In this paper we obtain parametrizations of the moduli space of principal bundles over a compact Riemann surface using spaces of Hecke modifications in several cases. We begin with a discussion of Hecke modifications for principal bundles and give constructions of “universal” Hecke modifications of a fixed bundle of fixed type. This is followed by an overview of the construction of the “wonderful,” or De Concini–Procesi, compactification of a semi-simple algebraic group of adjoint type. The compactification plays an important role in the deformation theory used in constructing the parametrizations. A general outline to construct parametrizations is given and verifications for specific structure groups are carried out.
@article{ASNSP_2013_5_12_2_309_0, author = {Wong, Michael Lennox}, title = {Hecke modifications, wonderful compactifications and moduli of principal bundles}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {309--367}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {2}, year = {2013}, mrnumber = {3114007}, zbl = {1292.14011}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2013_5_12_2_309_0/} }
TY - JOUR AU - Wong, Michael Lennox TI - Hecke modifications, wonderful compactifications and moduli of principal bundles JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 309 EP - 367 VL - 12 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2013_5_12_2_309_0/ LA - en ID - ASNSP_2013_5_12_2_309_0 ER -
%0 Journal Article %A Wong, Michael Lennox %T Hecke modifications, wonderful compactifications and moduli of principal bundles %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 309-367 %V 12 %N 2 %I Scuola Normale Superiore, Pisa %U http://archive.numdam.org/item/ASNSP_2013_5_12_2_309_0/ %G en %F ASNSP_2013_5_12_2_309_0
Wong, Michael Lennox. Hecke modifications, wonderful compactifications and moduli of principal bundles. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 2, pp. 309-367. http://archive.numdam.org/item/ASNSP_2013_5_12_2_309_0/
[1] C. De Concini and C. Procesi, Complete symmetric varieties, In: “Invariant Theory (Proceedings, Montecatini 1982)”, 996 Lecture Notes in Math., Springer, 1982, 1–44. | MR | Zbl
[2] J. Duistermaat and J. Kolk, “Lie Groups”, Springer, 2000. | MR | Zbl
[3] S. Evens and B. F. Jones, On the wonderful compactification, arXiv:0801.0456v1 [math.AG] 3 Jan 2008, 2008.
[4] G. Faltings, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. 5 (2003), 41–68. | EuDML | MR | Zbl
[5] E. Frenkel and D. Ben-Zvi, “Vertex Algebras and Algebraic Curves”, Second Edition, American Mathematical Society, 2004. | MR | Zbl
[6] G. Harder, Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math. 4 (1967), 165–191. | EuDML | MR | Zbl
[7] G. Harder and D. Kazhdan, Automorphic forms on over function fields, In: “Proc. Sympos. Pure Math.”, 33, part 2 (1979), 357–379. | MR | Zbl
[8] J. E. Humphreys, “Introduction to Lie Algebras and Representation Theory”, Springer, New York, NY, 1972. | MR | Zbl
[9] J. Hurtubise, On the geometry of isomonodromic deformations, J. Geom. Phys. 58 (2008), 1394–1406. | MR | Zbl
[10] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S. 25 (1965), 5–48. | EuDML | Numdam | MR | Zbl
[11] V. G. Kac, “Infinite Dimensional Lie algebras”, Cambridge University Press, 1990. | MR | Zbl
[12] A. Kapustin and E. Witten, Electric-magnetic duality and the geometric langlands program, arXiv:hep-th/0604151, 2006. | MR | Zbl
[13] I. Krichever, Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations, Mosc. Math. J. 2 (2002), 717–752. | MR | Zbl
[14] S. Kumar, “Kac-Moody Groups, their Flag Varieties and Representation Theory”, Birkhäuser, 2002. | MR | Zbl
[15] J. M. Lansky, Decomposition of double cosets in p-adic groups, Pacific J. Math. 197 (2001), 97–117. | MR | Zbl
[16] P. Norbury, Magnetic monopoles on manifolds with boundary, Trans. Amer. Math. Soc., S 0002-9947(2010)04934-7, arXiv:0804.3649v2 [math.DG] 14 Oct 2008, 2008. | MR | Zbl
[17] A. Pressley and G. Segal, “Loop Groups”, Oxford University Press, New York, NY, 1986. | MR | Zbl
[18] A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129–152. | EuDML | MR | Zbl
[19] A. Tjurin, Classification of -dimensional vector bundles over an algebraic curve of arbitrary genus, Izv. Ross. Akad. Nauk Ser. Mat. 30 (1966), 1353–1366. | MR | Zbl
[20] A. Weil, Généralisation des fonctions abéliennes, J. Math. Pures Appl. 17 (1938), 47–87. | JFM