 C and â 2 Rn+1�2m .
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The fact that ' is invariant under the action of s implies immediately that â =
0. Next, ' is also assumed to be invariant under the action of c, and hence we find
that all the a j have to be equal (say to a 2 C). Therefore, we can write

'(z1, . . . , zm, x̂) = <(a (z1 + . . . + zm)).

Finally, since ' is assumed to be invariant under the action of s̄ we conclude that
a 2 R and hence

'(z1, . . . , zm, x̂) = a<(z1 + . . . + zm) = a
p
m p · x .

This completes the proof of the result.

We denote by

Tm := 1p
m (S1 ⇥ . . . ⇥ S1) ⇥ {0̂} ⇢ Sn ⇢ Cm ⇥ Rn+1�2m,

the m-dimensional torus embedded in Sn , which is also the orbit of p through the
action of the elements of the m-dimensional Lie group

T := (O(2) ⇥ . . . ⇥ O(2)) ⇥ {In+1�2m} ⇢ O(n + 1),

where, for q � 1, Iq denotes the identity of Rq . Observe that Tm , equipped with
the metric induced by g̊, is a flat m-dimensional torus.

It is probably worth saying a word about the terminology we will use. When
m = 1, T1 is usually referred to as a great circle of Sn and, when m = 2 and n = 3,
T2 is usually referred to as a Clifford torus. When, n � 3, T2 is a Clifford torus
embedded in S3 ⇥ {0̂} ⇢ Sn and, with slight abuse of terminology, we shall again
refer to it as a Clifford torus.

1.3. The assumptions

We now describe the assumptions needed in the statement of the general result and
we also provide some basic examples.

(H1) We fix 1  d  m, and assume that we are given a d-dimensional flat torus
3 ⇢ Tm which is the orbit of p under the action of a d- dimensional Lie
group

L ⇢ T.

(H2) We assume that we are given a finite subgroup

H0 ⇢ T,

such that, the cyclic permutation c leave the group H0 invariant in the sense
that

cH0 = H0 c.

Moreover, we require that, for all h 2 H0, either 3 \ h3 = ; or h = Id.
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(H3) For all k � 1, we assume that we are given a finite subgroup

Hk ⇢ L,

which commutes with H0 and such that, the cyclic permutation c leaves the
group Hk invariant in the sense that

cHk = Hk c.

Moreover, we require that30 := 3/Hk , equipped with the metric induced by
k g̊ is a d-dimensional flat torus which does not depend on k.

We will denote by 00 the lattice associated to 30. We will denote by H the group
generated by H0 and Hk and we will denote by Ok the orbit of p under the action
of the elements of H, namely

Ok := {h(p) : h 2 H}.

Observe for all h 2 T we have

s̄ � h � s̄ = h�1,

and hence Op is invariant under the action of the elements of H. Also observe that,
for all h 2 Hk , we have h3 = 3.

We will always assume that Ok contains at least two points. Let us now briefly
comment on these assumptions. Property (H3) implies that Ok \ 3 is uniformly
distributed at the vertices of a regular lattice in 3 and, as k tends to infinity, these
points becomes denser in3. Property (H2) implies that the elements ofH0 transport
3, and hence the points of Ok \ 3, to CardH0 disjoint isometric copies of3 in the
m-dimensional torus Tm .

It also follows from properties (H2) and (H3) that the cardinal of Ok can be
computed in terms of k, the ratio between the volume of3 and30 and the cardinal
of H0. More precisely, we have

Card Ok =
Hd(3̂)

Hd(30)
kd ,

where
3̂ :=

[
h2H0

h3 ⇢ Tm,

corresponds to the submanifold of Sn over which the renormalized energy density
of our solutions will concentrate.

1.4. Examples

We now illustrate this set of assumptions by giving some key examples. This will
be the opportunity to become more familiar with our notation. It will be convenient
to agree that, for all n + 1 � 2M and for all ↵ := (↵1, . . . ,↵m) 2 S1 ⇥ . . . ⇥ S1,
t↵ 2 (O(2) ⇥ . . . ⇥ O(2)) ⇥ {In+1�2m}, denotes the isometry of Sn defined by

t↵(z1, . . . , zm, x̂) :=
�
↵1 z1, . . . ,↵m zm, x̂

�
.
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1.4.1. The case where H0 = {In+1}

The simplest examples correspond to the case where H0 reduces to the identity.
Observe that, in this case, m = d.
Example 1.3. The simplest example is probably the one where

3̂ = 3 = T1 = S1 ⇥ {0̂} ⇢ Sn,

is a great circle of Sn , for n � 1. According to our notation, we have identified
Rn+1 with C ⇥ Rn�1 and we have defined 0̂ := (0, . . . , 0) 2 Rn�1. In terms of Lie
groups, this situation corresponds to m = d = 1 and to the choice

L = T := O(2) ⇥ {In�1} ⇢ O(n + 1).

In this case,
p = (1, 0̂) 2 Sn ⇢ C ⇥ Rn�1,

and, for all k � 1, we can choose Hk ⇢ O(2)⇥O(n�1) to be the group generated
by t↵ , where

↵ = e
2i⇡
k .

Therefore, the points of

Ok =
n
(e

2i j⇡
k , 0̂) 2 Sn : j 2 Z

o
,

are regularly distributed along a great circle of Sn . It is an easy exercise to check
that (H1), (H2) and (H3) are satisfied. This example corresponds to the case where
d = 1 in Theorem 1.1.
Example 1.4. The previous example easily generalizes to the case where

3̂ = 3 = Td = 1p
d

⇣
S1 ⇥ . . . ⇥ S1

⌘
⇥ {0̂} ⇢ Sn,

is a d-dimensional flat torus in Sn , for n + 1 � 2d. According to our notation, we
have identified Rn+1 with Cd ⇥ Rn+1�2d and we have defined 0̂ := (0, . . . , 0) 2
Rn+1�2d . In terms of the Lie groups, this situation corresponds to m = d and to the
choice

L = T := (O(2) ⇥ . . . ⇥ O(2)) ⇥ {In+1�2d} ⇢ O(n + 1).

In this case,
p = 1p

d
(1, . . . , 1, 0̂) 2 Sn ⇢ Cd ⇥ Rn+1�2d ,

and, for all k � 1, we can choose Hk ⇢ (O(2) ⇥ . . . ⇥ O(2)) ⇥ O(n + 1� 2d) to
be the group generated by t↵ and c, where

↵ := (e
2i⇡
k , 1, . . . , 1).
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Then the orbit of the point p under the action of Hk

Ok =

⇢
(e

2i j1⇡
k , . . . , e

2i jd⇡
k , 0̂) 2 Sn : j1, . . . , jd 2 Z

�
,

are points regularly distributed on Td . Again, it is an easy exercise to check that
(H1), (H2) and (H3) are satisfied. This example corresponds to the case where
d � 2 in Theorem 1.1.

In the last example, the orbit of p under the action ofHk forms a regular square
lattice on the torus Td but other lattices can be obtained. In other words, once the
submanifod 3 is chosen, there might be many different groups Hk leading to non-
congruent configurations of points in Sn .
Example 1.5. Keeping the notation used in Example 1.4, one can also consider
Hk ⇢ (O(2) ⇥ . . . ⇥ O(2)) ⇥ O(n + 1� 2d) to be the group generated by t↵ and
c, where

↵ := (e
2i⇡
q1k , e

2i⇡
q2k , . . . , e

2i⇡
qd k ),

for some q1, . . . , qd 2 Z � {0}. We require that the integers q j are chosen so that
the matrix whose rows are ( 1q1 , . . . ,

1
qd ) and its cyclic permutations is invertible (this

will guaranty that the associated lattice in Td is d-dimensional). Different choices
of q j will, in general, lead to non-congruent solutions of (1.1).

Many more examples leading to non-congruent solutions can be found by
studying the sub-lattices of Td which contain p and are invariant under the action
of c and s̄. Let us just mention a few examples in low dimensions.
Example 1.6. Keeping the notation used in Example 1.4, when d = 2 and n+ 1 �
2 d = 4 one can considerHk ⇢ (O(2)⇥O(2))⇥O(n�3) to be the group generated
by t↵ and t↵̃ , where

↵ := (e
2i⇡
k , e

2i⇡
k ) and ↵̃ := (e

2i⇡
qk , e�

2i⇡
qk ),

for some q � 1. While, when d = 4 and n + 1 � 2 d = 8 one can consider
Hk ⇢ (O(2) ⇥ . . . ⇥ O(2)) ⇥ O(n � 7) to be the group generated by t↵ , t↵̃ , t↵̌ and
c, where

↵ := (e
2i⇡
k , e

2i⇡
k , e

2i⇡
k , e

2i⇡
k ), ↵̃ := (e

2i⇡
qk , e�

2i⇡
qk , e

2i⇡
qk , e�

2i⇡
qk ),

and
↵̌ := (e

2i⇡
q0k , e

2i⇡
q0k , e�

2i⇡
q0k , e�

2i⇡
q0k ),

for some q, q 0 � 1. Different choices of q and q 0 will lead to non-congruent solu-
tions of (1.1).

This last example generalizes in any dimension d = 2q and n + 1 � d.
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1.4.2. The case where H0 6= {In+1}

The examples corresponding to the case where H0 is not reduced to the identity
can be constructed using similar ideas. However their geometry are slightly more
complicated to grasp.

To understand some nontrivial examples, let us recall the definition of the Hopf
map

H : S3 �! S2,
which can be defined as follows

H(z1, z2) :=
⇣
2 z1 z̄2, |z1|2 � |z2|2

⌘
2 C ⇥ R,

if we identify R4 with C2 and R3 with C ⇥ R. It is easy to check that the preimage
of any point of S2 by H is a great circle of S3. Conversely, given any (z1, z2) 2
S3 ⇢ C2, the image of the great circle

µ 7�! (eiµz1, eiµ z2) 2 C2,
by H is a point in S2. Also, the preimage of two distinct points of S2 by H is the
disjoint union of two great circles which are linked. For example, the preimage
of (0, 1) 2 S2 ⇢ C ⇥ R is the great circle S1 ⇥ {0} of S3 while the preimage of
(0,�1) 2 S2 ⇢ C ⇥ R is the great circle {0} ⇥ S1 of S3 and these two circles are
easily seen to be linked (this is what is usually called a Hopf link).
Example 1.7. To begin with, let us consider the case where n = 3 and m = 2 and
d = 1. We define

3 :=
n
1p
2
(ei✓ , ei✓ ) 2 S3 : ✓ 2 R

o
⇢ T2,

which is a the great circle of S3 associated to the one dimensional Lie group

L := {t↵ 2 O(2) ⇥ O(2) : ↵ := (ei✓ , ei✓ ), ✓ 2 R}.

Observe that the image of 3 by H is equal to (1, 0) 2 S3 ⇢ C ⇥ R. We set
T := (O(2) ⇥ O(2)) ⇢ O(4).

We choose H0 ⇢ O(2) ⇥ O(2) to be the group generated by t↵̃ 2 O(2) ⇥ O(2)
where

↵̃ := (e
i⇡
q , e�

i⇡
q ),

for some q � 2. Observe that, for j = 0, . . . , q � 1, t j
↵̃
(3) is again a great circle of

S3 and its image by H is given by (e
2i j⇡
q ,0)2 S3. In particular,3, t↵̃(3), ...tq�1

↵̃
(3)

are all disjoint and in fact are linked. In this case

3̂ :=
q�1[

j=0
t j
↵̃
(3),

is the disjoint union of q great circles of S3 which are linked.



SIGN-CHANGING SOLUTIONS FOR CONFORMALLY INVARIANT EQUATIONS 217

Finally, given k � 1, we define Hk ⇢ O(2) ⇥ O(2) to be the group generated
by t↵̌ 2 O(2) ⇥ O(2) where

↵̌ := (e
2i⇡
k , e

2i⇡
k ).

It is easy to check that (H1), (H2) and (H3) are fulfilled.
This example trivially generalizes in higher dimensions. When n � 3, we

just identify S3 with S3 ⇥ {0̂} where 0̂ = (0, . . . , 0) 2 Rn�3. Therefore, we can
consider that 3 is embedded in S3 ⇥ {0̂} ⇢ Sn and we can extend trivially any
group B ⇢ O(2) ⇥ O(2) by B ⇥ {In�3} ⇢ (O(2) ⇥ O(2)) ⇥ O(n � 3). This
leads to examples for which 3̂ has q different connected components which are all
great circles of Sn , two of which are linked. In any case, this provides examples for
which d = 1 and m = 2.

We complete this list of examples with a last one for which d = 2 and m = 4,
to show the flexibility of our construction.
Example 1.8. To begin with, we assume that n = 7, m = 4 and d = 2 and we
identify R8 with C4, so that m = 4. We define

3 :=
n
1p
4
(ei✓ , eiµ, ei✓ , eiµ) 2 S7 : ✓, µ 2 R

o
,

which is a flat 2-torus in S7 associated to the 2-dimensional Lie group

L := {t↵ 2 O(2) ⇥ O(2) : ↵ := (ei✓ , eiµ, ei✓ , eiµ) ✓, µ 2 R}.

We set
T := (O(2) ⇥ . . . ⇥ O(2)) ⇢ O(8).

Given q � 2, we choose H0 ⇢ (O(2) ⇥ . . . ⇥ O(2)) ⇢ O(8) to be the group
generated by t↵ and t↵̃ , where

↵ := (e
i⇡
q , 1, e�

i⇡
q , 1), and ↵̃ := (1, e

i⇡
q , 1, e�

i⇡
q ).

It is easy to check that the images of 3 by to different elements of H0 are disjoint.
Therefore,

3̂ :=
[

h2H0

h(3),

is the disjoint union of q2 congruent copies of a 2-dimensional flat torus in S7.
Then for all k � 1, we denote byHk ⇢ (O(2)⇥ . . .⇥O(2)) ⇢ O(8) the group

generated by t↵̂ and t↵̌ , where

↵̂ := (e
i⇡
k , 1, e

i⇡
k , 1) and ↵̃ := (1, e

i⇡
k , 1, e

i⇡
k ).

Again (H1), (H2) and (H3) are fulfilled.
Again, this example also trivially generalizes in higher dimensions as Ex-

ample 1.7; namely, when n � 7, we just identify S7 with S7 ⇥ {0̂} where 0̂ =
(0, . . . , 0) 2 Rn�7. This leads to examples for which 3̂ has q2 different connected
components which are congruent copies of a flat 2-dimensional torus of Sn . This is
an example for which d = 2 and m = 4.
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1.5. The main result

Having given many examples, we can now state our main result. Keeping the nota-
tion introduced in Section 1.3, we have the:

Theorem 1.9. Assume that 1  d  n � 3 and further assume that (H1), (H2) and
(H3) are fulfilled. Then there exists k0 � 1 and c1, c2 > 0 such that, for all k � k0
there exists a solution uk of (1.1) satisfying the following properties:

(a) The function uk is invariant under the action of the elements of G, H0 and Hk
but is not invariant under the action of L.

(b) The function uk is positive away from a tubular neighborhood of radius c1/k
around 3̂ and is negative inside a tubular neighborhood of radius c2/k around
3̂.

(c) As k tends to infinity, uk converges, uniformly on compact subsets of of Sn�3̂,
to the constant function u1 ⌘ 1.

(d) As k tends to +1, the renormalized energy density

1
kd

e(uk) dvolg̊ *
E1

Hd(30)
Hd x 3̂, (1.3)

in the sense of measures.

Properties (a) to (d) will be consequences of the construction of the solutions and
we shall not comment further on them.

The measure
1
kd

e(uk) dvolg̊,

is called the renormalized energy density of the function uk . Observe that (1.3)
implies that

E(uk) = kd
 

Hd(3̂)

Hd(30)
E1 + o(1)

!

.

Also observe that the restriction n � 3 � d only plays a role in dimension n = 5
since, in higher dimensions, it is a consequence of the inequalities 2m  n+ 1 and
d  m.

Our result is closely related to a recent result of J. Wei and S. Yan [10] where
sequences of solutions to the prescribed scalar curvature problemwhich concentrate
along a circle are found. Also, we should mention the work of H.Y. Wang on
the construction of sequence of Yang-Mills connections whose energy concentrates
along a geodesic in S2 ⇥ S2 or S1 ⇥ S3. However, to our knowledge our result is
the first of the kind where sequences of solutions which concentrate along higher
dimensional submanifolds or disjoint union of submanifolds are exhibited.
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1.6. Applications

All the examples given in Section 1.4 yield the existence of sequences of non-
congruent sign changing solutions of (1.1). For example, in dimension n � 4,
Theorem 1.9 applies to Example 1.3 and this yields, for k large enough, the exis-
tence of a solution uk of (1.1), which is invariant under the action of Dk ⇥O(n�1)
where Dk is the dihedral group in R2 but which is not invariant under the action
of O(2) ⇥ O(n � 1). Moreover, as k tends to infinity, uk converges uniformly
on compact subsets of Sn � 3 to u1 ⌘ 1 and the renormalized energy density of
uk concentrates uniformly along a great circle of Sn . This completes the proof of
Theorem 1.1 when d = 1.

In dimension n � 2d + 1 with d � 2, Theorem 1.9 applies to Example 1.4,
Example 1.5 and Example 1.6. In particilar, for all k large enough, we obtain the
existence of a solution uk of (1.1) whose zero set is homeomorphic toTd⇥Sn�1�2d .
Moreover, as k tends to infinity, the sequence uk converges uniformly to u1 ⌘ 1 on
compact subsets of Sn�Td and the renormalized energy density of uk concentrates
uniformly along Td . In particular, this completes the proof of Theorem 1.1 when
d � 2.

In dimension n � 4, given q � 2 we can apply Theorem 1.9 to Example 1.7
and get solutions uk of (1.1), whose renormalized energy density concentrates uni-
formly along the q disjoint great circles of Sn , as k tends to infinity.

Finally, in dimension n � 7, given q � 2 we can apply Theorem 1.9 to Ex-
ample 1.8 and get the existence of solutionq uk of (1.1) whose renormalized energy
density concentrates uniformly along q2 disjoint flat 2-tori of Sn , as k tends to in-
finity.

2. Plan of the paper

In Section 3 we recall some well-known properties of the conformal Laplacian and
the conformal invariance of our problem. In particular, we use these results to
describe a one parameter family u✏ of positive solutions of (1.1) which concentrate
at one point (the North pole of Sn when ✏ tends to 0 and the South pole when ✏ tends
to infinity) and for which u1 ⌘ 1. The next section is devoted to the definition of
the approximate solutions and the derivation of precise asymptotics. We then study
the linear problem associated to the linearization of (1.1) about the approximate
solution. Finally, in the last section, we prove that, provided k is large enough,
these approximate solutions can be perturbed into genuine solutions of (1.1) using
some variant of the Liapunov- Schmidt reduction argument.

3. Conformal invariance

The conformal Laplacian on a Riemannian manifold (Mm, g) is defined by

Lg := 1g � n�2
4(n�1) Rg,
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where Rg denotes the scalar curvature of the metric g. In this section we recall
some well-known properties of Lg. The following result can be found for example
in [6, 8]:

Proposition 3.1. Assume that f : (Mn, g) �! (M̄n, ḡ) is a (local) conformal
diffeomorphism, namely

f ⇤ḡ = �
4

n�2 g,

for some function � > 0 defined on M . Then the following formula holds

f ⇤(Lḡ v) = �� n+2
n�2 Lg (� f ⇤v),

for any function v defined on M̄ .

Remark 3.2. We agree that f ⇤g denotes the pullback of the metric g defined on
T M by f and, given a function v defined on M , we agree that f ⇤v denotes v � f .

In the particular case where the manifold is (Sn, g̊), the unit sphere with the
standard metric, the conformal Laplacian is given by

Lg̊ = 1g̊ � n(n�2)
4 ,

since the scalar curvature is given by Rg̊ = n(n � 1) in this case.
We will now make an intensive use of the conformal invariance of the confor-

mal Laplacian. First of all, let S� := (0, . . . , 0,�1) 2 Rn+1 denote the South pole
of Sn . The inverse of the stereographic projection ⇡ : Rn �! Sn � {S�} given
explicitly by

⇡(y) :=

 
2y

1+ |y|2
,
1� |y|2

1+ |y|2

!

,

is a conformal map and we have

⇡⇤g̊ = �
4

n�2 dy2,

where dy2 is the Euclidean metric in Rn and where

�(y) :=

✓
2

1+ |y|2

◆ n�2
2

.

In Euclidean space, the conformal Laplacian reduces to the standard Laplacian and
applying Proposition 3.1 we get

⇡⇤(Lg̊ v) = �� n+2
n�2 1 (� ⇡⇤v),

for any function v defined on the sphere Sn . Therefore, we conclude that u is a
solution of (1.1) if and only if

w := � ⇡⇤u,



SIGN-CHANGING SOLUTIONS FOR CONFORMALLY INVARIANT EQUATIONS 221

is an entire solution of

1w + n (n�2)
4 |w|

4
n�2 w = 0, (3.1)

in Rn . In particular, the solution u1 ⌘ 1 of (1.1) is associated to the solution of
(3.1), given by

w1(y) :=

✓
2

1+ |y|2

◆ n�2
2

= �(y).

There is yet another application of this conformal invariance which we will exploit.
Recall that the group of conformal diffeomorphisms of the sphere is generated by
the rotations of Rn+1 and, for all ✏ > 0, the Moebius transformations

K✏ : (Sn, g̊) �! (Sn, g̊),

which, given the above notation, can be defined by the identity

⇡⇤K✏(y) = ⇡(y/✏).

We define the function u✏ > 0 by

K ⇤
✏ g̊ = u

4
n�2
✏ g̊.

Using Proposition 3.1, we conclude that

K ⇤
✏ (Lg̊ v) = u

� n+2
n�2

✏ Lg̊(u✏ K ⇤
✏ v), (3.2)

for any function v defined on the sphere. Using this equality with v ⌘ 1, we get

u
� n+2
n�2

✏ Lg̊ u✏ = �n(n�2)
4 , (3.3)

and hence u✏ is a solution of (1.1). As already mentioned in the introduction, the
classification of solutions of (1.1) that do not change sign goes back to the result of
M. Obata [7] which states that, up to the action of rotations, all positive solutions
of (1.1) are given by the functions u✏ defined above.

Using the conformal map ⇡ we can translate this information to Rn and we
conclude that the function

w✏(y) := ✏
2�n
2

 
2✏2

✏2 + |y|2

! n�2
2

,

is a solution of (3.1) and that all solutions of (3.1) are translations of w✏ . Moreover,
we get an explicit formula for the function u✏ , given by

⇡⇤u✏(y) :=
w✏(y)
�(y)

= ✏
n�2
2

 
1+ |y|2

✏2 + |y|2

! n�2
2

. (3.4)
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Observe that the sequence u" concentrates at the North pole S� of Sn as ✏ tends
to 0, while it concentrates at the South pole S� of Sn as ✏ tends to infinity. Finally,
u1 ⌘ 1 when ✏ = 1. Differentiating (3.3) with respect to ✏, we find that the function
@✏u✏ satisfies

L✏ (@✏u✏) = 0,

where

L✏ := Lg̊ + n(n+2)
4 u

4
n�2
✏ .

Similarly, w✏ is a solution of (3.1) for all ✏, and differentiation with respect to ✏ at
✏ = 1 implies that ✓

1+ n(n+2)
2 w

4
n�2
1

◆
Z = 0,

where

Z(y) :=

✓
2

1+ |y|2

◆ n�2
2
 
1� |y|2

1+ |y|2

!

. (3.5)

We end this section by the following observation: the conformal invariance of our
problem implies that all our existence results for sign-changing solutions of (1.1)
translate into existence results for sign-changing, entire solutions of (3.1). The
reason why we have chosen to concentrate on (1.1) is simply because the description
of the groups associated to our construction becomes very involved in Rn .

4. Building the approximate solution

We use the notation introduced in Section 1.2 and Section 1.3. Let us denote by r a
rotation which sends the point p defined in (1.2) to S�, the North pole of Sn . The
approximate solution Uk,✏ we consider depends on a continuous parameter ✏ > 0
as well as the discrete parameter k which appears in Hk . It can be described as

Uk,✏ := 1�
X

h2H

h⇤ (r⇤u✏).

As will become apparent soon, we will assume that the parameter ✏ > 0 is chosen
so that

1/C  k2 ✏  C , (4.1)

for some constant C > 1 which will be fixed large enough later on. Observe that,
by construction, Uk,✏ is invariant under the action of the elements of bothG and H.
The fact that U✏,k is invariant under the action of the elements of H is standard and
follows at once from the fact that H is a group. Now, since u✏ is invariant under the
action of isometries preserving the axis going through S� and S�, we find that r⇤u✏
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is invariant under the action of isometries preserving the axis going through p and
�p. In particular, g⇤(r⇤u✏) = r⇤u✏ , for all g 2 G. We have

g⇤Uk,✏ = 1�
X

h2H

(h � g)⇤(r⇤u✏).

But, for g 2 G, we have assumed that gH = Hg. And hence

g⇤Uk,✏ = 1�
X

h2H

(h � g)⇤(r⇤u✏)

= 1�
X

h02H

(g � h0)⇤(r⇤u✏)

= 1�
X

h02H

h0 ⇤(g⇤(r⇤u✏))

= 1�
X

h02H

h0 ⇤(r⇤u✏) = Uk,✏ .

We agree that ⇡̃ : Rn �! Sn � {�p} denotes the inverse of the stereographic
projection which satisfies ⇡̃(0) = p. The expression of ⇡̃ can be derived from ⇡
using the rotation r introduced above. Indeed, we can define ⇡̃ by

r � ⇡̃ = ⇡.

We now obtain some important asymptotic expansion for Uk,✏ near p (and hence,
using the action of the elements of H, near any point of Ok). This result strongly
uses the assumption d  n � 3.

Lemma 4.1. Assume that n � 4 and 1  d  n � 3. Then there exists a constant
�̄ > 0 (depending on n, d, 3 and 30) and, for all k large enough, there exists a
constant �k,✏ > 0 (depending on k, n, d, 3 and 30) such that

⇡̃⇤(Uk,✏ � r⇤u✏)(y) = 1� ✏
n�2
2 �k,✏ + O(k2 |y|2), (4.2)

in the ball of center 0 and radius c/k in Rn , where c > 0 is a constant independent
of k which is fixed small enough, and

lim
k!1

�k,✏

kn�2
= �̄ .

Finally, �k,✏ depends continuously (and in fact smoothly) on ✏.

Proof. We first analyze a model problem. We consider 00 to be a d-dimensional
regular lattice inRd⇥{0} ⇢ Rn , which contains the origin. In particular 00 = �00.
For all k � 1, we consider the function

Wk(x) =
X

x̄200

�
�
�
�x �

x̄
k

�
�
�
�

2�n
.



224 MANUEL DEL PINO, MONICA MUSSO, FRANK PACARD AND ANGELA PISTOIA

Then near 0, the function Wk can be expanded as

Wk(x)=|x |2�n+kn�2
X

x̄200�{0}
|x̄ |2�n+(n�2) kn�1

 
X

x̄200�{0}

x̄
|x̄ |n

!

·x+O(kn |x |2),

since all series converge precisely when n � d � 3. Thanks to the symmetries
(namely 00 = �00), we haveWk(�x) = Wk(x) and hence, in the above expansion,
the term which is linear in x vanishes. Therefore, we conclude that

Wk(x) = |x |2�n + kn�2 �̄ + O(kn |x |2). (4.3)

And this estimate holds in a ball of radius c/k centered at 0, provided c > 0 is fixed
small enough, depending on the lattice 00. Similar estimates can be derived for the
partial derivatives of Wk .

Now, property (H3) can be used to prove that similar computations can also be
performed for the function 1 � Uk,✏ . Indeed, it is easy to check that the following
expansion

⇡̃⇤(r⇤u✏)(y) = ✏
n�2
2 |y|2�n

⇣
1+ O(|y|2) + O(✏2 |y|�2)

⌘
,

is valid provided |y| � ✏. Using this and the analysis of the model problem, we
claim that

⇡̃⇤

 
X

h2H�{Id}
h⇤(r⇤ u✏)

!

(y) = ✏
n�2
2 �k,✏ + O(k2 |y|2), (4.4)

in the ball of radius c/k centered at 0 in Rn , provided c > 0 is fixed small enough.
This is nothing but Taylor’s expansion of the function

Vk,✏ := ⇡̃⇤

 
X

h2H�{Id}
h⇤(r⇤ u✏)

!

,

at order 2 at the origin. The constant �k,✏ 2 R is simply given by

✏
n�2
2 �k,✏ =

X

h2H�{Id}
h⇤(r⇤ u✏)(p). (4.5)

Now, the function Vk,✏ being invariant under the action of the elements of G, its
gradient vanishes at the origin. This follows at once from Proposition 1.2 together
with the fact that the tangent space at p can be identified with the space of vectors
x 2 Rn+1 satisfying p · x = 0. This explains why there is no linear term in y in
the expansion (4.4). Finally, it is easy to check that the norm of the second order
differential of Vk,✏ can be estimated by a constant times ✏

n�2
2 kn ⇠ k2 in a ball of

radius c/k centered at p, with c > 0 fixed small enough (recall that k�2 ⇠ ✏).
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Finally, we claim that
X

h2H�{Id}
h⇤(r⇤ u✏)(p) = ✏

n�2
2 kn�2 �̄ + O(k�2),

when d < n � 4 (the O(k�2) has to be replaced by O(k�2 log k) when d = n � 4
and byO(k�1) when d = n�3). The idea is to decompose the sum of the left hand
side into two parts. The first part is the sum over elements h 2 H � {Id} such that
the distance from p to h(p) is larger than some constant c > 0 which is fixed small
enough. Let us denote by H> this set. For any element h 2 H>, we can estimate

h⇤(r⇤ u✏)(p) = O(✏
n�2
2 ).

Since there are at most a constant times kd elements in H>, summation over all
h 2 H> yields

X

h2H>

h⇤(r⇤ u✏)(p) = O(✏
n�2
2 kd) = O(kd�2�n).

Since k2 ⇠ ✏�1, we conclude that
X

h2H>

h⇤(r⇤ u✏)(p) = O(kd�2�n).

Let us denote by H< the set of elements h 2 H� {Id} such that the distance from p
to h(p) is less than some constant c > 0 which is fixed small enough. If sh denotes
the distance from p to h(p), we can estimate

h⇤(r⇤ u✏)(p) = ✏
n�2
2 s2�nh (1+ O(s2h) + O(✏2 s�2h )).

Recall that the points of Ok are arranged at the vertices of a d-dimensional regular
lattice k�1 00. Summation over all h 2 H< yields

X

h2H<

✏
n�2
2 s2�nh = ✏

n�2
2 kn�2 �̄ + O(✏

n�2
2 kd),

where the constant �̄ corresponds to the constant which appears in (4.3). Moreover,
X

h2H<

✏
n+2
2 s�nh = O(✏

n+2
2 kn)).

Finally, X

h2H<

✏
n�2
2 s4�nh = O(✏

n�2
2 kn�4)),

when 4� n + d < 0 (the right had side has to be replaced by O(✏
n�2
2 kn�4 log k))

when 4� n + d = 0 and byO(✏
n�2
2 kn�3)) when 4� n + d = 1). In any case, the

result follows at once by collecting these estimates and using the fact that ✏ ⇠ k�2.
This completes the proof of the result.
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Using similar arguments, we can also prove the weaker result which also strongly
uses the assumption n � d � 3:

Lemma 4.2. Assume that n � 4 and 1  d  n � 3. Then for all c > 0, there
exists a constant C > 0 such that, for all x 2 Sn satisfying dist(x,3) � c/k, we
have �

�
�
�
�

X

h2H�{Id}
h⇤ r⇤ u✏ (x)

�
�
�
�
�
 C (k dist(x,3))2�n+d .

Proof. We follow the arguments developed in the proof of Lemma 4.1. We consider
00 to be a d-dimensional regular lattice inRd⇥{0} ⇢ Rn which contains the origin.
For all k � 1, we consider the function

Wk(x) =
X

x̄200

�
�
�
�x �

x̄
k

�
�
�
�

2�n
.

We denote by s := dist(x, Rd ⇥ {0}). Then we can estimate
�
�
�
�
�

X

x̄200 : |x̄ |k s

�
�
�
�x �

x̄
k

�
�
�
�

2�n
�
�
�
�
�
 c

�
�
�
�
�

X

x̄200 : |x̄ |k s
s2�n

�
�
�
�
�
 c s2�n+d kd ,

and
�
�
�
�
�

X

x̄200 : |x̄ |�k s

�
�
�
�x �

x̄
k

�
�
�
�

2�n
�
�
�
�
�
 c

�
�
�
�
�

X

x̄200 : |x̄ |�k s

�
�
�
�
x̄
k

�
�
�
�

2�n
�
�
�
�
�
 c s2�n+d kd .

This implies the pointwise estimate

|Wk(x)|  c kd dist(x, Rd ⇥ {0})2�n+d .

Now that the estimate is proven in this model situation, the estimate in the statement
of the result follows from the arguments which were developed in the proof of the
previous lemma.

5. Linear analysis

We fix a constant c0 > 0 small enough so that the geodesic ball of radius 4 rk ,
centered at the points of Ok are mutually disjoint, when

rk :=
c0
k

.

We also assume that c0 is chosen small enough so thatUk,✏  �1/2 in the geodesic
balls of radius 2 rk , centered at the points of Ok . We define a cutoff function �k
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such that �k ⌘ 1 in each geodesic ball of radius rk/2 centered at p and �k ⌘ 0
away from the the geodesic ball of radius 2 rk centered at p. Finally, we assume
that �k is invariant under the action of the elements of G.

From now on, we assume that we are working with functions which are invari-
ant under the action of the elements of the groups H and G. For all � 2 R, we
define the weighted norm

kwkL1
� (Sn) := sup

Sn�Ok

�
(max(✏, dist(·, Ok))�� |w|

�
,

and we define the operator

Lk,✏ := 1g̊ � n(n�2)
4 + n(n+2)

4 U
4

n�2
k,✏ ,

which is the linearized operator about the approximate solutionUk,✏ . Our construc-
tion relies on the following result which, once again, uses in a crucial way the fact
that n � d � 3:

Proposition 5.1. Assume that n � 4 and � 2 (2 � n + d, 0) are fixed. For all
f 2 L1(Sn) which is invariant under the action of both G and H, there exists a
unique w 2 L1(Sn) and � 2 R solutions of
8
>>>>>>>>>>><

>>>>>>>>>>>:

Lk,✏ w + �
X

h2H

h⇤ r⇤ (�k u
4

n�2
✏ @✏u✏) = f,

�

Z

Sn
�2k u

4
n�2
✏ (@✏u✏)2 dvolg̊ =

Z

Sn
r⇤ (�k @✏u✏) f dvolg̊

�
Z

Sn
w Lk,✏r

⇤ (�k @✏u✏) dvolg̊,
Z

Sn
r⇤ (�k u

4
n�2
✏ @✏u✏)w dvolg̊ = 0.

(5.1)

Moreover, we have the estimate

kwkL1
� (Sn)  c k f kL1

��2(Sn)
, (5.2)

for some constant c > 0 independent of f .

Proof. We first prove some a priori estimates for the solutions of Lk,✏ w = f .

Lemma 5.2. Assume that � 2 (2� n+ d, 0), then there exists k0 > 0 such that, for
all k � k0, the following a priori estimate holds

kwkL1
� (Sn)  c kLk,✏ wkL1

��2(Sn),

provided Z

Sn
r⇤ (�k u

4
n�2
✏ @✏u✏)w dvolg̊ = 0. (5.3)
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Proof. The proof is by contradiction. We assume that there exists a sequence of k j
tending to infinity and ✏ j tending to 0 for which the result is not true (recall that
k2j ⇠ ✏�1j ). In particular, there exists w j such that

kw jkL1
� (Sn) = 1, (5.4)

and
lim
j!1

kLk j ,✏ j w jkL1
��2(Sn).

We denote by p j 2 Sn a point where (5.4) is achieved. We now distinguish different
cases according to the behavior of

` j := max
�
dist(p j , Ok j ), ✏ j

�
.

In each case, we rescale coordinates (using the exponential map) by 1/` j and use
elliptic estimates together Ascoli-Arzela’s theorem to extract convergent subse-
quences. If, for some subsequence, ` j remains bounded away from 0, we get in
the limit a non trivial solution of

(1g̊ + n)w = 0,

in Sn � 3. Moreover, w is bounded by a constant times (dist(p,3))� and, w j
being invariant under the action of H, we conclude that w is invariant under the
action of L and hence it does not depend on the coordinates on3, in other words w
is invariant under the torus action associated to3. Since � > 2�n+d and since w
does not depend on the coordinates in 3, it is easy to check that the singularities of
w are removable and hence w has to be a smooth solution in the kernel of 1g̊ + n.
But w is invariant under the action ofG and does not depend on the coordinates on
3, it is easy to conclude that w achieves its maximum at more than one point and
hence it cannot be an element of the kernel of1g̊ + n, therefore w ⌘ 0. Which is a
contradiction.

The second case we have to consider is the case where lim j!1 ` j = 0 and
where lim j!1 k j ` j = +1. In this case, we obtain a nontrivial solution of

1w = 0,

in Rn � {0} ⇥ Rd which is bounded by a constant times (dist(·, {0} ⇥ Rd))� and
which does not depend on the coordinates in {0} ⇥ Rd . Again, using the fact that
� > 2� n + d we conclude that the singularities of w are removable and then it is
easy to check that w ⌘ 0 since � < 0, which is a contradiction.

Next, we consider the case where lim j!1 k j ` j exists and is not equal to 0. In
this case, we obtain a nontrivial solution of

1w = 0,

in Rn � {0} ⇥ 00, where 00 is a regular d-dimensional lattice in Rd . Moreover, we
know that this solution is bounded by a constant times (dist(·,00))� and is periodic
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(with period corresponding to the lattice). It is easy to check that the singularities
are removable since � > 2 � n. We therefore conclude that w ⌘ 0 since w is
harmonic and � < 0. Again a contradiction.

The fourth case we have to consider is the case where lim j!1 k j ` j = 0 and
lim j!1 k2j ` j = +1. In this case, we obtain a nontrivial solution of

1w = 0,

in Rn � {0}. Moreover, this solution is bounded by a constant times (dist(·, 0))� . It
is easy to check that the singularities are removable since � > 2� n. We therefore
conclude that w ⌘ 0 since w is harmonic and � < 0, which is again a contradiction.

Finally, the last case we have to consider is the case where lim j!1 k2j ` j exists.
In this last case, there exists ✏̄ > 0 such that w is a solution of

✓
1+ n(n+2)

4 w
4

n�2
✏̄

◆
w = 0,

in Rn which is bounded by a constant times (1 + |y|)� , for � < 0. Now, the

L1-bounded kernel of the operator 1 + n(n+2)
4 w

4
n�2
✏̄ is explicitly known and it is

spanned by the functions

 j :=

✓
2

✏̄2 + |y|2

◆ n�2
2 2 ✏̄ y j
✏̄2 + |y|2

,

for all j = 1, . . . , n, and

 n+1 :=

✓
2

✏̄2 + |y|2

◆ n�2
2 ✏̄2 � |y|2

✏̄2 + |y|2
.

Passing to the limit in (5.3), we find that w is L2-orthogonal to w
4

n�2
✏̄  n+1 and

hence it cannot contain any component over n+1. Finally,w j being invariant under
the action of the elements of G, the function w inherits some invariance which we
now describe. We identify the tangent space of Sn at p with

{(z1, . . . , zm, x̃) 2 Cm ⇥ Rn+1�2m : <(z1 + . . . + zm) = 0},

and find that the function w is invariant under the action of s, s̄ and c. Using
this, we conclude (as in the proof of Proposition 1.2) that w ⌘ 0, which a again a
contradiction. Having reached a contradiction in each case, this completes the proof
of the result.

Let us briefly comment on this result. The key idea is that, as k tends to infinity,
the operator Lk,✏ has an eigenvalue tending to 0 and this eigenvalue is associated to
an eigenfunction which is close to the function

�k,✏ :=
X

h2H

h⇤(r⇤ (�k @✏u✏)).
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In particular this implies that, working orthogonally to this eigenfunction, the in-
verse of the operator Lk,✏ is well behaved. Therefore, it should be natural to work
orthogonally to this function and this is in essence what we will do. Now, from a
technical point of view it turns out that the function r⇤(@✏u✏) does not decay fast
enough to 0 when going away from p and it turns out that it is convenient to work
orthogonally to the function

�̃k,✏ :=
X

h2H

h⇤
⇣
r⇤ (�k u

4
n�2
✏ @✏u✏)

⌘
,

which has a better decay properties and which is not orthogonal to �k,✏ .
Using the above result, we can prove, for all f 2 L1

��2(S
n), the existence of

w 2 L1
��2(S

n) and � 2 R solutions of (5.1) provided k is chosen large enough.

Lemma 5.3. Assume that � 2 (2 � n + d, 0), then there exists k0 > 0 and, for all
k � k0, there exists a unique solution of (5.1).

Proof. The idea is to consider the space of functions which are invariant
under the action of the elements of G and H and which are also L2-orthogonal to

r⇤ (�k u
4

n�2
✏ @✏u✏). On this space, we define the operator L̃k,✏ which is obtained by

projecting Lk,✏ w on the L2-orthogonal complement of r⇤ (�k u
4

n�2
✏ @✏u✏). This is

a self adjoint elliptic operator and surjectivity boils down to injectivity. And, for k
large enough, injectivity will be guarantied by the result of Lemma 5.2.

Assume that we are given w, f 2 L1(Sn) and � 2 R solution of

Lk,✏ w + �
X

h2H

h⇤ r⇤ (�k u
4

n�2
✏ @✏u✏) = f,

with Z

Sn
r⇤ (�k u

4
n�2
✏ @✏u✏) v dvolg̊ = 0.

Taking the scalar product with r⇤ (�k @✏u✏) we find that � 2 R is defined by

�

Z

Sn
�2k u

4
n�2
✏ (@✏u✏)2 dvolg̊=

Z

Sn
r⇤(�k@✏u✏) f dvolg̊ �

Z

Sn
wLk,✏r

⇤(�k @✏u✏) dvolg̊.

It is easy to check that
Z

Sn
�2k u

4
n�2
✏ (@✏u✏)2 dvolg̊ � c k4,

for k large enough. Moreover
�
�
�
�

Z

Sn
r⇤(�k @✏u✏) f dvolg̊

�
�
�
�  c k4�n�2� k f kL1

��2(Sn).
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Using the fact that L✏ @✏u✏ = 0, we also get
�
�
�
�

Z

Sn
w Lk,✏r

⇤ (�k @✏u✏) dvolg̊
�
�
�
�  c k4�n�� kwkL1

� (Sn).

Observe that this estimate is essentially a consequence of the estimate of
Lk,✏r⇤ (�k @✏u✏) in the region where the cutoff function �k is acting.

Finally, we have
�
�
�
�u

4
n�2
✏ @✏u✏

�
�
�
�
L1
��2(Sn)

 c kn+2 �.

Collecting these estimates, we conclude that

|�|

�
�
�
�u

4
n�2
✏ @✏u✏

�
�
�
�
L1
��2(Sn)

 c (k f kL1
��2(Sn) + k� kwkL1

� (Sn)).

Collecting these and using the result of Lemma 5.2, we conclude that

kwkL1
� (Sn)  c (k f kL1

��2(Sn) + k� kwkL1
� (Sn)).

and hence, we conclude that

kwkL1
� (Sn)  2 c k f kL1

��2(Sn), (5.5)

for all k large enough. This a priori estimate implies immediately the injectivity
of L̃k,✏ and hence its surjectivity. In particular, given f 2 L1(Sn), there exists a
unique w 2 L1(Sn) and � 2 R such that

Lk,✏ w + �
X

h2H

h⇤ r⇤ (�k u
4

n�2
✏ @✏u✏) = f,

with Z

Sn
r⇤ (�k u

4
n�2
✏ @✏u✏)w dvolg̊ = 0,

and this, together with (5.5) completes the proof of the result.

The result of the proposition follows at once from the two lemma we have
just proved. The first lemma gives the estimate while the second lemma yields the
existence of a solution.



232 MANUEL DEL PINO, MONICA MUSSO, FRANK PACARD AND ANGELA PISTOIA

6. Fixed point theorems and resolution of the nonlinear equation

From now on, we assume that the parameter ✏ > 0 is chosen to fulfill
�
�
�1� ✏

n�2
2 �k,✏

�
�
�  1.

Notice that, according to Lemma 4.1, this implies that (4.1) is satisfied provided
C > 1 (the constant which appears in Lemma 4.1) is fixed large enough. We
also assume that the hypothesis in the statement of Theorem 1.9 are satisfied. In
particular, 1  d  n � 3.

Building on the previous analysis, we now apply a fixed point argument for
contraction mappings to solve the equation

1g̊(Uk,✏ + w) � n (n�2)
4 (1� |Uk,✏ + w|

4
n�2 ) (Uk,✏ + w) = 0,

where Uk,✏ is the approximate solution which has been defined in Section 4. Let
us emphasize that, by construction, Uk,✏ depends on a discrete parameter k and a
continuous parameter ✏. We first rewrite the equation we are trying to solve as

Lk,✏ w + Ek,✏ + Qk,✏(w) = 0, (6.1)

where
Ek,✏ := 1g̊Uk,✏ � n (n�2)

4 (1� |Uk,✏ |
4

n�2 )Uk,✏,

denotes the error we make by considering that Uk,✏ is a solution of (1.1),

Lk,✏ := 1g̊ � n(n�2)
4 + n(n+2)

4 U
4

n�2
k,✏ ,

is the linearized operator about the approximate solution Uk,✏ and

Qk,✏(w) := n(n�2)
4

⇣
|Uk,✏ + w|

4
n�2 (Uk,✏+ w) � |Uk,✏ |

4
n�2Uk,✏ � n+2

n�2 |Uk,✏ |
4

n�2 w
⌘
,

collects the nonlinear terms.
Instead of (6.1) we will first solve the equation

8
>>>>>><

>>>>>>:

Lk,✏ w + �
X

h2H

h⇤ r⇤ u
4

n�2
✏ @✏u✏ + Ek,✏ + Qk,✏(w) = 0,

Z

Sn
w Lk,✏r

⇤ (�k @✏u✏) dvolg̊ + �

Z

Sn
�2k u

4
n�2
✏ (@✏u✏)2 dvolg̊

+
Z

Sn
r⇤ (�k @✏u✏) (Ek,✏ + Qk,✏(w)) dvolg̊ = 0.

(6.2)
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The solvability of this nonlinear problem relies on the result of Proposition 5.1
together with a fixed point theorem for contraction mapping.

Proposition 6.1. Assume that the assumptions of Theorem 1.9 hold and that � 2
(�1

2 , 0) is fixed. Further assume that ✏ > 0 satisfies (4.1). Then there exist c0 > 0
and k0 � 0 and, for all k � k0, there exists wk,✏ 2 L1(Sn) and �k,✏ 2 R solutions
of (6.2) such that

kwk,✏kL1
� (Sn)  c0 k2�,

In addition, wk,✏ and �k,✏ depend continuously on the parameter ✏ satisfying (4.1).

Before we proceed with the proof of this result, let us remark that, for k � k0
and ✏ > 0 satisfying (4.1), we have been able to find a function (not identically
equal to 0)

uk,✏ := Uk,✏ + wk,✏,

and �k,✏ 2 R such that

1g̊uk,✏ � n (n�2)
4 (1� |uk,✏ |

4
n�2 ) uk,✏ + �k,✏

X

h2H

h⇤ r⇤ (u
4

n�2
✏ @✏u✏) = 0.

Therefore, in order to complete the proof of Theorem 1.9, we will just have to solve
the equation

�k,✏ = 0.

The solvability of this equation will be performed right after the proof of Proposi-
tion 6.1.

The proof of Proposition 6.1 is decomposed into two lemmas. First, we derive
all necessary estimates concerned with the error term Ek,✏ :

Lemma 6.2. Assume that � 2 (�1
2 , 0) and that the assumptions of Theorem 1.9

hold. Then there exist constant C0, k0 > 0 such that, for all k � k0, the following
estimates hold �

�Ek,✏
�
�
L1
��2(Sn)

 C0 k2�, (6.3)

and
�
�
�
�

Z

Sn
r⇤(�k @✏u✏)Ek,✏ dvolg̊ + cn ✏

n�4
2 (1� ✏

n�2
2 �k,✏)

�
�
�
�  C0 k2�n log k, (6.4)

where cn > 0 only depends on n.



234 MANUEL DEL PINO, MONICA MUSSO, FRANK PACARD AND ANGELA PISTOIA

Proof. Using the fact that u1 ⌘ 1 and h⇤ r⇤u✏ , for all h 2 H, are solutions of (1.1),
we compute

Ek,✏= n(n�2)
4

0

@

�
�
�
�
�
1�

X

h2H

h⇤ r⇤u✏

�
�
�
�
�

4
n�2

 

1�
X

h2H

h⇤ r⇤u✏

!

� 1+
X

h2H

h⇤ r⇤u
n+2
n�2
✏

1

A .

Using Lemma 4.2, we estimate
�
�Ek,✏

�
�  c

X

h2H

h⇤ r⇤u✏  c (k dist (·,3))2�n+d ,

when dist(x,3) � rk and, using Lemma 4.1, we get

�
�Ek,✏

�
�  c r⇤u

4
n�2
✏ ,

when dist(x, p)  rk . These estimates imply that

kEk,✏kL1
� (Sn)  c

⇣
k2�n+d + k��2 + ✏��

⌘
.

The proof of the first estimate follows at once from the fact that ✏�1 ⇠ k2 together
with the fact that � � 2  2� and 2� n + d  �1  2� since � 2 (�1

2 , 0).
The second estimate follows from Lemma 4.2. Indeed, in the range where

dist(x,3)  rk , the result of this lemma can be restated as

1�Uk,✏ = r⇤ u✏ + (1� ✏
n�2
2 �k,✏) + O(r⇤ u

� 2
n�2

✏ )

Taylor’s expansion then implies the refined estimate
�
�
�
�Ek,✏ � n(n+2)

4 r⇤u
4

n�2
✏ (1� ✏

n�2
2 �k,✏)

�
�
�
�  C (1+ r⇤u

2
n�2
✏ + r⇤u

6�n
n�2
✏ ),

in the range where dist(x,3)  rk . We leave the details to the reader.

We now derive the necessary estimates concerned with the nonlinear terms
Qk,✏ . In this result, we agree that the functions, w,w0 are chosen so that

kwkL1
� (Sn) + kw0kL1

� (Sn)  C1 k2�,

for some constant C1 which will be fixed later on. We have the:

Lemma 6.3. Assume that � 2 (�1
2 , 0) and that the assumptions of Theorem 1.9

hold. Further assume that C1 > 0 is fixed. Then there exists a constant C0 > 0 and
there exists k0 > 0, both depending on C1, such that, for all k � k0, the following
estimates hold

�
�Qk,✏(w

0) � Qk,✏(w)
�
�
L1
��2(Sn)

 C0 k2� kw̄0 � w̄kL1
� (Sn), (6.5)
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�
�
�
�

Z

Sn
w Lk,✏r

⇤ (�k @✏u✏) dvolg̊
�
�
�
�  C0 k4�n+�, (6.6)

and �
�
�
�

Z

Sn
r⇤(�k @✏u✏) Qk,✏(w) dvolg̊

�
�
�
�  C0 k2�n. (6.7)

Proof. These estimates are not hard to derive but observe that some care is due to
derive the first estimate since the nonlinearity t 7�! |t |

4
n�2 t is not C2 at 0 when

n � 7.
Let us explain where the first estimate comes from. In the range where Uk,✏ �

1/2 (i.e. when dist(·,3) � c rk , for some fixed c > 0 large enough), we get the
pointwise estimate

|Qk,✏(w
0) � Qk,✏(w)|C k2�(dist(·,3))2�kw̄0 � w̄kL1

� (Sn)

while, whenUk,✏�1/2, say for example close to the point p (i.e. when dist(·,p)
c̃ rk , for some fixed c̃ > 0 small enough), we get the pointwise estimate

|Qk,✏(w
0) � Qk,✏(w)|  C kn�6+2�(dist(·, p))n�6+2� kw̄0 � w̄kL1

� (Sn)

Finally, in the range where Uk,✏ 2 [�1/2, 1/2], say for example, close to the point
p, we have the pointwise estimate

|Qk,✏(w
0) � Qk,✏(w)|  C (dist(·, p))� kw̄0 � w̄kL1

� (Sn)

for some constant C > 0 which depends on C1. Collecting these, we conclude that
�
�Qk,✏(w

0) � Qk,✏(w)
�
�
L1
��2(Sn)

 C (k2� + k2�n + k��2 + k�2) kw̄0 � w̄kL1
� (Sn).

The estimate (6.5) then follows at once for the choice � 2 (�1
2 , 0).

The second estimate (6.6) has already been proven in the proof of Lemma 5.3.
The last estimate follows from the pointwise estimate

|r⇤(�k @✏u✏) Qk,✏(w)|  C k4��2 (dist(·, p))2��4

when dist(·, p)  rk . Therefore, we get
�
�
�
�

Z

Sn
r⇤(�k @✏u✏) Qk,✏(w) dvolg̊

�
�
�
�  C k2�n+2�,

when n � 5, when n = 4, the k2�n+2� has to be replaced by k�2. This completes
the proof of the lemma.

We can now complete the proof of Proposition 6.1.
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Proof of Proposition 6.1. We choose � 2 (�1/2, 0). First we apply a fixed point
theorem for contraction mappings to solve (6.2). To this aim, we use the result of
Proposition 5.1 to obtain a right inverse for the operator Lk,✏ and rephrase (6.2) as a
fixed point problem. The above estimates (6.3) and (6.5) are precisely the one which
are needed to ensure, for all ✏ > 0 small enough, the existence of a fixed point w
which belongs to the ball of radius C1 k2� in L1

� (Sn), provided C1 is fixed large
enough. Reducing the range in which ✏ > 0 is chosen, it is not hard to check that
the solution we obtain depends continuously on ✏ by taking the difference between
the equations satisfied by the solutions for two different values of ✏ and using the
contraction property of the nonlinear operator. Since this is rather standard, we
leave the details to the reader. This completes the proof of Proposition 6.1.

It remains to solve the equation �k,✏ = 0. Looking at the second equation in
(6.2) we find that the equation �k,✏ = 0 reduces to

Z

Sn
r⇤(�k @✏u✏) (Lk,✏wk,✏ + Ek,✏ + Qk,✏(wk,✏)) dvolg̊ = 0.

Using the estimates (6.4), (6.6) and (6.7), we find that this equation is equivalent to

(1� ✏
n�2
2 �k,✏) = Vk(✏) (6.8)

where the function Vk depends continuously on ✏. Then the previous analysis shows
that there exists k0 > 0 such that, for k � k0, we have the estimate |Vk(✏)| 
C k� , uniformly in ✏ satisfying (4.1). The existence of a solution of (6.8) then
follows from the intermediate value theorem and this completes the proof of the
Theorem 1.9.
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[7] M. OBATA, Conformal changes of Riemannian metrics on a Euclidean sphere, In: “Differ-

ential Geometry” (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, 347–353.
[8] R. SCHOEN and S. T. YAU, “Lectures on Differential Geometry” Conference Proceedings

and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994.



SIGN-CHANGING SOLUTIONS FOR CONFORMALLY INVARIANT EQUATIONS 237

[9] H.Y. WANG, The existence of nonminimal solutions to the Yang-Mills equation with group
SU(2) on S2 ⇥ S2 and S1 ⇥ S3, J. Differential Geom. 34 (1991), 701–767.

[10] J. WEI and S. YAN, Infinitely many solutions for the prescribed scalar curvature problem
on SN , J. Funct. Anal. 258 (2010), 3048–3081.

Departamento de Ingenierı́a Matemática
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