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Permutation groups with a cyclic two-orbits subgroup
and monodromy groups of Laurent polynomials
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Abstract. We classify the finite primitive permutation groups which have a
cyclic subgroup with two orbits. This extends classical topics in permutation
group theory, and has arithmetic consequences. By a theorem of C. L. Siegel,
affine algebraic curves with infinitely many integral points are parametrized by
rational functions whose monodromy groups have this property. We classify the
possibilities for these monodromy groups, and we give applications to Hilbert’s
irreducibility theorem.
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1. Introduction

The aim of this paper is twofold: first, it provides the group-theoretic and arith-
metic classification results needed to obtain sharpenings of Hilbert’s irreducibility
theorem, like the following:
Theorem 1.1. Let f (t, X) 2 Q(t)[X] be an irreducible polynomial with Galois
group G, where G is a simple group not isomorphic to an alternating group or C2.
Then Gal( f (t̄, X)/Q) = G for all but finitely many specializations t̄ 2 Z.

More results of this kind are given in Section 6. The second purpose is to
obtain a group-theoretic classification result, namely to determine those primitive
permutation groups which contain a cyclic subgroup with only two orbits. This
classification completes and generalizes previous results about permutation groups.
The list of possibilities is quite long and involved, we give it in Section 3.2.

In the following we explain how these seemingly unrelated topics are con-
nected. Let k be a field of characteristic 0, and f (X) 2 k[X] be a functionally
indecomposable polynomial. Let t be transcendental over k, and be A the Galois
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group of f (X)� t over k(t), considered as a permutation group by its action on the
roots of f (X) � t . It is easy to see that this group action is primitive. Furthermore,
A contains a transitive cyclic subgroup I , the inertia group of a place of the split-
ting field of f (X) � t over the place t 7! 1. By classical theorems of Schur and
Burnside, it is known that a primitive permutation group A with a transitive cyclic
subgroup is either doubly transitive, or a subgroup of the affine group AGL1(p)
for a prime p. Using the classification of the doubly transitive groups, which rests
on the knowledge of the finite simple groups, these groups have been determined,
see [13, Theorem 4.1], [25]. Furthermore, if k is algebraically closed, then one
can determine the subset of these groups which indeed are Galois groups as above,
see [45], which completes (and corrects) [12]. Besides the alternating, symmetric,
cyclic and dihedral groups only finitely many cases arise. For applications of these
results see [15,26,47, 49].

Amore general situation arises if one considers Hilbert’s irreducibility theorem
over a number field k. Let Ok be the integers of k, and f (t, X) 2 k(t)[X] an irre-
ducible polynomial. Then f (t̄, X) is irreducible over k for infinitely many integral
specializations t̄ 2 Ok . Using Siegel’s deep theorem about algebraic curves with
infinitely many integral points, one can, to some extent, describe the set Red f (Ok)
of those specializations t̄ 2 Ok such that f (t̄, X) is defined and reducible. There
are finitely many rational functions gi (Z) 2 k(Z), such that |gi (k) \ Ok | = 1 and
Red f (Ok) differs by finitely many elements from the union of the sets gi (k) \ Ok .
Thus, in order to get refined versions of Hilbert’s irreducibility theorem, one has to
get information about rational functions g(Z) which assume infinitely many inte-
gral values on k, see [48]. We call such a function a Siegel function. A theorem of
Siegel shows that a Siegel function has at most two poles on the Riemann sphere
P1(C). Suppose that g(Z) is functionally indecomposable, and let A be the Galois
group of the numerator of g(Z) � t over k(t). It follows that A is primitive on
the roots of g(Z) � t , and the information about the poles of g(Z) yields a cyclic
subgroup I of A such that I has at most two orbits.

This generalizes the situation coming from the polynomials, where I has just
one orbit. In the two-orbit situation not much was known. There is a result by
Wielandt [61] (see also [62, V.31]), if the degree of A is 2p for a prime p, and both
orbits of I have length p. Then A is either doubly transitive, or 2p � 1 is a square,
and a point stabilizer of A has three orbits of known lengths. Another case which
has been dealt with is that I has two orbits of relatively prime lengths i < j . If
i > 1, then a classical result by Marggraf [62, Theorem 13.5] immediately shows
that A contains the alternating group in its natural action. The more difficult case
i = 1 was treated in [46]. In Section 3 we classify the primitive groups with a cyclic
two-orbits subgroup without any condition on the orbit lengths.

As in the polynomial case, we again want to know which of these groups in-
deed are Galois groups of g(Z)� t over k(t), with g(Z) a Siegel function as above.
This amounts to finding genus 0 systems (to be defined later) in normal subgroups
of A, see Section 4.1. As a result, we obtain a complete list of monodromy groups
of rational function g(Z) 2 k(Z) which have at most two poles on P1(k̄), where k̄
denotes the algebraic closure of the characteristic 0 field k. See Theorem 4.8. Note
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that Laurent polynomials share this property, so in particular we obtain a classifica-
tion of their monodromy groups too.

Finally, for applications to Hilbert’s irreducibility theorem over the rationals,
we classify the Galois groups of g(Z) � t over Q(t) of those rational functions
g(Z) 2 Q(Z) with |g(Q) \ Z| = 1. Section 5 is devoted to that. In contrast to
the other mostly group-theoretic sections, we need several arithmetical and compu-
tational considerations related to the regular inverse Galois problem over Q(t).

2. Permutation groups – Notation and some results

Here we collect definitions and easy results about finite groups and finite permuta-
tion groups, which are used throughout the work.

General notation: For a, b elements of a group G set ab := b�1ab. Furthermore,
if A and B are subsets of G, then Ab, aB and AB have their obvious meaning. If
H is a subgroup of G, then for a subset S of G let CH (S) denote the centralizer
of S in H and NH (S) denote the normalizer {h 2 H | Sh = S} of S in H .
If A, B, . . . is a collection of subsets or elements of G, then we denote by
<A, B, . . .> the group generated by these sets and elements.
The order of an element g 2 G is denoted by ord(g).

Permutation groups: Let G be a permutation group on a finite set �. Then |�|
is the degree of G. We use the exponential notation !g to denote the image of
! 2 � under g 2 G. The stabilizer of ! in G is denoted by G!. If G is transitive
and G! is the identity subgroup, then G is called regular.
The number of fixed points of g on � will be denoted by �(g).
Let G be transitive on � of degree � 2, and let G! be the stabilizer of ! 2 �.
Then the number of orbits of G! on � is the rank of G. In particular, the rank
is always � 2, and exactly 2 if and only if the group is doubly transitive. The
subdegrees of G are defined as the orbit lengths of G! on �.
Let G be transitive on �, and let 1 be a nontrivial subset of �. Set S :=
{1g| g 2 G}. We say that 1 is a block of G if S is a partition of �. If this is the
case, then S is called a block system of G. A block (or block system) is called
trivial if |1| = 1 or1 = �. If each block system of G is trivial, then G is called
primitive. Primitivity of G is equivalent to maximality of G! in G. Note that
the orbits of a normal subgroup N of G constitute a block system, thus a normal
subgroup of a primitive permutation group is either trivial or transitive.

Specific groups: We denote by Cn and Dn the cyclic and dihedral group of order n
and 2n, respectively. If not otherwise said, then Cn and Dn are regarded as per-
mutation groups in their natural degree n action. The alternating and symmetric
group on n letters is denoted byAn and Sn , respectively.
We write S(M) for the symmetric group on a set M .
Let m � 1 be an integer, and q be a power of the prime p. Let Fq be the
field with q elements. We denote by GLm(q) (or sometimes GLm(Fq)) the gen-
eral linear group of Fmq , and by SLm(q) the special linear group. Regard these
groups as acting on Fmq . The group 0 := Gal(Fq/Fp) acts componentwise on
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Fmq . This action of 0 normalizes the actions of GLm(q) and SLm(q). We use
the following symbols for the corresponding semidirect products: 0Lm(q) :=
<GLm(q),0> = GLm(q) o 0, 6Lm(q) := <SLm(q),0> = SLm(q) o 0.
Note that if q = pe then we have the natural inclusion 0Lm(q)  GLme(p).
Let G be a subgroup of 0Lm(q), and denote by N the action of Fmq on it-
self by translation. Then G normalizes the action of N . If G = GLm(q),
SLm(q), 0Lm(q), or 6Lm(q), then denote the semidirect product of G with
N by AGLm(q), ASLm(q), A0Lm(q), or A6Lm(q), respectively. A group A
with N  A  A0Lm(q) is called an affine permutation group.
Let G  0Lm(q) act naturally on V := Fmq . We denote by P1(V ) the set of one–
dimensional subspaces of V . As G permutes the elements in P1(V ), we get an
(in general not faithful) action of G on P1(V ). The induced faithful permutation
group on P1(V ) is named by prefixing a P in front of the group name, so we get
the groups PGLm(q), PSLm(q), P0Lm(q), or P6Lm(q), respectively.
The group GLm(q) contains, up to conjugacy, a unique cyclic subgroup which
permutes regularly the non–zero vectors of Fmq . This group, and also its homo-
morphic image in PGLm(q), is usually called Singer group. Existence of this
group follows from the regular representation of the multiplicative group of Fqm
on Fqm ⇠= Fmq , uniqueness follows for example from Schur’s Lemma and the
Skolem–Noether Theorem (or by Lang’s Theorem).
For n 2 {11, 12, 22, 23, 24} we denote by Mn the fiveMathieu groups of degree
n, and let M10 be a point stabilizer of M11 in the transitive action on 10 points.

2.1. The Aschbacher–O’Nan–Scott theorem

The Aschbacher–O’Nan–Scott Theorem makes a rough distinction between several
possible types of actions of a primitive permutation group. This theorem had first
been announced by O’Nan and Scott at the Santa Cruz Conference on Finite groups
in 1979, see [53]. In their statement a case was missing, and the same omission
appears in [4]. To our knowledge, the first complete version is in [1]. Very concise
and readable proofs are given in [19] and [37], see also [11].

Let A be a primitive permutation group of degree n on �. Then one of the
following actions occurs:
Affine action. We can identify�with a vector space Fmp , and Fmp  A  AGLm(p)
is an affine group as described above.

Regular normal subgroup action. A has a non–Abelian normal subgroup which
acts regularly on �. (There are finer distinctions in this case, see [37], but we
don’t need that extra information.)

Diagonal action. A has a unique minimal normal subgroup of the form N = S1 ⇥
S2⇥ · · ·⇥ St , where the Si are pairwise isomorphic non–Abelian simple groups,
and the point stabilizer N! is a diagonal subgroup of N .

Product action. We can write � = 1⇥1 · · · ⇥1 with t � 2 factors, and A is a
subgroup of the wreath product S(1) o S t = S(1)t o S t in the natural product
action on this cartesian product. In such a case, we will say that A preserves a
product structure.
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Almost simple action. There is S  A  Aut(S) for a simple non–Abelian group
S. In this case, S cannot act regularly.

3. Elements with two cycles

3.1. Previous results

Our goal is the classification of those primitive permutation groups A of degree n
which contain an element � with at most two cycles. If � actually is an n–cycle,
the result is a well–known consequence of the classification of doubly transitive
permutation groups.

Theorem 3.1 ( [13, 4.1], [25]). Let A be a primitive permutation group of degree n
which contains an n–cycle. Then one of the following holds.

(a) A  AGL1(p), n = p a prime; or
(b) A = An or Sn; or
(c) PSLk(q)  A  P0Lk(q), k � 2, q a prime power, A acting naturally on the

projective space with n = (qk � 1)/(q � 1) points; or
(d) n = 11, A = PSL2(11) orM11; or
(e) n = 23, A = M23.

If � has two cycles of coprime length, say k and l = n � k with k  l, then it
follows immediately from Marggraf’s theorem [62, Theorem 13.5], applied to the
subgroup generated by � l , that An  A unless k = 1. The critical case thus is
k = 1. We quote the classification result [46, 6.2].

Theorem 3.2. Let A be a primitive permutation group of degree n which contains
an element with exactly two cycles, of coprime lengths k  l. Assume thatAn 6 A.
Then k = 1, and one of the following holds.

(a) n = qm for a prime power q, AGLm(q)  A  A0Lm(q); or
(b) n = p + 1, PSL2(p)  A  PGL2(p), p � 5 a prime; or
(c) n = 12, A = M11 orM12; or
(d) n = 24, A = M24.

In the remainder of this chapter, we deal with the case where k and l are not nec-
essarily coprime. The assumptions in the Theorems 3.1 and 3.2 quickly give that
A is doubly transitive (or A  AGL1(p), a trivial case) — this is clear under ex-
istence of an (n � 1)–cycle, and follows from Theorems of Schur [62, 25.3] and
Burnside [24, XII.10.8] under the presence of an n–cycle. So one basically has to
check the list of doubly transitive groups.

In the general case however, A no longer need to be doubly transitive. Exclud-
ing the case A  AGL1(p), we will obtain as a corollary of our classification that
A has permutation rank  3, though I do not see how to obtain that directly. I know
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only two results in the literature where this has been shown under certain restric-
tions. The first one is by Wielandt [62, Theorem 31.2], [61], under the assumption
that k = l, and k is a prime, and the other one is by Scott, see the announcement
of the never published proof in [54]. In Scott’s announcement, however, there are
several specific assumptions on A. First k = l, and A has to have a doubly transitive
action of degree k, such that the point–stabilizer in this action is intransitive in the
original action, but that the element with the two cycles of length k in the original
action is a k–cycle in the degree k action.

3.2. Classification result

Recall that if t is a divisor of m, then we have 0Lm/t (pt ) naturally embedded in
GLm(p). We use this remark in the main result of this chapter.

Theorem 3.3. Let A be a primitive permutation group of degree n which contains
an element with exactly two cycles of lengths k and n � k � k. Then one of the
following holds, where A1 denotes the stabilizer of a point.

1. (Affine action) A  AGLm(p) is an affine permutation group, where n = pm
and p is a prime number. Furthermore, one of the following holds.
(a) n = pm , k = 1, and GLm/t (pt )  A1  0Lm/t (pt ) for a divisor t of m;
(b) n = pm , k = p, and A1 = GLm(p);
(c) n = p2, k = p, and A1 < GL2(p) is the group of monomial matrices (here

p > 2);
(d) n = 2m , k = 4, and A1 = GLm(2);
(e) (Sporadic affine cases)

i. n = 4, k = 2, and A1 = GL1(4) (so A = A4);
ii. n = 8, k = 2, and A1 = 0L1(8);
iii. n = 9, k = 3, and A1 = 0L1(9);
iv. n = 16, k = 8, and [0L1(16) : A1] = 3 or A1 2 {0L1(16), (C3 ⇥C3)o

C4,6L2(4),0L2(4),A6,GL4(2)};
v. n = 16, k = 4 or 8, and A1 2 {(S3⇥S3) o C2,S5,S6};
vi. n = 16, k = 2 or 8, and A1 = A7 < GL4(2);
vii. n = 25, k = 5, and [GL2(5) : A1] = 5;

2. (Product action) One of the following holds.
(a) n = r2 with 1 < r 2 N, k = ra with gcd(r, a) = 1, A = (Sr ⇥Sr ) o C2,

and A1 = (Sr�1⇥Sr�1) o C2;
(b) n = (p+1)2 with p � 5 prime, k = p+1, A = (PGL2(p)⇥PGL2(p))oC2,

and A1 = (AGL1(p) ⇥ AGL1(p)) o C2.
3. (Almost simple action) S  A  Aut(S) for a simple, non–Abelian group S,
and one of the following holds.
(a) n � 5, An  A  Sn in natural action;
(b) n = 10, k=5, andA5 A  S5 in the action on the 2–sets of {1, 2, 3, 4, 5};
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(c) n = p + 1, k = 1, and PSL2(p)  A  PGL2(p) for a prime p;
(d) n = (qm � 1)/(q � 1), k = n/2, and PSLm(q)  A  P0Lm(q) for an odd

prime power q and m � 2 even;
(e) n = 19, k = 2, andM10  A  P0L2(9);
(f) n = 21, k = 7, and P6L3(4)  A  P0L3(4);
(g) n = 12, k = 1 or 4, and A = M11 in its action on 12 points;
(h) n = 12, k = 1, 2, 4, or 6, and A = M12;
(i) n = 22, k = 11, andM22  A  Aut(M22) = M22 o C2;
(j) n = 24, k = 1, 3, or 12, and A = M24.

The proof of this theorem is given in the following sections. We distinguish the
various cases of the Aschbacher-O’Nan-Scott theorem, because the cases require
quite different methods. The almost simple groups comprise the most complex case.
We split this case further up into the subcases where the simple normal subgroup S
is alternating, sporadic, a classical Lie type group, or an exceptional Lie type group.

We note an interesting consequence of the previous theorem which generalizes
several classical results on permutations groups. It would be very interesting to have
a direct proof, without appealing to the classification of the finite simple groups.

Corollary 3.4. Let A be a primitive permutation group which contains an element
with exactly two cycles. Then A has rank at most 3.

3.3. Affine action

We need the following well–known fact:

Lemma 3.5. Let K be a field of positive characteristic p, and � 2 GLm(K ) of
order pb � p. Then pb�1  m � 1. In particular, ord(� )  p(m � 1) if m � 2.

Proof. 1 is the only eigenvalue of � , therefore � is conjugate to an upper triangular
matrix with 1’s on the diagonal. So � � 1 is nilpotent. Now (� � 1)pb�1 = � p

b�1
�

1 6= 0, thus pb�1 < m, and the claim follows.

We note the following easy consequence:

Lemma 3.6. Let A be an affine permutation group of degree pm . Let A contain
an element of order pr for r 2 N. Then pr�1  m. In particular, if r = m, then
m  2, and m = 1 for p > 2.

Proof. Without loss A = AGLm(p). We use the well–known embedding of A
in GLm+1(p): Let g 2 GLm(p), v 2 N . Then define the action of gv 2 A on
the vector space N ⇥ Fp via (w, wm+1)

gv := (wg + wm+1v, wm+1) for w 2 N ,
wm+1 2 Fp.

This way we obtain an element � of order pr in GLm+1(p). The claim follows
from Lemma 3.5.

In the following we use the notation X] := X \ {0} for the nonzero elements
of a vector space X .
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Lemma 3.7. Let G  GLm(p) act irreducibly on V = Fmp . Suppose that G con-
tains a subgroup which fixes a nonzero element from V , and acts transitively on the
nonzero elements of a hyperplane in V . If m � 3, then G acts doubly transitively
on P1(V ); or p = 2, m = 3, and G = 0L1(8).

Proof. Let H be the subgroup which fixes pointwise a line U < V , and acts transi-
tively on the nonzero elements of a hyperplane W < V .

The orbits of H on V ] consist of {u}, 0 6= u 2 U , and the sets W ] + u, u 2 U .
Since U is 1–dimensional, we see that H has three orbits on P1(V ), of lengths 1,
(pm�1 � 1)/(p� 1) (corresponding to W ) and pm�1 � 1 (corresponding to u +W
for some fixed 0 6= u 2 U ).

Assume m � 3. We contend that G is transitive on P1(V ). Since G is irre-
ducible, neither U nor W are G–invariant, so none of the two smaller orbits of H
is a G–orbit. So if G is not transitive on P1(V ), then U [ W is G–invariant. Pick
g 2 G with Wg 6= W . From Wg ✓ W [U we get Wg = (W \ Wg) [ (U \ Wg),
hence pm�1 = pm�2 + p � 1, so m = 2, a contradiction.

We see that G is even transitive on V ]: Pick v1, v2 2 V ]. Choose g1, g2 2 G
with v

gi
i 2 W , and h 2 H with (v

g1
1 )h = v

g2
2 . Thus g1hg

�1
2 maps v1 to v2.

Since H has 3 orbits on P1(V ), one of size 1, we see that the action of G on
P1(V ) is either doubly transitive or has rank 3. Thus assume that the action has
rank 3. We are going to use consequences from Higman’s eigenvalue techniques
for rank 3 permutation groups. Let {a}, 1, and 0 be the orbits of H of size 1,
k = (pm�1 � 1)/(p � 1), and l = pm�1 � 1 = (p � 1)k, respectively. By [22,
Lemma 2] there are � and µ such that � = |1 \1g| for any g 2 G with ag 2 1,
and µ = |1 \ 1g| if ag 2 0. If ag 2 1, then 1 \ 1g is the image in P1(V ) of
two distinct hyperplanes in V . Thus � = (pm�2 � 1)/(p � 1). By [22, Lemma 5],
µl = k(k � �� 1), hence µ = (pm�2 � 1)/(p � 1) = �.

First suppose that |G| is even. Then [22, Lemma 7] shows that d = (� �
µ)2 + 4(k � µ) is a square, and

p
d divides 2k + (�� µ)(k + l). In our situation,

d = 4(k�µ) = 4pm�2 and 2k+ (��µ)(k+ l) = 2(1+ p+ · · · + pm�2). Again,
we get the contradiction m = 2.

If |G| is odd, then, by transitivity of G on V ], we have p = 2. Note that G
is solvable by the odd order theorem. As a consequence of Huppert’s classification
of the finite solvable transitive linear groups (see e.g. [24, Theorem 7.3], we get
that G  0L1(2m), where we identify V with F2m . The stabilizer in 0L1(2m) of
1 is 0 = Aut(F2m ). We get m = |0| � |W ]| = 2m�1 � 1, hence m = 3 and
G = 0L1(8). This case arises indeed, as one can see by the action of 0 on a normal
basis of F8/F2.

Proposition 3.8. Let m � 5, and G  GLm(2) be irreducible on V := Fm2 . Sup-
pose that there is an element ⌧ 2 G and decomposition V = U�W into ⌧–invariant
subspaces with dimU = 2 such that ⌧ is a Singer cycle on W and an involution on
U . Then G = GLm(2).

Proof. We first show that G is transitive on V ]. Set H = <⌧>. Let u1 and u2 be
the two elements from U which are interchanged by ⌧ , and u3 be the third element
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from U ]. The orbits of H on V ] are {u3}, {u1, u2}, W ], W ] + u3, and (W ] + u1) [
(W ] + u2).

If C1 and C2 are subsets of V ] such that each Ci lies completely in an G–orbit,
then we say that C1 and C2 are connected if they lie in the same G–orbit. The latter
is equivalent to the existence of g 2 G with C1 \ Cg

2 6= ;. Each of the H–orbits
from above lies in an G–orbit. Consider the graph with vertex set these orbits, and
let two vertices be connected if and only if the corresponding orbits are connected.
The aim is to show that this graph is connected.

We first show that for each u 2 U there is u 6= u0 2 U such that W ] + u and
W ] + u0 are connected. Suppose that were not the case. Then, for each g 2 G,

(W ] + u)g ✓ (W ] + u) [U ],

so
Wg ✓ (W + u � ug) [ (U ] � ug).

Not each element ofU ]�ug can be contained inWg, for this would imply (U ])g
�1

✓
W ]+u. But by irreducibility of G, the union of the sets (U ])g

�1 generates V , while
W ] + u does not generate V . Thus we get

|Wg \ (W + u � ug)| � 2m�2 � 3.

Let r be the dimension of Wg \ (W + u � ug) as an affine space. It follows that
2r � 2m�2 � 3, so r = m � 2 as m � 5. Thus Wg = W for all g 2 G, again
contrary to irreducibility of G.

Let u 2 U ] be such that W ] and W ] + u are connected. We show that these
two sets must also be connected to another W ] + u0 for u0 2 U ] different from
u. Suppose that this were not the case. Let W 0 be the (m � 1)–dimensional space
W [ (W + u). Then, similar as above, (W 0)g ✓ W 0 [ U for all g 2 G, hence
(W 0)g \ U ✓ W 0 \ (W 0)g. Pick g 2 G with (W 0)g 6= W 0. Then comparing of
dimensions yields 2m�1 � 4  2m�2, so m  4, a contradiction.

From these two steps we see that all the W ] + u for u 2 U are connected.
Finally, let u0 2 U ]. Then also {u0} is connected to some and hence all the W ] + u,
because (u0)G generates V by irreducibility, so (u0)G ✓ U ] cannot hold.

Thus G is transitive on V ]. Note that ⌧ has odd order 2m�2 � 1 on W . Thus
⌧ 2

m�2�1 is a transvection on V . Let X be the normal subgroup of G which is
generated by the conjugates of this transvection. By an easy result of Hering, we
get that X is irreducible, for otherwise |X | would be odd by [21, Lemma 5.1],
contrary to the assumption that X contains a transvection.

Thus X is irreducible, and we can apply McLaughlin’s classification of irre-
ducible subgroups of GLm(2)which are generated by transvections, see [44]. Either
X = GL(V ); or m = dim(V ) is even and one of the following holds: X = Sp(V ),
X = O(V ) for some nondegenerate quadratic form, or X is isomorphic to the sym-
metric group Sm+1 or Sm+2.

We have to rule out all the possibilities but the first one. Note that X is normal
in the transitive group G, so G permutes transitively the orbits of X on V ], in
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particular they all have the same size. This excludes the orthogonal case X =
O(V ). For if Q is the nondegenerate quadratic form describing X , then by Witt’s
Theorem, X has the two orbits {v 2 V ]|Q(v) = 0} and {v 2 V ]|Q(v) = 1} (see
also [30, Lemma 2.10.5]). But the sizes of these orbits are distinct because they add
up to 2m � 1.

Next we show that X = Sp(V ) cannot happen. Suppose that X = Sp(V ).
By [30, Lemma 2.10.6], X acts absolutely irreducibly on V . In particular, the cen-
tralizer of X in G is trivial. So G = X , because the outer automorphism group
of Sp(V ) is trivial, see e.g. [30, Chapter 2]. Let (·, ·) be the associated symplectic
form on V . If v 2 V is non–zero, then the stabilizer of v in Spm(2) has two orbits
on V ] \ {v} – the orbit of length 2m�1 � 2 through those v0 with (v, v0) = 0, and
the orbit of length 2m�1 through those v0 with (v, v0) = 1, see [23, II.9.15]. Since
<⌧ 2> is transitive on W ] and fixes U pointwise, we get that for each u 2 U either
(u,W ]) = 0 or (u,W ]) = 1. We aim to show that the restriction of the symplectic
form toW is not degenerate. This is clear if (U,W ) = 0. So suppose there is u 2 U
with (u,W ]) = 1. The orthogonal complement W? intersects U non-trivially (for
if u1 and u2 are different elements in U with (ui ,W ) = 1, then (u1 + u2,W ) = 0).
So the radical of W has dimension  1, hence in fact is trivial, because W has even
dimension.

Therefore W is a non-degenerate symplectic space, where ⌧ 2 acts irreducibly
on. So ord(⌧ 2) divides 2(m�2)/2 + 1 = 2dimW/2 + 1, see Lemma 3.28, contrary to
ord(⌧ 2) = 2m�2 � 1.

It remains to exclude the symmetric groups. So X = Sm+1 or X = Sm+2 is
normal in G  GL(V ), where V = Fm2 . First note that the centralizer of X in G is
X . For otherwise, the centralizer of X in End(V ) would be a proper field extension
E of F2. But then X would have a linear representation over E of degree  m/2,
contrary to the lower bounds of degrees of 2–modular representations of symmetric
groups, see e.g. [60]. Since m � 6 (recall that m is even), we have X = S i with
i � 7. In this case it is well known that Aut(X) = X . Thus G = X .

The element ⌧ 2 G = X has order 2(2m�2 � 1). On the other hand, the
element orders in the symmetric group Sm+2 are at most e(m+2)/e, see Proposition
3.22. From 2(2m�2 � 1)  e(m+2)/e one quickly gets m  4, a case excluded
here.

We need to know the doubly transitive permutation subgroups of the collineation
group of a projective linear space.

Proposition 3.9 (Cameron, Kantor [6, Theorem I]). Let m � 3, p be a prime,
and H  GLm(p) be acting doubly transitively on the lines of Fmp . Then SLm(p) 
H or H = A7 < SL4(2).

Several years ago, the proof (and finer versions of the results) have turned out
to be false. In [5] the authors have begun to fix the proof. The main interest of
their approach is that they get a very deep classification result without using the
classification of the finite simple groups. If one is willing to to use the classification
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of the finite simple groups and, as a consequence of that, the classification of the
finite doubly transitive groups, then it is not hard to prove Proposition 3.9.

In order to handle the case m = 2, we need the following:

Lemma 3.10. Let p be a prime, and let H  GL2(p) act irreducibly on F2p. Let !
be a generator of the multiplicative group of Fp, and suppose that ⌧ :=

� 1 0
0 !

�
2 H .

Then one of the following holds.

(a) H = GL2(p).
(b) H is the group of monomial matrices.
(c) p = 5, and [GL2(5) : H ] = 5.
(d) p = 3, and H is a Sylow 2–subgroup of GL2(3).
(e) p = 2, and H ⇠= C3.

Proof. The cases p = 2 and 3 are straightforward. So assume p � 5. If SL2(p) 
H , then H = GL2(p) and (a) holds, because the determinant of ⌧ 2 H is a genera-
tor of F?p.

So we assume in the following that H does not contain SL2(p). We first con-
tend that p does not divide the order of H . Suppose it does. Then H contains a
Sylow p–subgroup P of H . If P is normal in H , then H is conjugate to a group
of upper triangular matrices, hence not irreducible. Therefore P is not normal in
H , thus H contains at least 1 + p Sylow p–subgroups of GL2(p) (by Sylow’s
Theorem). But GL2(p) has exactly p + 1 Sylow p–subgroups, so H contains all
the p + 1 Sylow p–subgroups of GL2(p). But these Sylow p–subgroups generate
SL2(p), contrary to our assumption.

Set C = <⌧>, and let S ⇠= F?p be the group of scalar matrices. So CS is
the group of diagonal matrices. First assume that H normalizes CS. Then, by
irreducibility of H , some element in H must switch the two eigenspaces of C . It
follows quickly that H is monomial.

So finally suppose that CS is not normalized by H . Then there is a conju-
gate (CS)h with h 2 H , such that (CS) \ (CS)h = S. So we have |HS| �
|(CS)(CS)h| = (p�1)3 and (p�1)2 ||HS|. First note that we cannot have |HS| =
(p � 1)3 simply because (p � 1)3 does not divide |GL2(p)| = (p � 1)2 p(p + 1).
So |HS| � p(p � 1)2. But again equality cannot hold, for we noted already that
p does not divide |H |. So |HS| � (p + 1)(p � 1)2, hence [GL2(p) : HS]  p.
But PGL2(p) = GL2(p)/S acts faithfully on the coset space PGL2(p)/(HS/S)
and has an element of order p, hence [GL2(p) : HS] = p. A classical theorem of
Galois [23, II.8.28] says that if PSL2(p) has a transitive permutation representation
of degree p, then p  11. But one checks that GL2(p) does not have a subgroup of
index p for p = 7 and 11, thus p = 5. So |HS| = 96 = 16 ·2 ·3. Therefore CS (of
order 16) has a proper normalizer in HS. By an argument as above, we thus obtain
an element h 2 H which switches the eigenspaces of C . So <C,Ch>  H is the
group of diagonal matrices, in particular S  H . The claim follows.

The proof of the following lemma is straightforward, we leave it to the reader.
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Lemma 3.11. Let m � 2, p a prime, and Fmp = U � W with U and W invariant
under ⌧ 2 GLm(p). Assume that ⌧ acts as a Singer cycle on W .

(a) Let dimU = 1, and suppose that ⌧ act as the identity on U . Choose u 2 U ].
Then (⌧, u) 2 AGLm(p) acts as an element with cycle lengths p and pm � p
on Fmp .

(b) Let dimU = 2, p = 2, and suppose that ⌧ act as an involution on U . Choose
u 2 U with u 6= u⌧ . Then (⌧, u) 2 AGLm(2) acts as an element with cycle
lengths 4 and 2m � 4 on Fm2 .

3.3.1. Proof of part 1 of Theorem 3.3

We may assume that A  AGLm(p), acting on V = Fmp . So A is a semidirect
product A = A1oV , where A1 is a subgroup of GLm(p) in its natural action on V .

Let � be the element with the cycle lengths k and l. First note that k divides l,
for otherwise � l would fix pm > l > pm/2 points, which of course cannot happen
because � l is conjugate to an element in GLm(p), so the number of fixed points is
a power of p. Thus k = pr , l = pr (pm�r � 1) for some r 2 N0.

If k = l, then of course p = 2 and k = l = ord(� ) = 2m�1. Lemma 3.6
gives 2m�2  m, hence r = m � 1  3. The subgroups of AGLm(2) for m  2 are
easily handled with the computer algebra systems GAP [17] or Magma [3], yielding
the cases from the theorem. Also the other possibilities for the pairs (k, l) can be
quickly done with these systems. So if p = 2, we assume m � 5.

From now on we assume k < l. Then � k fixes exactly k = pr points on V . We
may assume that � k 2 GLm(p), so the fixed point set of � k is a subspace U of V .
Thus the elements of U constitute the k–cycle of � , so � acts as an affine map of
order pr on the r–dimensional spaceU . Apply Lemma 3.6 to see that r 2 {0, 1, 2},
and r  1 if p > 2.

We need to determine the possible groups A. If k = 1 we use a result of Kantor
[27] which classifies linear groups over a finite field containing an element which
cyclically permutes the non-zero elements. Note that � is just such an element.

Now suppose k = p. The element ⌧ := � p 2 GLm(p) fixes a line U ⇠= Fp
pointwise. As gcd(ord(⌧ ), p) = 1, Maschke’s Theorem gives a complement W of
U which is ⌧–invariant. As ⌧ has cycles of length ord(⌧ ) = pm�1 � 1 = |W ]| on
W ], we see that ⌧ permutes the elements of W ] cyclically. If m � 3, then Lemma
3.7 together with Proposition 3.9 handles the possibilities. If however m = 2, then
apply Lemma 3.10.

It remains to analyze the case p=2, r =2, so k = 4, l=4(2m�2 � 1). Recall
that m�5. Let � be the element with cycle lengths 4 and 2m � 4. We may assume
that � 4 2GLm(2). Similarly as above, we get V =U � W with dim(U) = 2, such
that � 4 is a Singer cycle onW and fixesU pointwise. Write � =⌧ t with ⌧ 2GLm(2)
and t 2V . Note that ⌧ 2 A since t 2 A. The action of � on V is given by h� =h⌧ t for
h2V . Thus the 4–cycle through 0 is {0, t, t⌧ t, t⌧2 t⌧ t}. These four elements are just
the elements of the Klein four groupU . The sum of the elements inU is 0, this gives
t⌧2 = t , so U = {t,t⌧ ,t⌧ t}. So ⌧ induces an involution on U . Next we want to see
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that W is ⌧–invariant. For v 2V one has v�
4
= v⌧

4 t⌧3 t⌧2 t⌧ t = v⌧
4
(t⌧ t)2= v⌧

4 . We
have W ⌧2 =W , for otherwise W 0 =W ⌧2\W is a proper subspace of W of positive
dimension (since m�5) which is ⌧ 2–invariant. But then W 0 is also invariant under
� 4 = ⌧ 4, contrary to the fact that � 4 is a Singer cycle on W . But W ⌧2 =W implies
that W ⌧ \ W is ⌧–invariant, and the same reasoning as before shows that W ⌧ =W .
Thus ⌧ itself is a Singer cycle on W , and we have exactly the situation given in
Lemma 3.8.

We have covered all possibilities. Use Lemma 3.11 to see that the groups listed
in 1b, 1c, and 1d indeed have an element of the required cycle type.

3.4. Product action

Set 1 = {1, 2, . . . , r} for r � 2, and let m � 2 be an integer. Then the wreath
product Sr oSm = (Sr ⇥Sr ⇥ · · · ⇥ Sr ) o Sm acts in a natural way on � :=
1⇥1⇥ · · · ⇥1. We say that a permutation group A acts via the product action,
if it is permutation equivalent to a transitive subgroup of Sr oSm in this action.

In order to avoid an overlap with the affine permutation groups, we quickly
note the easy:

Lemma 3.12. Let A be a primitive subgroup of Sr oSm where r  4. Then A is
affine.

Proof. Let N be the minimal normal subgroup of Sr oSm . Then N is elementary
Abelian of order rm . If A intersects N non-trivially, then N\A is a minimal normal
subgroup of A, and the claim follows. So suppose that |A\N | = 1. Then A embeds
into (Sr oSm)/N . But rm divides |A| by transitivity, so rm divides (r !)mm!/rm .
We get that 2m divides m! if r = 2 or 4, and 3m divides m! if r = 3. But if p is
a prime, then the exponent of p in m! is

P
⌫�0

⇥m
p⌫

⇤
<

P
⌫�0

m
p⌫ = m

p�1  m, a
contradiction.
Remark. One might expect that any primitive subgroup of an affine group is affine.
However, that is not the case. There seem to be very few counter-examples. The
smallest is as follows: Set A = AGL3(2) = C32 o A1. Then it is known (see
e.g. [23, page 161]) that H1(GL3(2),C32) = C2. So there is a complement U of
C32 in A which is not conjugate to A1. One checks that U acts primitively on the 8
points via U ⇠= GL3(2) ⇠= PSL2(7).

The following two lemmas are trivial but useful.

Lemma 3.13. Let 11, 12, . . . , 1m be finite sets, and gi be in the symmetric
group of 1i . Let oi be the cycle length of gi through �i 2 1i . Then the cy-
cle length of (g1, g2, . . . , gm) through (�1, �2, . . . , �m) 2 11 ⇥ 12 ⇥ · · · ⇥ 1m
is lcm(o1, o2, . . . , om). In particular, �<g1>1 ⇥ �

<g2>
2 ⇥ · · · ⇥ �

<gm>
m is the orbit

of <(g1, g2, . . . , gm)> through (�1, �2, . . . , �m) if and only if the oi are relatively
prime.
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Lemma 3.14. Let 11, 12, . . . , 1m be finite sets, and gi be in the symmetric group
of 1i . Let ci be the number of cycles of gi on 1i . Then (g1, g2, . . . , gm) has at
least c1c2 · · · cm cycles on 11 ⇥12 ⇥ · · · ⇥1m .

Lemma 3.15. Suppose r � 5 andm � 2. Let g = (�1, �2, . . . , �m)⌧ be an element
of Sr oSm , with �i 2 Sr and ⌧ 2 Sm an m–cycle. Then g has at least 3 cycles in
the product action.

Proof. Set g := gm = (�1, �2, . . . , �m) 2 Sm
r . Then

�i = �i�i+1 · · · �m�1 · · · �i�1,

so in particular the �i are pairwise conjugate in Sr . Suppose that g has at most 2
cycles. Then g has at most 2m cycles.

Let � be the number of cycles of �1. Then g has at least �m cycles by Lemma
3.14, hence �m  2m. This gives � = 1 unless m = 2 and � = 2. If � = 1, then g
has rm�1 cycles by Lemma 3.13, so rm�1  2m, hence r  4, a contradiction. So
suppose that m = 2 and �1 has two cycles. Then g has obviously at least 6 > 2m
cycles, a contradiction.

3.4.1. Proof of part 2 of Theorem 3.3

We assume that A  Sr oSm with r � 5 (by Lemma 3.12) and m � 2. Let
g = (�1, �2, . . . , �m)⌧ with �i 2 Sr , ⌧ 2 Sm . Assume that g has exactly 2 cycles.
By the previous lemmas, we get that m = 2 and ⌧ = 1, one of the �i must be an
r–cycle, and the other �i has two cycles, with lengths relatively prime to r .

We need to determine the groups which arise this way. The description of the
product action as in [37] shows that there is a primitive groupU with socle S acting
on 1 = {1, 2, . . . , r}, such that S ⇥ S E A  (U ⇥ U) o C2. Let g = (�1, �2)
be the element with the two cycles from above. Then (�2, �1) 2 (U ⇥ U) o C2.
Thus U contains an r–cycle, and an element with two cycles of coprime lengths.
In particular, U is not contained in the alternating group Ar , and so is not simple.
Furthermore,U is not affine. Taking Theorems 3.1 and 3.2 together gives that either
U = PGL2(p) for a prime p � 5, or U = Sr for r � 5. The element g shows that
U ⇥ U  A, but U ⇥ U is not primitive, so A = (U ⇥ U) o C2, and the claim
follows.
Remark 3.16. Case 1c of Theorem 3.3, that is A < AGL2(p) for a prime p >
2 and A1 the group of monomial matrices, can also be seen as a product action,
namely as A = (AGL1(p) ⇥ AGL1(p)) o C2 on p2 points.

3.5. Regular action

As an immediate consequence of the previous section we obtain

Theorem 3.17. Let A be a primitive non–affine permutation group with a regular
normal subgroup. Then A does not contain an element with two cycles.
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Proof. Let N be a regular normal subgroup of A. Then, by regularity, N is a mini-
mal normal subgroup of A, so N ⇠= Lm for some simple non–Abelian group L and
m � 2. Identify N with the set of points A is acting on, and let C be the centralizer
of N in the symmetric group S(N ) of N . If N acts from the right on N , thenC ⇠= N
acts from the left on N . Set H = L ⇥ L , and let the first and second component
act from the left and from the right, respectively. Then A is contained in the wreath
product H o Sm in product action, see [37, page 392]. Now apply Theorem 3.3 to
see that this cannot occur, a distinguishing property of H being that it is not doubly
transitive (in contrast to PGL2(p)).

3.6. Diagonal action

Let S be a non–Abelian simple group, and m � 2 an integer. Set N := Sm . Let N
act on itself by multiplication from the right. Furthermore, let the symmetric group
Sm act on N by permuting the components, and Aut(S) act on N componentwise.
Define an equivalence relation ⇠ on N by (l1, l2, . . . , lm) ⇠ (cl1, cl2, . . . , clm)
for c 2 S. The above actions respect the equivalence classes, so we get a per-
mutation group D acting on the set N/⇠ of size |S|m�1. Note that the diagonal
elements of N in right multiplication induce inner automorphisms of S on N/⇠,
for (i�1l1i, i�1l2i, . . . , i�1lmi) ⇠ (l1, l2, . . . , lm)(i, i, . . . , i).

We say that a permutation group A acts in diagonal action, if it embeds as a
transitive group of D with N  A. We begin with a technical result:

Proposition 3.18. Let S be a non–Abelian simple group, m � 2 be an integer, and
D be the group in diagonal action as above. Let o(Out(S)) and o(S) be the largest
order of an element in Out(S) and S, respectively. Then each element of D has at
least 1

o(Out(S))|S| (|S|/o(S))
m cycles.

Proof. Choose an element in D. Raise it to the smallest power such that the
contribution from Out(S) disappears. Let � 2 N o Sm be this element. Set
o = o(S). We are done once we know that � has at least 1

|S| (|S|/o)
m cycles. Write

� = (�1, �2, . . . , �m)⌧ with ⌧ 2 Sm and �i 2 S. Let ⌧ have u cycles of lengths
⇢1, ⇢2, . . . , ⇢u .

Without loss assume that the first ⇢1 coordinates of N = Sm are permuted in
an ⇢1–cycle (1 2 · · · ⇢1). Write ⇢ for ⇢1. Then �⇢ acts by right multiplication with

(�1, �2, . . . , �⇢) = (�1�2 · · · �⇢, �2�3 · · · �⇢�1, . . . , �⇢�1 · · · �⇢�1) 2 S⇢

on these first ⇢ coordinates. Note that all the elements �i have the same order
o0 because they are conjugate in S. So, by Lemma 3.13, �⇢ induces |S|⇢/o0 �
|S|⇢/o cycles on S⇢ , thus � induces at least |S|⇢/(⇢o) cycles on S⇢ . Apply this
consideration to the other ⌧–cycles and use Lemma 3.14 to see that the number of
cycles of � on N is at least

uY

i=1

|S|⇢i

⇢i o
=

|S|m

ou
uY

i=1

1
⇢i

� |S|m
⇣ u
mo

⌘u
,
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where we used the inequality between the arithmetic and geometric mean in the last
step. But the function (x/(mo))x is monotonously decreasing for 0  x  mo/e.
Note that o � 5 (because a group with element orders  4 is solvable), so mo/e >
m, but u  m. So the above expression is � (|S|/o)m . Furthermore, the number of
cycles of � on N is at most |S| times the number of cycles on N/⇠. From that we
get the assertion.

Theorem 3.19. Let A be a primitive permutation group in diagonal action. Then
A does not contain an element with at most two cycles.

Proof. Suppose there is a counterexample A, with associated simple group S.
Proposition 3.18 gives, as m � 2,

|S|  2o(S)2o(Out(S)).

If S is sporadic, then use list 3.3 on page 411 along with the group orders given in
the atlas [9] to see that this inequality has no solution. Next suppose that S = An is
alternating. Then Out(S) = C2 if n 6= 6, and Out(A6) = C2 ⇥C2, so o(Out(S)) =
2 in any case (see e.g. [23, II.5.5]). Use the bound o(S)  en/e from Proposition
3.22 to see that only n = 5 is possible with m = 2. But it is easy to take into
account the possible outer automorphism and show along the lines of the previous
proposition that the minimal number of cycles of an element in A is 4 (all of length
15), or one checks that with a GAP computation.

So we are left with the case that S is simple of Lie type. Using the information
about Out(S) and o(S) in the Tables 3.2 (page 410) and 3.1 (page 410) and in
Section 3.7.3 together with the order of S given for instance in the atlas [9], one
sees that the only group which does fulfill the above inequality is S = PSL2(7).
(One also has to use the atlas [9] in some small cases where the given bounds for
o(S) are too coarse in order to exclude S.)

However, the proof of the proposition above shows that we havem = 2, u = 2,
and ord(�1)ord(�2) � 168/4 = 42, hence ord(�1) = ord(�2) = 7, so � has at least
1682/(7 · 168) = 24 cycles on S2/⇠, a clear contradiction.

3.7. Almost simple action

By what we have seen so far, the only remaining case is the almost simple action.
The aim of the following sections is to show that only the cases listed in part 3
of Theorem 3.3 appear. See Section 3.7.11 where all the results achieved in the
following sections are bundled to give a proof of this assertion.

Many cases of almost simple permutation groups can be ruled out by compar-
ing element orders with indices of (maximal) subgroups of almost simple groups,
though some other require finer arguments. We give the following:
Definition 3.20. For a finite group X let µ(X) be the smallest degree of a faithful,
transitive permutation representation of X , and o(X) the largest order of an element
in X .
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We use the trivial:

Lemma 3.21. Let A be a transitive permutation group of degree n, and let � 2 A
have two cycles in this action. Then

n  2ord(� ) (3.1)
n  3ord(� )/2, if n is odd. (3.2)

3.7.1. Alternating groups

Using methods and results from analytic number theory, one can show that the
logarithm of the maximal order of an element in Sn is asymptotically

p
n log n,

see [34, Section 61]. Here, the following elementary but weaker result is good
enough for us – besides, we need an exact bound rather than an asymptotic bound
anyway.

Proposition 3.22. The order of an element in Sn is at most en/e for all n 2 N, and
at most (n/2)

p
n/2 for n � 6. (Here e = 2.718 . . . denotes the Euler constant.)

Proof. Let ⌫1, ⌫2, . . . , ⌫r be the different cycle lengths > 1 of an element g 2 Sn .
Then

ord(g) = lcm(⌫1, ⌫2, . . . , ⌫r )  ⌫1⌫2 · · · ⌫r ,

and
⌫1 + ⌫2 + · · · + ⌫r  n. (3.3)

The inequality between the arithmetic and geometric mean yields

ord(g) = lcm(⌫1, ⌫2, . . . , ⌫r )  ⌫1⌫2 · · · ⌫r 

✓P
⌫i

r

◆r


⇣n
r

⌘r
.

The function x 7! (n/x)x is increasing for 0 < x  n/e, and decreasing for
x > n/e. From that we obtain the first inequality. Suppose that ⌫1 < ⌫2 < · · · < ⌫r .
Then ⌫i � i + 1, and we obtain

n �
X

⌫i � 2+ 3+ · · · + r + (r + 1) =
r2 + 3r
2

>
r2

2
.

If n > 2e2 = 14.7 . . ., then r <
p
2n < n/e, and the claim follows from the

monotonicity consideration above. Check the cases 6  n  14 directly.

Now suppose that An  A  Aut(An) for n � 5. Note that except for
n = 6, Aut(An) = Sn by [23, II.5.5]. We exclude n = 6 in this section, and
treat this case in Section 3.7.3 about classical groups, because A6 ⇠= PSL2(9). So
A1 is a maximal subgroup of A not containing An . Let � 2 A have at most two
cycles on A/A1. We regard A1 as a subgroup of Sn � A in the natural action
on {1, 2, . . . , n} points. There are three possibilities for A1 with respect to this
embedding: A1 is intransitive, or transitive but imprimitive, or primitive. We treat
these three possibilities separately.



386 PETER MÜLLER

A1 intransitive. A1 leaves a set of size m invariant, with 1  m < n. Denote by
Mm the subsets of sizem of {1, 2, . . . , n}. By maximality of A1 in A and transitivity
of A on Mm we see that A1 is the full stabilizer in A of a set of m elements, thus the
action of A is given by the action on Mm . If m = 1, then we have the natural action
of A, leading to case 3a in Theorem 3. So for the remainder assume m � 2.

First consider the case that � is an n–cycle in the natural action. One of the
two cycles of � has length at least

�n
m
�
/2, so n �

�n
m
�
/2 � n(n � 1)/4, thus n = 5.

This case really occurs, and gives case 3b in Theorem 3.
Next suppose that � is not an n–cycle. Then � leaves (on {1, 2, . . . , n}) a set S

of size 1  |S|  n/2 invariant. Without loss m  n/2 (as the action on the m–sets
is the same as the action on the (n � m)–sets). Note that � cannot be an (n � 1)–
cycle by an order argument as above. So we can assume |S| � 2. For i = 0, 1, 2
choose sets Si of size m, such that i points of Si are in S, and the remaining m � i
points are in the complement of S. Then these three sets of course are not conjugate
under <�>.
A1 transitive but imprimitive. Let 1 < u < n be the size of the blocks of a
non–trivial system of imprimitivity. Then v := n/u is the number of blocks, and
A1 = (Su oSv) \ A = ((Su)

v o Sv) \ A in the natural action (not to mistake with
the product action).

The index of A1 in A thus is n!/((u!)vv!). We will use the bounds in Lemma
3.21 and Proposition 3.22 to see that this case does not occur. The proof is based
on the following

Lemma 3.23. Let u, v � 2 be integers, then

u!vv! <
1
2

(uv)!

euv/e , (3.4)

except for (u, v) = (2, 2), (3, 2), (4, 2), and (2, 3).

Proof. We contend that if the inequality (3.4) holds for (u, v), then it holds also for
(u, v + 1). First

3 < 4.31 . . . =

✓
3
e1/e

◆2


✓
3
e1/e

◆u
=) eu/e < 3u�1  (v + 1)u�1.

This implies
(v + 1)eu/e < (v + 1)u . (3.5)

But
v + 1 

uv + i
i

for i = 1, 2, . . . , u, so taking the product over these i yields

(v + 1)u 

✓
uv + u
u

◆
=) (v + 1)eu/e 

✓
uv + u
u

◆



CYCLIC TWO-ORBITS SUBGROUPS AND MONODROMY GROUPS 387

by (3.5). Multiply the resulting inequality

u!(v + 1) <
(uv + u)!
(uv)!eu/e

with (3.4) to obtain the induction step for v. Next we show that (3.4) holds for v = 2
and u � 7. As

�2u
u
�
appears as the biggest binomial coefficient in the expansion of

(1+ 1)2u , we obtain
�2u
u
�

� 1
2u+12

2u . Inequality (3.4) for v = 2 reduces to
✓
2u
u

◆
> 4e2u/e.

So we are done once we know that

1
2u + 1

22u > 4e2u/e,

which is equivalent to ✓
2
e1/e

◆2u
> 4(2u + 1).

But it is routine to verify this for u � 7. In order to finish the argument, one verifies
(3.4) directly for u < 7 and the least value of v where the inequality is supposed to
hold.

As uv � 5 and uv 6= 6 by our assumption, we have the only case u = 4, v = 2.
But 8!/(4!22!) = 35, and the maximal order of an element in S8 is 15, contrary to
Lemma 3.21.

A1 primitive. Now suppose that A1 is primitive on {1, 2, . . . , n}, hence
h
n+1
2

i
! 

[Sn : A1] by a result of Bochert, see [2] or [62, 14.2]. Here [x] denotes the biggest
integer less than or equal x . As A has index at most 2 in Sn , we obtain from Lemma
3.21 and Proposition 3.22


n + 1
2

�
!  2[A : A1]  4en/e.

However, one verifies that for n = 9 and 12 the following holds

n + 1
2

�
! > 4en/e. (3.6)

But if (3.6) holds for some n � 9, then it holds for n + 2 as well, as the left
side grows by the factor [(n + 3)/2], whereas the right side grows by the factor
e2/e < [(n + 3)/2]. So we are left to look at the cases n 2 {5, 7, 8, 10}.

Suppose n = 5. The only maximal transitive subgroup of S5 not containing
A5 is A := C5 oC4, and the only maximal transitive subgroup ofA5 is A \ A5 =
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C5 o C2. So the index is 6, and these cases indeed occur and give 3c in Theorem 3
for p = 5.

Now assume n = 7. The only transitive subgroups of S7 which are maximal
subject to not containing A7 are AGL1(7) and PSL3(2). Of course, the index of
AGL1(7) in S7 is much too big. The group PSL3(2) is contained in A7, and has
index 15. But the maximal order of an element inA7 is 7 < 15/2, so this case does
not occur by Lemma 3.21.

Now assume n = 8. Similarly as above, we see that the only case which does
not directly contradict Lemma 3.21 is A1 = AGL3(2) inside PSL4(2) ⇠= A8. But
then A = PSL4(2) in the natural degree 15 action on the projective space. Lemma
3.48 shows that this case actually does not occur.

Finally, if n = 10, then we keep Bochert’s bound, but we use Proposition 3.22
to see that the order of an element in S10 is at most 5

p
5 = 36.55 . . . , hence at most

36. (The exact bound is 30.) So 5!  2 · 36 by Lemma 3.21, a contradiction.

3.7.2. Sporadic groups

Let S be one of the 26 sporadic groups. Table 3.3 on page 411 contains information
about small permutation degrees, big element orders, and the outer automorphism
group. The atlas [9] contains all this information except for the maximal subgroups
of the Janko group J4, the Fischer groups Fi22, Fi23, and Fi 024, the Thompson
group Th, the baby monster B, and the monster group M . For the groups J4, Fi22,
Fi23, and Th we find the necessary information in [31–33], and [39], respectively.
The bounds for the groups Fi 024, B, and M are not sharp, and have been obtained
as follows from the character tables in [9]: If M is a proper subgroup of S with
index n, then the permutation character for the action of S on S/M is the sum of the
trivial character and a character of degree n � 1 which does not contain the trivial
character. Thus n � 1 is at least the degree of the smallest non–trivial character of
S. (In view of the applications we have in mind we could have used this argument
in most other cases as well.)

Now S  A  Aut(S) for a sporadic group S. Let � 2 A be an element
with only two cycles in the given permutation action. By Lemma 3.21 we get
µ(S)  2|Out(S)|o(S). We see that the only possible candidates for S are the five
Mathieu groups.

The atlas [9] provides the permutation characters of the simple groups of not
too big order on maximal subgroups of low index. In the case of the Mathieu groups
in the representations which are possible, we thus can immediately read off the cycle
lengths of an element. Namely the atlas also tells in which conjugacy class a power
of an element lies, so we can compute the fixed point numbers of all powers of a
fixed element.

S = M11. Then A = M11 either in the natural action of degree 11, or in the
action of degree 12. The degree 11 case cannot occur for the following reason. By
Lemma 3.21 ord(� ) � (2/3)11, so ord(� ) = 8 or 11. An element of order 11 is an
11–cycle. An element of order 8 has a fixed point, so if it would have two cycles,
the other cycle length had to be 10, which is nonsense. Now look at the degree
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12 action. Then of course an element of order 11 has cycle lengths 1 and 11, and
one readily checks that an element of order 8 has cycle lengths 4 and 8, whereas an
element of order 6 has a fixed point, hence must have more than 2 cycles.

S=M12. The smallest degree of a faithful primitive representation of Aut(M12)
is 144 (see [9]), which is considerably too big. So we have A = M12 in its natural
action. As M11 < M12, the elements of order 11 and 8 in M11 with only two cycles
appear also in M12. Besides them, an element of order 10 has cycle length 2 and
10, and an element in one of the two conjugacy classes of elements of order 6 has
cycle lengths 6.

S = M22. We have the natural action of S of degree 22, and A  M22 o C2.
An element of order 11 has two cycles of length 11. An element in S of order 8
has cycle lengths 2, 4, 8, 8, so this element cannot be the square of an element with
only 2 cycles. An element of order 7 has one fixed point, so it cannot arise either.
And an element in S of order 6 has 6 cycles, so is out too.

S = M23. Here A = M23 in the natural action of degree 23. An element of
order 23 is a 23–cycle. Looking at the fixed points of elements of order 3 and 5 we
see that an element of order 15 has cycle lengths 3, 5, and 15. Similarly, an element
of order 14 has cycle lengths 2, 7, and 14. So this group does not occur at all.

S = M24. Here A = M24 in the action on 24 points. One quickly checks
that the elements of order 14 and 15 have a fixed point, so they do not occur. The
elements of order 23, 21, and from one of the two conjugacy classes of elements of
order 12 have indeed two cycles of the lengths as claimed.

3.7.3. Element orders in classical groups

Suppose that S is a classical group. Our goal is to show that S = PSLm(q), and that
except for a few small cases, the action is the natural one on the projective space
over Fq . The main tool for doing that are good upper bounds for element orders in
automorphism groups of classical groups.

The following lemma controls the maximal possible orders of elements in lin-
ear groups, if they are decorated with a field automorphism.

Lemma 3.24. Let q be a power of the prime p, Fp be an algebraic closure of Fp,
and G  GLn(Fp) be a connected linear algebraic group defined over Fp. For E
a subfield of Fp, denote by G(E) the group G \ GLn(E) of E–rational elements.

Suppose that E is finite, and let � 2 Aut(E). Then G(E) is normalized by
<�>. Take g = � h in the semidirect product of<�>withG(E), where h 2 G(E).
Let f be the order of � , and F the fixed field in E of � . Then g f is conjugate in G
to an element in G(F).

Proof. Clearly <�> normalizes G(E), as G is defined over Fp. We compute

g f = h�
f�1

· · · h� h,

thus
(g f )� = hg f h�1.
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Extend � to Fp, and denote the induced action on G also by � . By Lang’s Theorem
(see [57, Theorem 10.1]), the map w 7! w�w�1 from G to G is surjective. Thus
there is b 2 G with

h = b� b�1.

Therefore
(b�1g f b)� = b�1g f b,

so b�1g f b is fixed under � , hence contained in G(F).

In order to apply this lemma, we need the following easy estimate:

Lemma 3.25. Let q, f, r be positive integers such that 2 f  q. Then f ·qr/ f  qr .

Proof. We have
qr(1�1/ f ) � 2r( f�1) � 2 f�1 � f,

and the claim follows after multiplying with qr/ f .

Lemma 3.26. Let q be a power of the prime p. Let � 2 GLn(q) act indecom-
posably on V := Fnq . Then the order of � divides pb(qu � 1), where u divides
n, and pb�1  n/u � 1 if b > 0. Furthermore, � pb(qu�1)/(q�1) is a scalar, and
pb(qu � 1)  qn � 1. So in particular ord(� )  qn � 1, and the order of the image
of � in PGLn(q) is at most (qn � 1)/(q � 1).

Proof. Write � = �p0�p, where �p0 and �p are the p0–prime part and p–part of � ,
respectively. Let

V = U1 �U2 � · · · �Um,

be a decomposition into irreducible �p0–modules. Such a decomposition exists by
Maschke’s theorem. LetU be the sum of thoseUi which are �p0–isomorphic toU1.
As �p commutes with �p0 , we get that U�p

i is �p0–isomorphic to Ui for each i . By
Jordan–Hölder,U is a �–invariant direct summand of V . The indecomposability of
V with respect to � gives U = V , so all Ui are �p0–isomorphic.

Let u be the common dimension of Ui , so n = um. By Schur’s Lemma, the
restriction of �p0 to each Ui can be identified with an element of the multiplicative
group of Fqu . As � commutes with �p0 , we can consider � and �p as elements in
GLm(qu). So either �p = 1, or pb := ord(�p)  p(m � 1) by Lemma 3.5. Also,
with respect to this identification, �p0 is a diagonal matrix. So � (qu�1)/(q�1)

p0 acts as
a scalar �i 2 F?q on Ui . However, the �i are independent of i , because the Ui are
�p0–isomorphic.

To finish the claim, we need to show that pb(qu � 1)  qum � 1. This is clear
for b = 0. For b � 1, this follows from pb  p(m � 1) and

qum � 1
qu � 1

= 1+ qu + · · · + qu(m�1) � 1+ qu(m � 1) > pb.

(Note that b � 1 implies m > 1.)
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We obtain the following consequence

Proposition 3.27. Let q be a prime power, and n � 2.

1. If � 2 0Ln(q), then ord(� )  qn � 1.
2. If � 2 P0Ln(q), then ord(� )  (qn � 1)/(q � 1), except for (n, q) = (2, 4).

Proof. First assume that � 2 GLn(q), and denote by � the image of � in PGLn(q).
Let Fnq =: V = V1 � · · · � Vr be a decomposition of V into �–invariant and �–
indecomposable modules Vi . Let ni be the dimension of Vi . By Lemma 3.26, the
order of the restriction of � to Vi divides ai := pbi (qui � 1), where ui divides ni ,
and ai  qni � 1. The order of � divides the least common multiple of the ai . First
suppose that r > 1. Then q � 1 divides each ai , so

ord(� )  lcm(a1, . . . , ar )
 (a1 · · · ar )/(q � 1)
 (qn1 � 1) · · · (qnr � 1)/(q � 1)
 (qn � 1)/(q � 1).

If however r = 1, then Lemma 3.26 applies directly. So in either case, (a) and (b)
hold for GLn(q) and PGLn(q), respectively.

Now assume that � 2 0Ln(q) \ GLn(q), and let f be the smallest positive
integer with � f 2 GLn(q). Note that f � 2. By Lemma 3.24, ⌧ := � f is
conjugate to an element ⌧ 0 2 GLn(r), where r := q1/ f . (We take the natu-
ral inclusion GLn(r) < GLn(q).) Part (a) is clear, as, by what we saw already,
ord(� )  f ord(� f ) < f rn  qn , where we used Lemma 3.25 in the last step.

Part (b) requires a little more work. We have, similarly as above,

ord(� )  f
rn � 1
r � 1

,

and are done once we know that

f
rn � 1
r � 1


rn f � 1
r f � 1

=
qn � 1
q � 1

which is equivalent to

f
r f � 1
r � 1


rn f � 1
rn � 1

. (3.7)

Note that (x f �1)/(x�1) = 1+x+· · ·+x f�1 is strongly monotonously increasing
for x > 1, so inequality (3.7) holds once it holds for n = 2. In this case, we have
to show that f  (r f + 1)/(r + 1). It is easy to see that this last inequality holds
except for f = 2, r = 2. But then (3.7) is equivalent to 6  2n +1, which is clearly
the case for n � 3.
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Remark. P0L2(4) is indeed an exception for part (b) of the previous theorem.
Note that P0L2(4) ⇠= S5, so this group contains an element of order 6 > 5 =
(42 � 1)/(4� 1).

Lemma 3.28. Let V be a vector space of dimension n � 2 over Fq with a non–
degenerate bilinear form  = (·, ·). Let ⌧ 2 Isom(V, ) be an isometry with respect
to this form, and assume that ⌧ is irreducible on V . Then n is even and the order of
⌧ divides qn/2 + 1.

Proof. By Schur’s Lemma we have V ⇠= Fqn , and the action of ⌧ induced on Fqn
is by multiplication with � 2 F⇤

qn , where Fq [�] = Fqn . The eigenvalues of ⌧ then
are the powers �qi for i = 0, 1, . . . , n � 1. Let vi 2 V ⌦ Fqn be an eigenvector to
the eigenvalue �qi . The form (·, ·) extends naturally to a non–degenerate form on
V ⌦ Fqn . Thus there exists i with (v0, vi ) = c 6= 0. This gives c = (v⌧0 , v

⌧
i ) =

(�v0, �
qi vi ) = �1+q

i
(v0, vi ) = �1+q

i c, so �1+qi = 1. Thus � 2 Fq2i , so n | 2i . But
i < n, hence 2i = n, and the claim follows.

Lemma 3.29. Let V be a vector space over the finite field F with a non–degenerate
symmetric, skew–symmetric, or hermitian form  = (·, ·). Write F = Fq if  is
bilinear, and F = Fq2 if  is hermitian. Let � 2 Isom(V, ) be an isometry with
respect to  . Suppose that � is semisimple and orthogonally indecomposable, but
reducible on V . Then the following holds:

V = Z � Z 0, where Z and Z 0 are �–irreducible and totally isotropic spaces
of the same dimension. Let 3 and 30 be the set of eigenvalues of � on Z and Z 0,
respectively. Then

30 =

(
{��1| � 2 3} if  is bilinear,
{��q | � 2 3} if  is hermitian.

Furthermore, if  is not skew–symmetric, then Z is not �–isomorphic to Z 0.

Proof. Let Z be a �–invariant subspace of minimal positive dimension, in particular
Z is �–irreducible. Also Z? is �–invariant. Furthermore, Z is totally isotropic, for
otherwise V = Z?Z? by irreducibility of Z . As � is semisimple, there is a �–
invariant complement Z 0 of Z? in V . From dim(Z 0) = dim(V ) � dim(Z?) =
dim(Z) and the minimality of dim(Z) we get that Z 0 is �–irreducible as well. We
get V = Z � Z 0 once we know that Z � Z 0 is not degenerate. But this follows from

(Z � Z 0) \ (Z � Z 0)? = (Z � Z 0) \ Z? \ (Z 0)? = Z \ (Z 0)? = {0},

where the latter equality holds because Z 0 is a complement to Z?, therefore Z is
not contained in (Z 0)?. Next we show the assertion about the eigenvalues if  is
bilinear. Let � be an eigenvalue of � with eigenvector v 2 Z⌦Fq . Letw 2 Z 0 ⌦Fq
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be such that V ⌦ Fq is the span of w and v?, and that w is an eigenvector of � . Let
µ be the corresponding eigenvalue. By construction, ⇢ := (v,w) 6= 0, hence

⇢ = (v,w) = (v� , w� ) = (�v, µw) = �µ⇢,

and the claim follows, as we can also switch the role of Z and Z 0 in this argument.
The case that  is hermitian is completely analogous.
Finally, suppose that  is not skew–symmetric, and assume in contrary that

there is a �–isomorphism � : Z 7! Z 0. Let R = Fq [� ]  End(V ) be the algebra
generated by � . As  is not skew–symmetric, there is an element v 2 V with
(v, v) 6= 0. Write v = z + z0 with z and z0 in Z and Z 0, respectively. Clearly z and
z0 are non–zero. By Schur’s Lemma, R acts sharply transitively on the non–zero
elements of Z 0, in particular, there is ⇢ 2 R such that (z�)⇢ = z0. Let  : Z 7! V
be the homomorphism defined by w := w + (w�)⇢ . This map is clearly injective,
 commutes with � , so the image Z has the same dimension as Z , and of course
is �–irreducible as well. By construction, the element v = z is not isotropic,
so Z is not totally isotropic, thus  restricted to Z is not degenerate. We get
V = Z ?(Z )?, contrary to indecomposability.

Remark. Let V be 2–dimensional with a non–degenerate skew–symmetric form,
and � the identity map. As V is clearly not the orthogonal sum of two 1-dimensional
spaces, we cannot dispense of the assumption that  is not skew–symmetric in the
last part of the lemma.

We now extend the previous lemma to those � which are not necessarily
semisimple.

Lemma 3.30. Let V be a vector space over Fq with a non–degenerate symmetric,
skew–symmetric, or hermitian form  = (·, ·). Let � 2 Isom(V, ) be an isome-
try with respect to this form. Assume that � is orthogonally indecomposable, but
reducible on V . Denote by �p0 the p0–part of � . Then the following holds:

V = (U1?U2? . . .?Ur )?((Z1 � Z 0
1)? . . .?(Zs � Z 0

s)),

where the Ui , Zi and Z 0
i are �p0–irreducible, the Ui and (Zi � Z 0

i ) are not degen-
erate, the Zi and Z 0

i are totally isotropic and the Ui , Zi and Z
0
i have all the same

dimension. Also, r + 2s � 2.

Proof. Choose an orthogonal decomposition of V into non–trivial �p0–invariant
subspaces of maximal length, so these subspaces do not decompose orthogonally
into smaller �p0–invariant spaces. Let the Ui be those subspaces which are �p0–
irreducible, and let the (Zi � Z 0

i ) be the remaining ones according to the previous
lemma.

The �p0–homogeneous components H1, H2, . . . are �–invariant as a conse-
quence of Jordan–Hölder. Let H be the sum of those Hk where the irreducible
summands of Hk have the same dimension as those of H1. Then Zi appears in H if
and only if Z 0

i appears in H . The orthogonal indecomposability of � forces H = V .
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Suppose that r + 2s < 2. Then s = 0 and r = 1, that is � is irreducible on
V = U1, a contradiction.

Lemma 3.31. Let q � 2 andm1,m2, . . . ,m⇢ be distinct positive integers with sum
m. Then

⇢Y

i=1
(qmi + 1)  e1/(q�1)qm .

Proof. For x real we have 1 + x  ex . Substitute x = 1/qmi and multiply by qmi

to obtain
qmi + 1  qmi e1/q

mi
.

Multiply these inequalities for i = 1, 2, . . . , ⇢ to obtain
Y

(qmi + 1)  qme6,

with

6 =
⇢X

i=1

1
qmi


1X

k=1

1
qk

=
1

q � 1
,

as the mi are distinct. The claim follows.

Lemma 3.32. Use the notation from Lemma 3.30 with  bilinear, and let z be the
common dimension of the spaces Zi , Z 0

i , Ui . Set w := r + 2s, thus v := dim(V ) =
wz. Then there is a non–negative integer b, such that ord(� ) divides pb(qz � 1).
Furthermore,

ord(� ) 

8
><

>:

2q[v/2] in any case,
q[v/2] if ord(� ) is odd,
q[v/2] if q is even, and (q, w, z) 6= (2, 2, 2) or (2, 3, 2),

If q = 2 and v = 4 or 6 and ord(� ) > 2v/2, then ord(� ) = 6 if v = 4, and
ord(� ) = 12 if v = 6.

Proof. As the spaces Zi , Z 0
i , and Ui are all �p0–irreducible of dimension z, it fol-

lows that the order of �p0 divides qz � 1. Let pb be the order of the p–part of � .
As w � 2, hence z  [v/2], the stated inequalities clearly hold for b = 0. Thus
assume b � 1 from now on.

First assume p > 2. We are clearly done except if

pb(qz � 1) > 2q[wz/2]. (3.8)

From (3.8) we obtain
pbqz > 2q[wz/2].
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As each factor except 2 is divisible by p, we obtain from that even sharper

pbqz � pq[wz/2],

hence
pb�1qz � q[wz/2]. (3.9)

Let w0 be the number of elements in a maximal subset of the summands Zi , Z 0
i ,

andUi which are pairwise �p0–isomorphic. Then the restriction of �p to the sum of
these spaces can be seen as an element in GLw0(qz), so the order of this restriction
is bounded by p(w0 � 1), see Lemma 3.5. Clearly w0  w, hence pb�1  w � 1.
So with (3.9) we obtain further

w � 1 � q[wz/2]�z .

We first contend that w  5, and that z = 1 if w > 2. For suppose z � 2. Then
[wz/2] � z � w � 2, as w � 2. So w � 1 � qw�2, which gives w = 2. Is is
easy to see that w � 1 � q[w/2]�1 gives w  5. Suppose w = 4 or 5. We obtain
q = 3. Furthermore, b  2, so b = 2 for otherwise we are done (check (3.9)). As V
decomposes into 1–dimensional eigenspaces for �30 , the eigenvalues are in F3 \ {0},
so we have that ord(�30) is at most 2, hence the order of � is at most 2 · 32 = 18,
the exact bound we wanted to prove (and which is sharp indeed).

Now suppose w = 3. Clearly b = 1. We have either r = 3, s = 0, or r = 1,
s = 1. In the first case �p0 restricts to an element of order at most 2 on each Ui , so
the order of � divides 2p, and the claim follows. Thus assume r = 1, s = 1. Let
� be the eigenvalue of �p0 on U1. Clearly � = ±1. Also, � is an eigenvalue on Z1
or Z 0

1, for otherwise U1 were �–invariant, contrary to orthogonal irreducibility. By
Lemma 3.29 the eigenvalues on Z and Z 0 then are±1, so the order of �p0 is at most
2, and we are done again.

Finally, we have to look at w = 2. Here we have not necessarily z = 1.
First suppose that s = 0, that is V = U1 � U2. The order of �p0 on V divides
q[z/2] + 1. The claim follows as p(q[z/2] + 1)  2qz = 2q[v/2]. Thus suppose
that r = 0, s = 1, so V = Z1 � Z 0

1. Let � 2 Fqz be an eigenvalue of �p0 on Z1.
By irreducibility, the eigenvalues of �p0 on Z1 are �q

i for i = 0, 1, . . . , z � 1. By
Lemma 3.29, the inverses of these eigenvalues are the eigenvalues of �p0 on Z 0

1. We
contend that these two sets are the same. Namely as � is not semisimple, it cannot
leave invariant both Z1 and Z 0

1. So without loss Z
�p
1 6= Z1, and we obtain that Z1

and Z 0
1 are �p0–isomorphic by Jordan–Hölder. So the set of eigenvalues on Z1 is

closed under inversion, in particular there is an i such that ��1 = �q
i . This gives

�q
2i�1 = 1, so � 2 Fq2i . We obtain that z divides 2i < 2z, as Fqz = Fq [�]. If

i = 0, then � = ±1, so �p0 has order at most 2, and the claim clearly follows, as
b = 1. If i > 0, then z = 2i , so the order of �p0 divides qz/2 + 1, and the claim
follows again from (qz/2 + 1)p < 2qz/2q  2qz = 2q[v/2].
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We are left to look at the case p = 2. As the form is not degenerate, we have
necessarily v = wz even. We proceed similarly as above. Recall that b � 1. We
are done unless

2b(qz � 1) > qwz/2. (3.10)

From that we obtain
2b > qwz/2�z,

hence
2b�1 � qwz/2�z, w � 1 � qwz/2�z, (3.11)

as 2b�1  w � 1. If z � 2, then w � 1 � qw�2, hence either w = 3, q = 2, z = 2;
or w = 2. The first case gives 2b�1  w � 1 = 2, so b  2, hence ord(� ) = 12 or
 6 < 23 = 2v/2.

Thus we have z = 1 except possibly for w = 2. First assume w > 2, so w � 4
is even. We obtain w  6 from (3.11). Suppose w = 6. Then q = 2 and b  3,
and we obtain a contradiction to (3.10). Next suppose w = 4. Again q = 2. From
(3.10) we obtain 2b > 22, hence b � 3, a contradiction to 4  2b�1  w � 1 = 3.

Finally, suppose w = 2. Clearly b = 1. The argument from the last paragraph
in the case p > 2 shows that the critical case is when z is even and ord(� ) divides
2(qz/2 + 1). Now

2(qz/2 + 1) = qz � ((qz/2 � 1)2 � 3)  qz = q[v/2]

except for q = 2, z = 2.

Proposition 3.33. Let � 2GLn(q) be an isometry with respect to a non-degenerate
skew–symmetric or symmetric bilinear form on Fnq . Then

ord(� ) 

8
>>><

>>>:

2q[n/2] if q is odd,
q[n/2] if q and ord(� ) are odd,
e1/(q�1)q[n/2] < 2q[n/2] if q 6= 2 is even,
(3e/2)2[n/2] if q = 2.

Proof. Choose a decomposition of V into orthogonally indecomposable � -invariant
subspaces. The order of � is the least common multiple of the orders of the restric-
tion of � to these subspaces. Lemmas 3.28 and 3.32 give upper bounds for these
orders.

In the following we use several times the trivial inequality

[u1/2] + [u2/2] + · · · + [uk/2]  [(u1 + u2 + · · · + uk)/2]

for integers ui .
First suppose that q is odd. Let U be such a subspace of dimension u. If U is

�–irreducible, then ord(� |U ) is at most q[u/2] + 1, so the order is at most (q[u/2] +
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1)/2  q[u/2] if ord(� |U ) is odd, and at most q[u/2] + 1  2q[u/2] otherwise.
The assertion follows if U = V . So suppose U < V . By induction, the stated
bound holds for the restriction of � to U?. Let u = dim(U?). If the orders of the
restriction of � to U and U? are relatively prime, then at least one of the orders is
odd, and we obtain the claim by multiplying the corresponding upper bounds. If
these orders are not relatively prime, then the product of these orders divided by 2
is an upper bound for the order of � , so the claim holds as well.

Now suppose that q is even. Let Wi be those subspaces from above on which
� acts irreducibly, and let W be the sum of these spaces. Set w := dim(W ), and
let 1 < w1 < w2 < . . . be the distinct dimensions of the spaces Wi . Note that if
dim(Wi ) = 1, then the restriction of � to Wi is trivial. By Lemma 3.28, the wi are
even, and the order of the restriction of � to the associated space divides qwi/2 + 1.
Thus the order of � |W divides the product of the qwi/2+1. This product is less than
e1/(q�1)q[w/2] by Lemma 3.31. If q 6= 2, then apply the bounds in Lemma 3.32 to
the summands of W? to get the claim. Finally suppose q = 2. We are done except
if one of the summands Q of W? has dimension 4 or 6, and � |Q has order 6 or
12, respectively. The stated inequality then holds for W?Q. If there are more such
summands Q0 in W?, then they do contribute at most by a factor 2 < 2[dim(Q0)/2]

to the order of � . All other summands of dimension r contribute by a factor of at
most 2[r/2], so the claim follows.

In a few places we need the following trivial fact:

Lemma 3.34. Let 1  i < m and q � 2 be integers. Let " be �1 or 1. Then

(qm + ")(qm�1 � ")

qi � 1
> q2m�1�i .

Proof. Clearly qm�i � 1 � "(q � 1). Multiply by qm�1 to get q2m�1�i � qm�1 �
"(qm�qm�1), hence q2m�1�i�1 > "(qm�qm�1). But this inequality is equivalent
to the stated one.

As before denote by µ(S) and o(S) a lower bound for the degree of a faithful
permutation representation and an upper bound for the order of an element, respec-
tively. The minimal permutation degrees µ(S) have been determined by Cooper-
stein and Patton – we use the “corrected” list [30, Theorem 5.2.2] which still con-
tains a mistake (giving the wrong µ for P�+

2m(3)). We exclude the group PSL2(5),
as PSL2(5) ⇠= A5, a case we already dealt with. Besides that, the list [30, Theo-
rem 5.2.2] contains a few duplications. Accordingly, we drop PSp4(3) in view of
PSp4(3) ⇠= PSU4(2) and Sp4(2)0 in view of Sp4(2)0 ⇠= PSL2(9).

Assume that the almost simple group A acts primitively and contains an el-
ement with at most two cycles. We consider the case that the minimal normal
subgroup S of A is a classical group. The aim of this section is to show that S is
isomorphic PSLm(q), a case to be handled afterwards.
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3.7.4. S symplectic

Lemma 3.35. Let S = PSp2m(q) be the simple symplectic group, and � 2 Aut(S).
Then

ord(� ) 

8
>>><

>>>:

4qm if q is odd,
e1/(q�1)qm if q 6= 2 is even, m � 3,
2e1/(q�1)q2 if q 6= 2 is even, m = 2,
(3e/2)2m if q = 2, m � 3.

In particular, ord(� )  4qm if q 6= 2.
Proof. Let q = pr with p a prime. If q is odd, then Out(S) = C2 ⇥ Cr , see [30,
Theorem 2.1.4, Prop. 2.4.4], where Cr comes from a field automorphism. Thus
� 2 has a preimage ⌧ in Sp2m(q) o Aut(Fq). Let f be the order of the associated
field automorphism. By Lemma 3.24, ⌧ f is conjugate to an element in the group
Sp2m(q1/ f ), whose element orders are bound by 2qm/ f by Proposition 3.33. Thus ⌧
has order at most 2 f qm/ f  2qm , where we used Lemma 3.25. The claim follows
in the odd case.

If q is even, then Out(S) = Cr if m � 3. Argue as above. If m = 2, then
Out(S) is cyclic of order 2r , and the square of a generator is a field automorphism,
see [8, Chapter 12]. The claim follows as above.

Now we rule out the symplectic groups in the order as they appear in Table 3.1
on page 410.

m � 2, q � 3, (m,q) 6= (2, 3). Let � 2 Aut(S). The minimal faithful per-
mutation degree of S is (q2m � 1)/(q � 1). As q � 3, we get ord(� )  4qm by the
previous Lemma. So Lemma 3.21 gives

q2m � 1
q � 1

 2ord(� )  2 · 4 · qm .

Note that the left hand side is bigger than q2m�1, so it follows that qm�1 < 8. Thus
m = 2 and q  7. But (74 � 1)/(7 � 1) = 400 > 392 = 8 · 72, so q = 7 is out.
Thus q = 4 or 5. But ord(� )  20 for q = 4, and ord(� )  30 for q = 5, see the
atlas [9]. These improved bounds contradict the above inequality.

m � 3, q = 2.We get µ(S) = 2m�1(2m � 1)  2(3e/2)2m , hence 2m � 1 
6e, so m = 3 or 4. If m = 4, then the atlas gives ord(� )  30, contrary to
µ(S)  2ord(� ). Thus m = 3. The atlas gives ord(� )  15, and the next biggest
element order is 12. Also, there is a maximal subgroup of index 28, and the next
smallest has index 36. So ord(� ) = 15 and n = 28. But 15 = lcm(k, 28 � k) has
no solution, therefore � must have more than 2 cycles in this representation.

3.7.5. S orthogonal in odd dimension

Lemma 3.36. Let S = �2m+1(q) be the simple orthogonal group with q odd, m �
3, and � 2 Aut(S). Then

ord(� )  2qm .
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Proof. Set V = F2m+1
q , V = V ⌦ Fq , and let  be the standard bilinear form on V .

The algebraic group G := SL(V ) \ Isom(V , ) is connected. Let � be in Aut(S).
By the structure of the automorphism group of S (see [30, Prop. 2.6.3]), we find a
preimage ⌧ of � in Isom(V, )oAut(Fq). As Isom(V, ) is an extension of G(Fq)
by the scalar �1, we may assume that ⌧ 2 G(Fq) o Aut(Fq). Now use Lemma
3.24 together with Proposition 3.33 and Lemma 3.25 to get the conclusion.

m � 3, q � 5 odd. We get a stronger inequality as in the previous case S =
PSp2m(q), where we saw that there is no solution for m � 3.

m � 3, q = 3.We get 3m(3m � 1)/2  2 · 2 · 3m , hence 3m  9, so m  2, a
contradiction.

3.7.6. S Orthogonal of Plus Type

Lemma 3.37. Let S = P�+
2m(q) be the simple orthogonal group with Witt defect

0, and � 2 Aut(S). Write q = p f for p a prime. Then

ord(� ) 

8
>>>>>>><

>>>>>>>:

4 f qm  2qm+1 if q is odd, m � 5,
8 f q4  4q5 if q is odd, m = 4,
2 f qm  qm+1 if q 6= 2 is even, m � 5,
(9/2) f q4  (9/4)q5 if q 6= 2 is even, m = 4,
(3e/2)2m if q = 2, m � 5,
30 if q = 2, m = 4.

Proof. Let  be the bilinear form associated to S. First suppose that m � 5. As-
sume q odd first. Then � 2 f has a preimage in Isom(F2mq , ), this follows from the
structure of the automorphism group of S, see [30, Theorem 2.1.4, Table 2.1.D].
Now apply Proposition 3.33, and note that 2 f  q. If q is even, then � f already
has a preimage in Isom(F2mq , ), hence if q 6= 2, then ord(� )  f e1/(q�1)qm <

2 f qm  qm+1 by Proposition 3.33, or ord(� )  (3e/2)2m if q = 2.
Now suppose that m = 4. We have Out(P�+

8 (q)) ⇠= S3⇥C f if q is even, and
⇠= S4⇥C f if q is odd, see [30, p.38]. Thus if q is odd, then either � 3 f or � 4 f has
a preimage in Isom(F2mq , ), so ord(� ) is at most 4 f times the maximal order of an
element in Isom(F2mq , ), and we use Proposition 3.33 again. If q 6= 2 is even, then
analogously ord(� )  3 f e1/(q�1)q4  3e1/3 f q4 < (9/2) f q4. If q = 2, then use
the atlas information [9].

m � 4, q � 4. First suppose that m � 5. We get

(qm � 1)(qm�1 + 1)
q � 1

 2ord(� )  4qm+1.

The left hand side is bigger than q2m�2 by Lemma 3.34, so we obtain further
q2m�2 < 4qm+1, hence q2  qm�3 < 4, a contradiction.
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Next assume m = 4. First assume q odd. Similarly as above we obtain q6 <
16 f q4  8q5. Note that if f = 1, then q < 4, a contradiction. Thus assume f � 2.
We obtain q < 8, so f = 2, hence q2 < 32, thus q  5, giving the contradiction
f = 1.

Now assume that q 6= 2 is even. We obtain q6 < 2 · (9/4)q5, hence q = 4.
But ord(� )  (9/4)45 = 2304, whereas µ(S) = 5525 > 2 · 2304, a contradiction.

m � 4, q = 3. First consider m = 4. One verifies that o(P�+
8 (3)) = 40, so

ord(� )  4 · 40 = 160, because Out(P�+
8 (3)) = S4. In view of µ(S) = 1080

this case is out. Suppose m � 5. We obtain 3m�1(3m � 1)/2  2 · 2 · 3m+1, hence
m < 5, a contradiction.

m � 4, q = 2. If m = 4, then ord(� )  30, whereas µ(S) = 120, so this
case is out. Suppose m � 5. We obtain 2m�1(2m � 1)  2 · (3e/2)2m , hence
2m  6e + 1 = 17.3 . . . , thus m  4, a contradiction.

3.7.7. S orthogonal of minus type

Lemma 3.38. Let S = P��
2m(q) be the simple orthogonal group with Witt defect

1, and � 2 Aut(S). Write q = p f for p a prime. Then

ord(� ) 

8
>>>>><

>>>>>:

4 f qm  2qm+1 if q is odd, m � 4,
2 f qm  qm+1 if q 6= 2 is even, m � 4,
(3e/2)2m if q = 2, m � 4,
30 if q = 2, m = 4,
60 if q = 2, m = 5.

Proof. The proof follows exactly as in Lemma 3.37, except that for m = 4, there is
no exceptional (graph) automorphism of order 3. For q = 2 and m = 4 or 5 use the
atlas [9].

Now S = P��
2m(q) for m � 4. From Lemma 3.34 we get µ(S) > q2m�2.

First suppose q 6= 2. We obtain q2m�2 < 2 · 2qm+1, hence qm�3 < 4. Thus m = 4
and q = 3. But this contradicts the sharper bound ord(� )  4 · 34 = 324. If q = 2,
then 22m�2 < 2 · (3e/2)2m , hence 2m�2  3e = 8.1 . . . , so m  5. Arrive at a
contradiction using the upper bounds for ord(� ) from Lemma 3.38.

3.7.8. S unitary

Lemma 3.39. Suppose that � 2 GUn(q) acts irreducibly on Fnq . Then n is odd,
and ord(� ) divides qn + 1. The order of the image of � in PGUn(q) divides (qn +
1)/(q + 1).

Proof. Let � be an eigenvalue of � . Then Fq2[�] = Fq2n . All the eigenvalues of �
are �q2i with i = 1, · · · , n. Similarly as in the proof of Lemma 3.28, there exists
an index i in the given range such that ��q = �q

2i , so

�q
2i�1+1 = 1. (3.12)



CYCLIC TWO-ORBITS SUBGROUPS AND MONODROMY GROUPS 401

It follows that �q4i�2�1 = 1, so � 2 F4i�2q . Therefore n |2i�1 < 2n, so n = 2i�1.
The assertion about the order of � follows from (3.12). By the irreducibility, the
element � is a subgroup of a Singer group of order q2n � 1 on Fnq2 . The (unique)
subgroup of order q + 1 of this Singer group consists of scalars, because q + 1
divides q2 � 1. Also, q + 1 divides qn + 1, so modulo scalars � has order at most
(qn + 1)/(q + 1).

Lemma 3.40. Let � 2 GUn(q), and denote by � the image of � in PGUn(q). Let
q = p f with p prime. The following holds.

1. If n = 1, then ord(� ) divides q + 1.
2. If n = 2, then ord(� ) divides q2 � 1 or p(q + 1).
3. If n = 3, then ord(� ) divides q3+ 1, q2� 1, or pr (q + 1) with r  2 and r = 1
if p > 2. Furthermore, ord(� ) divides q2 � q + 1, q2 � 1 or p(q + 1). For
p = 2, there is the additional possibility ord(� ) = 4.

4. If n = 4, then ord(� ) divides q3+1, q3�q2+q�1, or pr (q2�1) where r  2
and r = 1 if p > 2. For p = 3, there is the additional possibility ord(� ) = 9.

Proof. Denote by �p0 the p0–part of � . Set F = Fq2 , so GUn(q) is the isometry
group of the unique hermitian from on Fn . The case n = 1 is trivial.

Suppose that n = 2. By Lemma 3.39, � is reducible on V = Fn . If � is
semisimple, then the eigenvalues of � are in F , so ord(� ) | q2 � 1. If � is not
semisimple, then �p0 is the centralizer of an element of order p, hence �p0 is a
scalar, and the claim follows again.

Now assume n = 3. If � is irreducible, then apply Lemma 3.39. If � is
orthogonally decomposable, then apply (a) and (b) to get that ord(� ) divides q2�1
or p(q + 1). Next assume � reducible, but orthogonally indecomposable. Choose
a maximal orthogonal decomposition of V in �p0–invariant subspaces. By Lemma
3.29 and the notation from there, either V = U1?U2?U3, or V = U1?(Z1 � Z 0

1).
Assume the first possibility. By orthogonal irreducibility of � , the Ui are pairwise
�p0–isomorphic, thus �p0 is a scalar on V , with order dividing q + 1. Let pr be
the order of the p–part of � . Then pr�1  2 by Lemma 3.5, and we get the
divisibilities as stated. If we have the latter orthogonal decomposition, then U1
must be �p0–isomorphic to Z1 or Z 0

1, say to Z1. On the other hand, Z1 and Z
0
1 are

not �p0–isomorphic by Lemma 3.29. We get that �p leaves invariant U1?Z1 and
Z2, thus the order of �p divides p. The order of �p0 divides q + 1, because the
restriction to U1 satisfies this, so this holds also for the restriction to Z1, and then
also for the restriction to Z 0

1 by Lemma 3.29.
Now assume n = 4. Let pb be the order of �p. First assume that �p0 is

orthogonally decomposable. From (a), (b), and (c), we get that ord(�p0) divides
q2 � 1 or q3 + 1. If the latter occurs, then b = 0. If b � 2, then b = 2, and
either p = 3, and �3 acts indecomposably on V , or p = 2. In the former case
�30 must be a scalar, so ord(� ) divides 9. Next assume that �p0 acts orthogonally
indecomposably on V . Then V = Z1 � Z 0

1 with dim(Z1) = 2. Let � 2 Fq4 be an
eigenvalue on Z1. Then the other eigenvalue is �q

2 , and Lemma 3.29 tells us that
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the eigenvalues on Z 0
1 are �

�q and ��q3 . Set m = q3 � q2 + q � 1. Raising these
4 eigenvalues to the m–th power gives equal values (use �q4 = �), hence �mp0 is a
scalar. Also, �p = 1, because Z1 and Z 0

1 are not �p0–isomorphic by Lemma 3.29.
We get the stated divisibilities.

Lemma 3.41. Let q = p f � 3 for a prime p. Then each element in Aut(PSU4(q))
has order at most max(2, f ) · (q3 + 1).

Proof. Let � 2 GU4(q) o Gal(Fq2/Fp) be a preimage of a given element � 2
Aut(PSU4(q)). Let r be smallest positive integer with � r 2 GU4(q), so r divides
2 f . If r < 2 f , then r  f , and � r 2 PGU(4, q), so the claim follows from
ord(� )  f ord(� r ) and Lemma 3.40. Also, if f = 1, we are obviously done.
Therefore we are concerned with r = 2 f with f � 2.

By Lemma 3.24, we get that � 2 f is conjugate to an element in GL4(p), and an
upper bound for the element orders in the latter group is p4, see Proposition 3.27.
Thus ord(� )  2 f p4. From f � 2 we obtain 2 f p4 < f (p6+ 1)  f (q3+ 1), and
we are done.

Lemma 3.42. Let S = PSUn(q) be the simple unitary group with n � 3, and
� 2 Aut(S). Then

ord(� ) 

(
2qn if q is odd,
(3e/2)qn in any case.

Proof. Write q = p f with p a prime. Then � has a preimage ⌧ in GUn(q) o
Gal(Fq2/Fp). Under restricting the scalars to Fp, we obtain an embedding of
the latter group into Isom(F2 f np , ), where  is a symmetric non–degenerate Fp–
bilinear form. Now apply the bounds in Proposition 3.33 to obtain the claim.

We rule out the unitary groups in the order as they appear in the list 3.1 on page
410. So suppose that S = PSUm(q).

m = 3, q 6= 2, 5. First suppose that f � 2, so q > p. By Lemma 3.40 and
the structure of the automorphism group of PSUm(q) given in [30, Prop. 2.3.5] we
get ord(� )  2 f (q2 � 1). But µ(S) = q3 + 1, so q3 + 1  2 · 2 f (q2 � 1), hence
q2 � q + 1  4 f (q � 1). This shows q2 � q < 4 f (q � 1), so 3 f  q < 4 f ,
contrary to f � 2.

Next suppose f = 1, so q = p. We obtain ord(� )  2p(p + 1). Thus
p3 + 1  4p(p + 1), so p2 � p + 1  4p, therefore p � 1 < 4, so p = 3. Check
the atlas [9] to see that ord(� )  12, so this case is out by 33 + 1 > 2 · 12.

m = 3, q = 5. Then Out(S) = S3 and o(Aut(S)) = 30. Thus the degree is at
most 60. But the only representation of S with degree  60 has degree 50, see [9].
Now o(S) = 10, so A > S. As S.3 does not have a permutation representation of
degree 50, we have A = S.2. However, o(S.2) = 20, and this case is out too.

m = 4. Suppose q 6= 2 for the moment. First suppose f � 2. Then ord(� ) 
f (q3 + 1) by Lemma 3.41. We obtain (q + 1)(q3 + 1) = µ(S)  2 f (q3 + 1),
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hence q + 1  2 f . But q � 2 f � 2 f , so there is no solution. Next suppose f = 1,
so q = p. We obtain p + 1  4, so p = 3. However, the maximal element order
in Aut(PSU4(3)) is 28, see the atlas [9], a contradiction. Similarly, if q = 2, then
o(Aut(PSU4(2))) = 12, which is too small.

6 |m, q=2.Use Lemma 3.42 to get 2m�1(2m�1)/3  2(3e/2)2m = 6e2m�1,
hence 2m � 1  18e = 48.9 . . . , so m  5, a contradiction.

m � 5, (m,q) 6= (6m0, 2). From Lemma 3.34 we obtain µ(S) > q2m�3. On
the other hand, ord(� )  (3e/2)qm by Lemma 3.42, so q2  qm�3  3e = 8.1 . . . ,
thus q = 2 andm = 5. (Alsom = 6 would fulfill the inequality, but this is excluded
here.) However, in this caseµ(S) = 165, whereas o(Aut(S)) = 24, see the atlas [9],
a contradiction.

3.7.9. Projective special linear groups

Nowwe assume that S = PSLn(q), and show that except for some small cases, only
the expected elements can act with at most 2 cycles in the natural representation.

In this section, we use results by Tiep and Zalesskii [58, Section 9] on the
three smallest faithful permutation degrees for the simple groups PSLn(q). Unfor-
tunately, their result is mis–stated. Apparently they mean to give the degrees of the
three smallest faithful primitive permutation representations. In order to make use
of their result, we need a little preparation.

Lemma 3.43. Let S be a simple non–Abelian group, and n = µ(S) be the degree
of the smallest faithful permutation representation. Let A be a group between S
and Aut(S). If A has a primitive permutation representation on � such that S is
imprimitive on �, then |�| � 3n.

Proof. Suppose that S acts imprimitively on �, and assume that |�| < 3n. Let
1 be a non–trivial block for S, and M be a setwise stabilizer in S of this block.
Primitivity of A forces transitivity of S on �, in particular S is transitive on the
block system containing 1. As there must be at least n blocks by assumption,

n|1|  |�| < 3n,

hence |1| < 3, so |1| = 2. Let A1 be the stabilizer of a point in A. Set S1 = S\A1,
a point–stabilizer in S. Clearly [M : S1] = |1| = 2, so S1 is normal in M . Also,
S1 is normal in A1, and maximality of A1 in A forces A1 = NA(S1). So M  A1,
a contradiction.

Lemma 3.44. Let S = PSLn(q) with (n, q) 6= (4, 2), (2, 2), (2, 3), (2, 4), (2, 5),
(2, 7), (2, 9), or (2, 11). Let A be a group with S  A  Aut(S). Suppose that A
acts primitively, and there is � 2 A with at most two cycles in this action. Then S
is primitive as well.

Proof. In these cases the natural action of S on the µ = (qn � 1)/(q � 1) lines
of Fnq is the one of smallest possible degree. Let N be the degree of the action
of A. Suppose that S is imprimitive. From Lemma 3.43 we obtain N � 3µ. If
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� 2 P0Ln(q), then ord(� )  µ by Proposition 3.27, contrary to Lemma 3.21.
Thus � involves a graph automorphism of PSLn(q), hence also n � 3.

As � 2 2 P0Ln(q), we have ord(� )  2µ, hence N  4µ. Let A1 be a point–
stabilizer in A, and set S1 = A1\ S. Let M be a maximal subgroup of S containing
S1. Then [S : M]  [S : S1]/2  2µ, so it follows easily from [58, Section 9] that
M fixes a line (or hyperplane) with respect to the natural action, except possibly
for (n, q) = (3, 2). Exclude this single exception for a moment. As A = A1S by
transitivity of S, also A1 involves a graph automorphism ⌧ . As A1 normalizes S1,
and the action of ⌧ on S interchanges point–stabilizers with hyperplane–stabilizers,
we get that there is a hyperplane H < Fnq and a line L < Fnq , such that S1 fixes
H and L . Clearly, S acts transitively on the qn�1(qn � 1)/(q � 1) non–incident
line–hyperplane pairs, and also transitively on the (qn � 1)(qn�1 � 1)/(q � 1)2
incident line–hyperplane pairs. The latter size is smaller than the former, so N �
(qn �1)(qn�1�1)/(q�1)2 = (qn�1�1)/(q�1)µ. From N  2ord(� )  4µ we
obtain 1+q+· · ·+qn�2  4. Hence n = 3 and q = 3 or 2. However, for q = 3 we
have ord(� )  13 by [9], contrary to N � 52. If q = 2, then Aut(S) ⇠= PGL2(7),
so ord(� )  8, but N � 21, a contradiction.

It remains to check the case (n, q) = (3, 2). Then Aut(S) ⇠= PGL2(7), so
ord(� )  8, hence N  16. But this contradicts the above estimation N � 3µ =
21.

Lemma 3.45. Let S = PSLn(q) with (n, q) 6= (4, 2), (2, 2), (2, 3), (2, 4), (2, 5),
(2, 7), (2, 9), (2, 11) and S  A  Aut(S). Assume that A acts primitively on �.
Suppose that � 2 A has at most 2 cycles on �. Then either A  P0Ln(q) and
A acts naturally on the lines of Fnq , or (n, q) = (3, 2), and A  Aut(PSL3(2)) ⇠=
PGL2(7) acts naturally of degree 8.

Proof. Let N = |�| be the permutation degree of A, and suppose that we do not
have the natural action of S = PSLn(q) on the points of the projective space.

As � 2 2 P0Ln(q), we get ord(� )  2(qn � 1)/(q � 1) by Proposition 3.27.
S is primitive by the previous lemma, so we can use the results by Tiep and

Zalesskii [58, Section 9] on the three smallest primitive permutation degrees for the
simple groups PSLn(q), see the comment before Lemma 3.43.

First suppose that n � 4, and if n = 4, then q 6= 2. Then

N �
(qn � 1)(qn�1 � 1)

(q2 � 1)(q � 1)
.

(This second smallest primitive representation is given by the action on the 2–spaces
in Fnq .) Now use N  2ord(� ) to obtain qn�1 � 1  4(q2 � 1). So n = 4 and
q = 3. (Note that (n, q) = (4, 2) is already excluded from the statement of the
lemma.) But o(Aut(PSL4(3))) = 40 by the atlas [9], whereas N = 130 > 2 · 40,
so this case is out.

Next assume n = 3. Using [58, Section 9], one easily verifies that N � q3 � 1
except for q = 4 and 2. Exclude q = 2 and 4 for a moment. So q3 � 1 
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4(q3�1)/(q�1), hence q = 3 or 5. But for q = 5, we actually have N � 52(53�1),
but ord(� )  2(53 � 1)/(5 � 1), clearly a contradiction. If q = 3, then N � 144,
contrary to ord(� )  2(33 � 1)/(3 � 1) = 26. Now suppose q = 4. The atlas [9]
gives ord(� )  21, whereas N � 56 > 2 · 21 by [58, Section 9], a contradiction.
If q = 2, and we do not have the natural action, then necessarily N = 8, which
corresponds to the natural action of PGL2(7) ⇠= Aut(PSL3(2)). Finally we have to
look at n = 2. As A  P0L2(q) now, we have ord(� )  (q2�1)/(q�1) = q+1.

We go through the cases in [58, Section 9]. If q > 4 is an even square, then
2(q + 1) � N �

pq(q + 1), hence q  4, a contradiction. If q is an odd square
6= 9, 49, then 2(q + 1) � N �

pq(q + 1)/2, hence q  16, a contradiction.
If q 2 {19, 29, 31, 41}, then 2(q + 1) � N � q(q2 � 1)/120, so q  16, a
contradiction. If q = 17 or q = 49, then N = 102 or 175, respectively, so these
cases do not occur. If q is not among the cases treated already (and 6= 7, 9, and 11,)
then N � q(q � 1)/2, so q(q � 1)  4(q + 1), hence q  5, a contradiction.

Lemma 3.46. Let S = PSL2(q) with q = 9 or 11 and S  A  Aut(S). Assume
that A acts primitively on �, and that there exists � 2 A with at most 2 cycles on
�. Then either A  P0L2(q) and A acts naturally on the lines of Fnq , or q = 9,
A  S6 < Aut(PSL2(9)) acting naturally on 6 points, or q = 11, |�| = 11,
A = PSL2(11), and � is an 11–cycle.
Proof. Suppose q = 9. We have S ⇠= A6, and the maximal subgroups of S have
index 6, 10, and 15, respectively. Of course, the degree 6 occurs. Degree 10 corre-
sponds to the natural action of S. The degree 15 corresponds toA6 acting on 2–sets.
Then A  S6, and one verifies easily that each element has � 3 cycles. This settles
the case that S is primitive. If S is imprimitive, then N � 3·6 = 18 by Lemma 3.43,
but also N  2ord(� )  20. As A contains no element of order 9, we actually have
N = 20. Hence ord(� ) = 10, so PGL2(9)  A. But neither PGL2(9) nor P0L2(9)
act primitively on 20 points, e.g. by the argument in the proof of Lemma 3.43.

Next suppose q = 11. As ord(� )  12, we have N  24, but 24 < 33 =
3 · µ(S), so S is primitive. The maximal subgroups of S of index  24 have index
11 and 12, and correspond to the actions covered by the claim.

Lemma 3.47. Let P0Ln(q) act naturally on the lines of Fnq for n � 2. Suppose that
an element � 2 P0Ln(q) \ PGLn(q) has at most 2 cycles. Then (n, q) = (3, 4),
(2, 4), (2, 8), or (2, 9).
Proof. Let �g 2 GLn(q) o Aut(Fq) be a preimage of such a � , with � 2 Aut(Fq)
and g 2 GLn(q). Then

ord(�g) �
1
2
qn � 1
q � 1

.

Let f � 2 be the order � . By Lemma 3.24, (�g) f is conjugate to an element in
GLn(q1/ f ), and the orders of elements in this latter group are at most qn/ f � 1 by
Proposition 3.27. Thus

f (qn/ f � 1) � ord(�g) �
1
2
qn � 1
q � 1

. (3.13)



406 PETER MÜLLER

This gives

2 f q > 2 f (q � 1) �
qn � 1
qn/ f � 1

> qn�n/ f ,

hence
2 f > qn�n/ f�1.

Now use 2 f  2 f and q � 2 f to obtain

2 f > 2n f�n� f ,

hence
n <

2 f
f � 1

= 4� 2
f � 2
f � 1

 4, (3.14)

so n  3. First suppose n = 3. Then (3.14) shows f < 3, hence f = 2. Set
r = q1/2. Then (3.13) gives 2(r3 � 1) � 1

2
r6�1
r2�1 , so 4(r

2 � 1) � r3 + 1, hence
r < 4. One verifies easily that r = 3 is not possible, because the maximal order of
an element in P0L3(9) \ PGL3(9) is 26, see e.g. [9].

Next assume n = 2. Again set r = q1/ f � 2. Let h be an element in
GL2(r) < GL2(q) which is conjugate (in GL2(Fq)) to (�g) f . Denote by h the
image of h in PGL2(q). There are three possibilities for h: If h is irreducible on F2q ,
then ord(h) divides r2�1, so ord(h) divides (r2�1)/ gcd(r2�1, q�1). But r�1
divides the denominator, so ord(h) divides r + 1. Next assume that h is reducible.
If h is semisimple, then clearly ord(h) | ord(h) | r � 1. If however h has a unipotent
part, then this p–part has order p, and its centralizer is the group of scalar matrices.
Hence in this case, ord(h) = p  r .

We have seen that ord(h)  r + 1 in any case, hence ord(� )  f (r + 1). We
obtain

f (r + 1) �
q + 1
2

=
r f + 1
2

=)
r f + 1
r + 1

 2 f.

The left hand side is monotonously increasing in r . For r = 2 we obtain 2 f + 1 
6 f , hence f  4. For f = 3 and 4 there are only the solutions r = 2. If r > 2,
then f = 2 and r = 3 or 4. In order to obtain the claim, we have to exclude the
possibility q = r f = 16. The previous consideration shows that each element in
P0L2(16) \ PGL2(16) has order at most 12. But then we clearly cannot have at
most 2 cycles in a representation of odd degree 17.

Lemma 3.48. Let 2  n 2 N. Suppose that � 2 PGLn(q) has at most 2 cycles in
the action on the lines of Fnq . Then one of the following holds:

1. q is a prime, n = 2, and � has order q.
2. � is a Singer cycle or the square of a Singer cycle.
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Proof. For a subset S of Fnq denote by P(S) the “projectivization” of S, namely
the set of 1–dimensional spaces through the non–zero elements of S. Denote by
�̂ 2 GLn(q) a preimage of � . If �̂ is irreducible on Fnq , then Schur’s Lemma
shows that (b) holds. Thus assume that �̂ is reducible, and let 0 < U < Fnq be
a �̂–irreducible subspace. The assumption shows that <�> permutes transitively
the elements in P(U), as well as those of P(Fnq \U). The transitivity of this latter
action shows

qu divides ord(�̂ ), where u = dim(U). (3.15)

Denote by �̂p and �̂p0 the p–part and p0–part of �̂ , respectively. Let W be a �̂p0–
invariant complement to U in Fnq . As �̂ is transitive on P(U) and P(Fnq/U), we
have in particular that �̂ is irreducible on the quotient space Fnq/U , so �̂p is trivial
on this quotient, hence �̂p0 is irreducible on W . From (3.15) we get that �̂p is not
trivial, in particular W is not �̂p–invariant. Then we see from Jordan–Hölder that
U and W are �̂p0–isomorphic, so �̂p 2 GL2(qu). Thus ord(�̂p) = p. Combine this
with (3.15) to get n = 2u = 2, and q = p. Finally, �̂p0 centralizes �̂p, so must be a
scalar, that is � has order p.

3.7.10. Exceptional groups of Lie type

Here we rule out the case that S is an exceptional group of Lie type. Table 3.2
on page 410 contains the exceptional group of Lie type S, a lower bound µ(S) for
the degree of a non-trivial transitive faithful permutation representation, an upper
bound o(S) for the orders of elements, the order of the outer automorphism group,
and finally restricting condition on q. In the list q = p f for a prime p.

The lower bound for µ(S) has been computed as follows. If S has a permu-
tation representation of degree m, and F is any field, then the permutation module
of S over F has a submodule of dimension m � 1. So m � 1 is at least the di-
mension of the lowest–dimensional projective representation of S in characteristic
different from the defining characteristic. But these minimal dimensions have been
determined by Landazuri and Seitz in [35]. We use the corrected list [30, Theo-
rem 5.3.9]. Note that if S does not have a doubly transitive representation, then the
(m � 1)–dimensional module is reducible, so one summand has dimension at most
(m � 1)/2, see [18, 4.3.4]. This is the case for all S except for 2B2(q) and 2G2(q).
So µ(S) is then at least 1 plus 2 times the minimal dimension of a representation
of S.

The upper bound for o(S) has been obtained as follows. Each element of S is
the product of a p–element with a commuting p0–element, so we multiply upper
bounds for each. If ` is the Lie rank of S, then the order of p0–elements is at most
(q+1)`, see [38, 1.3A]. The order of a p–element g is bounded as follows. Suppose
S  PGLw(F) for a field F of characteristic p. Then the order of g is a p–power
at most p(w � 1), see Lemma 3.5. Small values w with an embedding as above are
classically known, see [30, Prop. 5.4.13]. However, for the Suzuki groups 2B2(q)
we used [24, XI, Section 3] to determine µ and o. To determine µ for G2(q) and
3D4(q) we use the papers by Kleidman [28] and [29] respectively.
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Now assume that S  A  Aut(S) and � 2 A has at most two cycles in a
transitive action of A. Then µ(S)  2o(A)  2|Out(S)|o(S). Comparing with the
information in the Table 3.2 on page 410 rules out all but a few little cases, which
require extra data obtained from the atlas [9].

S =2B2(q). We get 1+q2  2 f (q+
p
2q+1). As q � 8, we have

p
2q+1  5

8q.
So we get q2 < 1 + q2  2 f (q + 5

8q), hence 2 f < 13
4 f . This implies f = 3.

But o(Aut(2B2(8))) = 15 (see the atlas [9]), contrary toµ(2B2(8)) = 65 > 2·15.
S =2G2(q). We get 1+ q(q � 1)  2 f · 9(q + 1). Now q + 1  28

27q, which gives
3 f = q < 56

3 f + 1, hence f = 3. But µ(2G2(27)) = 19684, see [9], whereas
o(2G2(27)) = 37, so this case is clearly out.

S = G2(q). Obviously q � 5. First assume that q is odd. Bound (q6 � 1)/(q � 1)
from below by q5, and q + 1 from above by 6q/5. We then obtain q5  2 · 2 f ·
6p(q + 1)2  24q(6q/5)2, hence p2 f  864 f/25, which gives q = 5. But
then Out(S) has order 1, and when we use the estimations in the table, we get
a contradiction. The case p = 2 and f � 3 also does not occur by a similar
calculation.

S =3D4(q). We get (q+1)(q8+q4+1)/2  2·3 f ·8p(q+1)2. One quickly checks
that this holds only for q = 2. But µ(3D4(2)) = 819, whereas o(3D4(2)) = 28
(see [9]), so this case does not occur.

S =2 F4(2)0. This clearly does not occur.
S =2 F4(q). One gets 1+ q4

p
2q(q � 1)  2 f · 32(q + 1)2, and one easily checks

that this inequality has no solutions.
S = F4(q). The case q = 2 does not occur. We have 1+ 2q6(q2� 1)  2(2, p) f ·
25p(q + 1)4, which implies that q = 3 or 4. However, Theorem [30, 5.3.9]
for even q shows that the minimal degree of a 20–representation of F4(4) is
1548288, so µ(S) � 3096577. But this violates the estimation o(F4(4)) 
31250. So q = 3. The maximal order of a 30–element is 73, see [7, page 316].
Furthermore, the 3–order is at most 27. Thus o(S)  1971. But µ(S) � 11665,
a contradiction.

S =2E6(q). We get quickly q = 2. But o(2E6(2)) = 35, which is much too small
compared to µ(2E6(2)) = 3073.

S = E6(q). We quickly get that q = 2, 3, or 4. The p0–part is bounded by 91,
949, and 5061, respectively (again by [7, page 316]), and the p–part is bounded
by 32, 27, and 32, respectively. So o(S) is at most 2912, 25623, and 161952,
respectively. If we compare this with the estimation for µ(S), then only q = 2
survives. We get µ(S)  2 · 2 · 2912 = 11648. However, E6(2) contains F4(2),
and µ(E6(2)) � µ(F4(2)) = 69615 ( [9]), a contradiction.

S = E7(q). We get q = 2. Use [7, page 316] to obtain o(S)  171 · 64 = 10944.
But from the table we have µ(S) � 196609, which is clearly too big.

S = E8(q) gives also no examples.
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3.7.11. Proof of part 3 of Theorem 3.3

Now we are ready to prove part 3 of Theorem 3.3, by collecting the information
achieved in the last sections. Thus suppose that A acts primitively, S  A  Aut(S)
for a non–Abelian simple group S, and that A contains an element � which has
exactly 2 cycles.

If S is sporadic, then Section 3.7.2 gives the possibilities. This is the easiest
case, as the result can be directly read off from the atlas information [9]. Only the
Mathieu groups M11, M12, M22, and M24 give rise to examples.

Section 3.7.1 treats the case that S = An , the alternating group with n � 5.
The case n = 6 has been excluded there, and postponed to the analysis of the linear
groups, in view ofA6 ⇠= PSL2(9). The only examples coming not from the natural
action of S are as follows: S = A5 acting on the 2–sets of {1, 2, 3, 4, 5}, hence of
degree 10 (case 3b), or S = A5 acting on 6 points (case 3c for p = 5, note that
A5 ⇠= PSL2(5)).

By Section 3.7.10, S cannot be of exceptional Lie type.
In Section 3.7.3 it is shown that if S is a classical group, then S is isomorphic

to some PSLn(q).
This is dealt with in Section 3.7.9. We can exclude a couple of small pairs

(n, q) in view of exceptional isomorphisms, see [30, Prop. 2.9.1]. As S is simple,
(n, q) 6= (2, 2), (2, 3). Also, (n, q) 6= (2, 4), (2, 5), as S = A5 has been dealt
with already. Also (n, q) 6= (4, 2), as A8 had been ruled out in Section 3.7.1.
Furthermore, we assume (n, q) 6= (2, 7) in view of PSL2(7) ⇠= PSL3(2).

Suppose that q 6= 9, or 11, if n = 2. Then A  P0Ln(q) acting nat-
urally on the projective space, or (n, q) = (3, 2), and we have the natural ac-
tion of PSL2(7) ⇠= PSL3(2) of degree 8, see Lemma 3.45. Lemma 3.46 shows
that for (n, q) = (2, 9) the action is either the natural one, or the natural one of
A6 ⇠= PSL2(9), and for (n, q) = (2, 11), only the natural action is possible.

In conclusion, we are left to look at the natural action of PSLn(q)  A 
P0Ln(q), and to determine the possibilities for � . By Lemma 3.47, we have actu-
ally � 2 PGLn(q), except possibly for (n, q) = (3, 4), (2, 8), or (2, 9). The case
(n, q) = (3, 4) accounts for 3f in Theorem 3. One easily verifies that P0L2(8) does
not contain an element with just 2 cycles (but it does contain 9–cycles not contained
in PGL2(8)!). Similarly, if an element in P0L2(9)\PGL2(9) has only 2 cycles, then
� 2 M10, and the cycle lengths are 2 and 10. This gives case 3e of Theorem 3.

So in addition to the assumption that A  P0Ln(q) acts naturally, we may
finally assume � 2 PGLn(q). Lemma 3.48 finishes this case: Either q is a prime,
n = 2, ord(� ) = q (so � has cycle lengths 1 and q, case 3c of Theorem 3), or � is
the square of a Singer cycle (case 3d of Theorem 3.3).

By the classification theorem of the finite simple groups, we have covered all
possibilities of S.
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3.7.12. Tables on minimal permutation degrees, maximal element orders, etc.
Table 3.1. Classical groups

S µ(S) |Out(S)| m, q

PSLm(q) (qm � 1)/(q � 1) 2(m, q � 1) f, m � 3 (m, q) 6= (2, 5),
(m, q � 1) f, m = 2 (2, 7), (2, 9),

(2, 11), (4, 2)
PSL2(7) 7 2
PSL2(9) 6 4
PSL2(11) 11 2

PSL4(2) ⇠= A8 8 2
PSp2m(q) (q2m � 1)/(q � 1) (2, q � 1) f, m � 3 m�2, q�3,

2 f, m = 2 (m, q) 6= (2, 3)
Sp2m(2) 2m�1(2m � 1) 1 m � 3
�2m+1(q) (q2m � 1)/(q � 1) 2 f m � 3,

q � 5 odd
�2m+1(3) 3m(3m � 1)/2 2 m � 3
P�+

2m(q) (qm � 1)(qm�1 + 1)/(q � 1) 2(4, qm�1) f,m 6= 4 m � 4, q � 4
6(4, qm�1) f,m = 4

P�+
2m(2) 2m�1(2m � 1) 2,m 6= 4 m � 4

6,m = 4
P�+

2m(3) 3m�1(3m � 1)/2 4,m > 4 odd m � 4
8,m > 4 even
24,m = 4

P��
2m(q) (qm + 1)(qm�1 � 1)/(q � 1) 2(4, qm + 1) f m � 4

PSU3(q) q3 + 1 2(3, q + 1) f q 6= 2, 5
PSU3(5) 50 6
PSU4(q) (q + 1)(q3 + 1) 2(4, q + 1) f
PSUm(2) 2m�1(2m � 1)/3 6 6 | m

PSUm(q)
(qm�(�1)m )(qm�1�(�1)m�1)

q2�1
2(m, q + 1) f m � 5,

(m, q) 6= (6m0, 2)

Table 3.2. Exceptional groups

S µ(S) � o(S)  |Out(S)| q
2B2(q) 1+ q2 q +

p
2q + 1 f q = 22u+1>2

2G2(q) 1+ q(q � 1) 9(q + 1) f q = 32u+1>3
G2(3) 351 13 2
G2(4) 416 21 2
G2(q) (q6 � 1)/(q � 1) 8(q + 1)2 f q � 8 even
G2(q) (q6 � 1)/(q � 1) 6p(q + 1)2  2 f q � 5 odd
3D4(q) (q+1)(q8+q4+1)/(2, q�1) 7p(q + 1)2 3 f
2F4(2)0 1600 16 2
2F4(q) 1+ q4

p
2q(q � 1) 32(q + 1)2 f q = 22u+1>2

F4(2) 69615 30 2
F4(q) 1+ 2q6(q2 � 1) 25p(q+1)4 (2, p) f q � 3
2E6(q) 1+ 2q9(q2 � 1) 26p(q+1)4 2(3, q+1) f
E6(q) 1+ 2q9(q2 � 1) 26p(q+1)6 2(3, q�1) f
E7(q) 1+ 2q15(q2 � 1) 55p(q+1)7 (2, q�1) f
E8(q) 1+ 2q27(q2 � 1) 247p(q + 1)8 f
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Table 3.3. Sporadic groups

Group S Orders of elements Indices of maximal subgroups |Out(S)|
M11 11, 8, 6,  5 11, 12, � 55 1
M12 11, 10, 8, 6,  5 12, � 66 2
M22 11, 8, 7, 6,  5 22, � 77 2
M23 23, 15, 14,  11 23, � 253 1
M24 23, 21, 15, 14, 12,  11 24, � 276 1
J1  19 � 266 1
J2  15 � 100 2
J3  19 � 6156 2
J4  66 � 173067389 1
HS  20 � 100 2
Suz  24 � 1782 2
McL  30 � 275 2
Ru  29 � 4060 1
He  28 � 2058 2
Ly  67 � 8835156 1
O’N  31 � 122760 2
Co1  60 � 98280 1
Co2  30 � 2300 1
Co3  60 � 276 1
Fi22  30 � 3510 2
Fi23  60 � 31671 1
Fi024  60 � 8672 2
HN  40 � 1140000 2
Th  39 � 143127000 1
B  70 � 4372 1
M  119 � 196883 1

4. Genus 0 systems
4.1. Branch cycle descriptions
4.1.1. Algebraic setting

Let k be a subfield of the complex numbers C, t be a transcendental over C, and
L/k(t) be a finite Galois extension with groups G. We assume that L/k(t) is reg-
ular, that means k is algebraically closed in L . Let p1, p2, . . . , pr be the places of
k(t) which are ramified in L . Then, by a consequence of Riemann’s Existence The-
orem (see [43], [59]), we can choose placesPi of L lying above pi , i = 1, 2, . . . , r ,
and elements �i 2 G such that �i is a generator of the inertia group of Pi , so that
the following holds:

The �i , i = 1, 2, . . . , r generate G, and �1�2 . . . �r = 1.

We call the tuple (�1,�2,. . . ,�r ) a branch cycle description of the extension L/k(t).
Now let E be a field between L and k(t), and consider G as a permutation

group on the conjugates of a primitive element of E/k(t). Set n := [E : k(t)]. For
� 2 G let ind(� ) be n minus the number of cycles of � . We call ind(� ) the index
of � . This notion obviously applies to any permutation group of finite degree.
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Let gE be the genus of the field E . The Riemann–Hurwitz genus formula gives

2(n � 1+ gE ) =
rX

i=1
ind(�i ). (4.1)

We will frequently use this relation for the case that E is a rational field, so that in
particular gE = 0, and will call the corresponding equation genus 0 relation, and
the tuple (�1, �2, . . . , �r ) a genus 0 system.

The process of constructing a branch cycle description from the extension
L/k(t) can be reverted to some extent. Namely let G be any finite group, gen-
erated by �1, �2, . . . , �r , such that �1�2 . . . �r = 1. Then there exists a finite exten-
sion k/Q, and a regular Galois extension L/k(t), such that the �i arise exactly as
described above. This again follows from (the difficult direction of) Riemann’s Ex-
istence Theorem. Modern references are [43] and [59], where the latter one contains
a self–contained treatment.

4.1.2. Topological setting

For explicit computations and a conceptual understanding of branch cycle descrip-
tions, the topological interpretation of the �i is indispensable. Also CL/C(t) has
Galois group G. Again let E be a field between k(T ) and L . There is a compo-
sition of ramified coverings of Riemann surfaces X̂ ! X ⇡

! P1(C), such that
the natural inclusion of the fields of meromorphic functions C(t) = M(P1(C)) ✓
M(X ) ✓ M(X̂ ) is just the extension C(t) ✓ CE ✓ CL . If we identify the
places ofC(t) with the elements in P1(C) in the natural way, then the branch points
of X̂ ! P1(C) are exactly the places of C(t) ramified in CL . Choose a point
p0 2 P1(C) away from the branch points pi , and choose a standard set of genera-
tors �1, �2, . . . , �r of the fundamental group 0 of P1(C) \ {p1, . . . , pr } with base
point p0, where �i comes from a path starting and ending in p0, winding clockwise
around pi just once and not around any other branch point, see the diagram.
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The �i generate 0 with the single relation �1�2 . . . �r = 1. Clearly 0 acts on the
fiber ⇡�1(p0). The induced action gives the group G, and the images of the �i
are the elements �i as above. Furthermore, the cycle lengths of �i on the fiber
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⇡�1(p0) are the multiplicities of the elements in the fiber ⇡�1(pi ), and these cycle
lengths are the same as for the corresponding action on the conjugates of a primitive
element of E/k(t).

For more details about this connection we refer again to [43] and [59].

4.2. Branch cycle descriptions in permutation groups

Let G be a transitive permutation group of degree n, and E := (�1, �2, . . . , �r ) be
a generating system with �1�2 . . . �r = 1. For � 2 G define the index ind(� ) as
above. Let the number gE be given by

2(n � 1+ gE) =
rX

i=1
ind(�i ).

The topological interpretation from above of the �i as coming from a suitable cover
of Riemann surfaces shows that gE is a non–negative integer, because it is the genus
of a Riemann surface. This topological application in a purely group-theoretic con-
text was first made by Ree, see [51]. Later, Feit, Lyndon, and Scott gave an elemen-
tary group-theoretic argument of this observation, see [14].

In this chapter we will determine such systems E for gE = 0 in specific groups
G. According to the previous section, we will call such systems genus 0 systems.
If we look for �i in a fixed conjugacy class Ci , then it does not matter in which way
we order the classes, for if �i and �i+1 are two consecutive elements in E , then we
may replace these elements by �i+1 and �

�i+1
i , respectively.

The strategy of finding such genus 0 systems in G (or proving that there are
none) depends very much on the specific situation. For many small groups, we
simply check using a program written in GAP [17]. For bigger groups, especially
certain sporadic groups, we can use the character tables in the atlas [9]. Here, and
at other places, the following easy observation (see [45, 2.4]) is useful.

Lemma 4.1. Let � 2 G, where G is a permutation group of degree n, then

ind(� ) = n �
1

ord(� )

X

k|ord(� )

�(� k)'

✓
ord(� )

k

◆
,

where �(⌧ ) is the number of fixed points of ⌧ 2 G, and ' is the Euler '–function.

4.3. A lemma about genus 0 systems
Lemma 4.2. Let (�1, �2, . . . , �r ) be a genus 0 system of a transitive permutation
group G. Suppose that all cycle lengths of �1 and �2 are divisible by d > 1. Then
G admits a block system of d blocks, which are permuted cyclically.

Proof. Let n be the degree of G. Let X ! P1(C) be a connected cover of the Rie-
mann sphere, such that (�1, �2, . . . , �r ) is the associated branch cycle description.
Without loss of generality let 0 and1 be branch points corresponding to �1 and �2,
respectively. As our tuple is a genus 0 system, X has genus 0, thus X = P1(C) and
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the cover is given by a rational function f (X). We may assume (by a linear frac-
tional change) that 1 is not mapped to 0 or 1. Let ↵i be the elements in f �1(0),
and denote the multiplicity of ↵i my mi . Similarly, let �i have multiplicity ni in the
fiber f �1(1). Thus, up to a constant factor, we have

f (X) =

Q
(X � ↵i )

mi
Q

(X � �i )ni
.

As the mi and ni are the cycle lengths of �1 and �2, respectively, we get f (X) =
g(X)d , where g(X) 2 C(X) is a rational function. From that the claim follows.

Remark. The completely elementary nature of the lemma makes it desirable to
have a proof which does not rely on Riemann’s existence theorem. We sketch an
elementary argument, and leave it to the reader to fill in the details: first note that
if the claimed assertion about the permutation action holds for a group containing
G (and acting on the same set), then it holds for G as well. For i > 2 write �i as a
minimal product of transpositions, and replace the element �i by the tuple of these
transpositions. This preserves the genus 0 condition. Also, the product of a k–cycle
with a disjoint l–cycle with a transposition which switches a point of the k–cycle
with one of the l–cycle is a (k + l)–cycle. This way, we can assume that all cycle
lengths of �1 and �2 are d, at the cost of extra transpositions, but still preserving
the genus 0 property. Write n = md. Clearly, there are m � 1 transpositions
in our system, such that they, together with �1, generate a transitive group. Let
⌧1, ..., ⌧m�1 be these transpositions. As we have a genus 0 system, the total number
of transpositions is 2(m�1). Using braiding we get an equation of the form

�1⌧1 . . . ⌧m�1 = � 0
2⌧

0
1 . . . ⌧ 0

m�1 =: ⇢,

where � 0
2 is conjugate to �

�1
2 , and the ⌧ 0

i are transpositions. As ind(xy)  ind(x) +
ind(y) and (�1, ⌧1, . . . , ⌧m�1, ⇢

�1) is a genus � 0 system of a transitive subgroup
of G, we obtain it must be a genus 0 system, and ind(⇢) = n � 1. Thus ⇢ is an n–
cycle. Inductively, we see that � := �1⌧1 . . . ⌧m�2 is a product of an (n � d)–cycle
and a d–cycle, and that these two cycles are fused by ⌧m�1. Now, by induction on
the degree of G, we get that the group generated by the transitive genus 0 system
(�1, ⌧1, . . . , ⌧m�2, �

�1) with respect to the support of size n � d admits a block
system of d blocks being permuted cyclically. Now extend each block1 by a single
point from the remaining d points as follows: Choose j such that ⌧m�1 moves a
point ! from 1�

j
1 . Now append !⌧m�1�

� j
1 to 1. One verifies that this process is

well–defined, and gives a block system for (�1, ⌧1, . . . , ⌧m�1) with d blocks being
permuted cyclically. It remains to show that this block system is preserved also
by (� 0

2, ⌧
0
1, . . . , ⌧

0
m�1). At any rate, by symmetry we get a block system for this

tuple too, with d blocks being permuted cyclically. The point is that the product of
the elements in this tuple is the same n–cycle as the product of the elements in the
former tuple, and an n–cycle has a unique block system with d blocks. Therefore
the block systems are the same, so are respected by G.
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4.4. The Siegel-Lang theorem and Hilbert’s irreducibility theorem

Let k be field which is finitely generated overQ, and R a finitely generated subring.
The Siegel-Lang Theorem about points with coordinates in R on algebraic curves
over k has the following application to Hilbert’s irreducibility theorem, see [48, 2.1].

Let f (t, X) 2 k(t)[X] be irreducible, and Red f (R) the set of those t̄ 2 R,
such that f (t̄, X) is defined, and reducible over k. Then, up to a finitely many
elements, Red f (R) is the union of finitely many sets of the form g(k) \ R, where
g(Z) 2 k(Z) is a rational function.

In view of this result, it is important to know which rational functions g(Z)
have the property that g(k) \ R is an infinite set. By another theorem of Siegel-
Lang (see [36, 8.5.1]), this property implies that there are at most two elements of
k̄ [ {1} in the fiber g�1(1). The converse is true if we allow to enlarge R. More
precisely, we have the following:

Lemma 4.3. Let k be a finitely generated extension of k, g(Z) 2 k(Z) a non-
constant rational function such that the fiber g�1(1) has at most two elements.
Then there is a finitely generated subring R of k with |g(k) \ R| = 1.

Proof. A linear fractional change of the argument of g allows to assume that g(Z)
has the following shape: There is m � 0 and a polynomial A(Z) 2 k[Z ], such that
either g(Z) = A(Z)/Zm , or g(Z) = A(Z)/(Z2�d)m , where d 2 k is not a square.
In the first case let R be the ring generated by 1/2 and the coefficients of A(Z), then
g(z) 2 R if z = 2r for r 2 Z, hence g(k) \ R is an infinite set.

The second case is a little more subtle: For ↵,� 2 k, define sequences ↵n,�n 2
k for n 2 N by ↵n+�n

p
d = (↵+�

p
d)n . Suppose for the moment that �n 6= 0 for

all n. Define zn = ↵n/�n . Then the zn are pairwise distinct, for if z j = zi for j > i ,
then � j/�i = (↵ + �

p
d) j�i = ↵ j�i + � j�i

p
d, so � j�i = 0, a contradiction. Let

R be the ring generated by the coefficients of A(Z) and 1/(↵2 � �2d). Note that
(↵2 � �2d)n = ↵2n � �2nd, so g(zn) 2 R for all n.

It remains to show that we can choose suitable ↵,� 2 k. Write � = ↵+ �
p
d.

Then �n = 0 is equivalent to � n 2 k. Thus we have to find � such � n 62 k for all
n 2 N. Suppose that � 62 k, however � n 2 k. Let � be the involutory automorphism
of k(

p
d)/k. The minimal polynomial (X � � )(X � � (� )) of � over k divides

Xn � � n , so � (� ) = ⇣� for ⇣ an nth root of unity. In particular, ⇣ 2 k(
p
d). But

k(
p
d) is finitely generated, so this field contains only finitely many roots of unity.

For a fixed � 2 k(
p
d) \ k consider the elements � + i , for i 2 Z. For each i there

is ni 2 N with (� + i)ni 2 k. By the above, each element (� (� ) + i)/(� + i) is
a root of unity. One of these roots of unity appears for infinitely many i , which of
course is nonsense.

If k = Q, then one is mainly interested in the special case R = Z. Then
|g(Q) \ Z| = 1 has another strong consequence, see [56]: If |g�1(1)| = 2, then
the two elements in g�1(1) are real and algebraically conjugate. Motivated by
these results, we give the following:
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Definition 4.4. Let k be a field which is finitely generated overQ, and g(Z) 2 k(Z)
a non-constant rational function. We say that g(Z) is a Siegel function over k, if
there is a finitely generated subring R of k with |g(k) \ R| = 1. If k = Q, then
we require more strongly that |g(Q) \ Z| = 1.

In the analysis of Siegel functions we will make use of the fact about g�1(1).
For this it will not be necessary to assume that k is finitely generated. Thus we
define a more general property, which holds for Siegel functions.
Definition 4.5. Let k be a field of characteristic 0, and g(Z) 2 k(Z) a non-constant
rational function. We say that g(Z) fulfills the Siegel property, if |g�1(1)|  2.

If k = Q, and |g�1(1)| = 2, then we additionally require the two elements in
g�1(1) to be real and algebraically conjugate.

4.5. Siegel functions and ramification at infinity

To ease the language, we start to define monodromy groups of rational functions.
Definition 4.6. Let k be a field of characteristic 0, and g(Z) 2 k(Z) be a non-
constant rational function. Denote by L a splitting field of g(Z) � t over k(t).
Set A = Gal(L/k(t)), considered as a permutation group on the roots of g(Z) �
t . Denote by k̂ the algebraic closure of k in L , and let G E A be the normal
subgroup Gal(L/k̂(t)). Then A and G are called the arithmetic monodromy group
and geometric monodromy group of g(Z), respectively. Note that A/G is naturally
isomorphic to Gal(k̂/k).

Our goal is to determine the genus 0 systems and the monodromy groups of
functionally indecomposable rational functions with the Siegel property. Lüroth’s
Theorem shows that functional indecomposability of g(Z) (over k) implies primi-
tivity of A. The following lemma summarizes the properties we will use.

Lemma 4.7. With the notation from above let D  A and I E D be the decom-
position and inertia group of a place of L lying above the place t 7! 1 of k(t),
respectively. Suppose that g(Z) has the Siegel property. Then the following holds.
(a) The cyclic group I has at most two orbits, with lengths equal the multiplicities

of the elements in g�1(1).
(b) A = GD and I  G \ D. In particular, A = NA(I )G.
(c) If A is primitive, then G is primitive, too.
(d) G has a genus 0 system, with a generator of I belonging to it.
Proof. For (a) and (b) see [48, Lemma 3.4], for (c) see [48, Theorem 3.5], and (d)
follows from Section 4.1.

4.6. Monodromy groups and ramification of Siegel functions
The main result of this section is the following:

Theorem 4.8. Let g(Z) be a non-constant, functionally indecomposable rational
function over a field k of characteristic 0. Suppose that |g�1(1)| = 2. Let
A and G be the arithmetic and geometric monodromy group of g(Z), respec-
tively,and (�1, �2, . . . , �r ) a branch cycle description. Let T be the unordered tuple
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(ord(�1), ord(�2), . . . , ord(�r )). Then either An  G  A  Sn , with many pos-
sibilities for T , or one of the following holds, where G  A  Amax:

1. A acts as an affine group, and one of the following holds:

n G Amax T
5 AGL1(5) G (2, 4, 4)
7 AGL1(7) G (2, 3, 6)
8 A0L1(8) G (3, 3, 6), (3, 3, 7)
8 AGL3(2) G many cases
9 A0L1(9) G (2, 4, 8)
9 AGL2(3) G (2, 3, 8), (2, 6, 8), (2, 2, 2, 8)
16 C42 o (C5 o C4) G (2, 4, 8)
16 index 2 in Amax (S4⇥S4) o C2 (2, 4, 8)
16 C42 o S5 G many cases
16 A0L2(4) G (2, 4, 15)
16 C42 o A7 G (2, 4, 14)
16 AGL4(2) G many cases
32 AGL5(2) G several cases

2. (Product action) n = m2, G = A = (Sm ⇥Sm)oC2, many possibilities for T .

3. A is almost simple, and one of the following holds:

n G Amax T
6 PSL2(5) PGL2(5) many cases
6 PGL2(5) G (2, 4, 5), (4, 4, 5), (4, 4, 3)
8 PSL2(7) PGL2(7) (2, 3, 7), (3, 3, 7), (3, 3, 4)
8 PGL2(7) G (2, 6, 7), (2, 6, 4)
10 A5 S5 (2, 3, 5)
10 S5 G (2, 4, 5), (2, 6, 5), (2, 2, 2, 5)
10 PSL2(9) P0L2(9) (2, 4, 5)
10 P6L2(9) P0L2(9) (2, 6, 5), (2, 2, 2, 5)
10 M10 P0L2(9) (2, 4, 8)
10 P0L2(9) G (2, 8, 8)
12 M11 G many cases
12 M12 G many cases
14 PSL2(13) PGL2(13) (2, 3, 7), (2, 3, 13)
21 P6L3(4) G (2, 4, 14)
21 P0L3(4) G (2, 3, 14), (2, 6, 14), (2, 2, 2, 14)
22 M22 M22 o C2 (2, 4, 11)
22 M22 o C2 G (2, 4, 11), (2, 6, 11), (2, 2, 2, 11)
24 M24 G many cases
40 PSL4(3) PGL4(3) (2, 3, 20)
40 PGL4(3) G (2, 4, 20)
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For completeness, we state the analogous result if |g�1(1)| = 1. The proof
follows immediately from Lemma 4.7 and the classification result in [45].

Theorem 4.9. Let g(Z) be a non-constant, functionally indecomposable rational
function over a field k of characteristic 0 with |g�1(1)| = 1. Let G be the geomet-
ric monodromy group of g(Z), and (�1, �2, . . . , �r ) be a branch cycle description.
Let T be the unordered tuple (ord(�1), ord(�2), . . . , ord(�r )). Then one of the fol-
lowing holds holds:

1. Infinite series:
a) n = p, G = Cp, T = (p, p), p a prime.
b) n = p, G = Dp, T = (2, 2, p), p an odd prime.
c) G = An (n odd) or Sn , many possibilities for T .

2. Sporadic cases:
a) n = 6, G = PGL2(5), T = (2, 4, 6).
b) n = 7, G = PGL3(2), T = (2, 3, 7), (2, 4, 7), or (2, 2, 2, 7).
c) n = 8, G = PGL2(7), T = (2, 3, 8).
d) n = 9, G = P0L2(8), T = (2, 3, 9) or (3, 3, 9).
e) n = 10, G = P0L2(9), T = (2, 4, 10).
f) n = 11, G = PSL2(11), T = (2, 3, 11).
g) n = 11, G = M11, T = (2, 4, 11).
h) n = 13, G= PGL3(3), T = (2, 3, 13), (2, 4, 13), (2, 6, 13), or (2, 2, 2, 13).
i) n = 15, G = PGL4(2), T = (2, 4, 15), (2, 6, 15), or (2, 2, 2, 15).
j) n = 21, G = P0L3(4), T = (2, 4, 21).
k) n = 23, G = M23, T = (2, 4, 23).
l) n = 31, G = PGL5(2), T = (2, 4, 31).

4.7. Proof of Theorem 4.8

The strategy is as follows. Functional indecomposability of g(Z) implies that A is
primitive. By Lemma 4.7(a) we can apply Theorem 3.3. It remains to find normal
subgroups G of A for which (b) and (d) of Lemma 4.7 hold. For that it is useful
to know that G is primitive as well by Lemma 4.7(c). The proof is split up into
three sections, according to whether A acts as an affine group, preserves a product
structure, or is almost simple.

4.7.1. Affine action

The proof is based on work by Guralnick, Neubauer, and Thompson on genus 0
systems in primitive permutation groups of affine type. Suppose that A is affine.
The cases that A has degree  4 are immediate, so assume n � 5. G is primitive
by Lemma 4.7. Let �r be a generator of I , so �r has two cycles. Let N be the
minimal normal subgroup of A. First suppose that G 00 = 1. As G 0 is Abelian, we
have G 0 = N , and primitivity of G forces that G/N acts irreducibly on N . But
G/N = G/G 0 is Abelian, so G/N is cyclic by Schur’s Lemma. More precisely,
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we can identify G as a subgroup of AGL1(q), where q = |N | = pm for a prime
p. As q > 4, we have necessarily that � fixes a point and moves the remaining
ones in a (q � 1)–cycle. An element in N has index q(1 � 1/p) � q/2, whereas
an element in AGL1(q) of order t |q � 1 has index (q � 1)(1� 1/t) � (q � 1)/2.
The index relation gives r = 3 and that neither �1 nor �2 is contained in N . So
2(q � 1) = q � 2+ (q � 1)(1� 1/t1 + 1� 1/t2) � q � 2+ (q � 1)(1/2+ 2/3),
where ti is the order of �i . It follows q  7.

Next suppose that G 00 > 1. Write n = pm . We use [20, Theorems 4.1,
5.1]. If p > 5, then p = 7 or 11, and m = 2. Furthermore T = (2, 4, 6)
for p = 7, or T = (2, 3, 8) for p = 11. So this does not occur in view of
ord(�r ) � n/2 = p2/2. Next suppose p = 5. We use [50, Theorem 1.5] (the
statement is already in [20], but only parts are proven there). Again compare
ord(�r ) � n/2 with the possible genus 0 systems given for p = 5. Only n = 25
with G = (C5 ⇥ C5) o (SL2(5) o C2) could arise. However, this group does not
have an element with only two cycles by Theorem 3.3. So we have p = 3 or 2.
Suppose that p = 3. Use [50, Theorem 1.5] to see that necessarily n = 9. Check
directly that only the listed degree 9 cases occur. Now suppose p = 2. By [50],
we get n  28. Except for the cases A = AGL7(2) and A = AGL8(2), these cases
are small enough to be checked with the computer algebra system Magma [3],
giving the possibilities as stated. In order to see that there are no examples in
AGL7(2) and AGL8(2), one also needs some character theoretic arguments based
on [52, Theorem 1] to exclude potential generating systems, and [55, Theorem
7.2.1] in order to see that elements from certain conjugacy classses cannot mul-
tiply up to 1. The nonexistence of cases for AGL7(2) and AGL8(2) follows also
from [40].

4.7.2. Product action

Let A be a non-affine group which preserves a product structure. Again let �r be
the element with two cycles. By Theorem 3.3, we have have A = (U ⇥ U) o C2
in product action, where either U = Sm , or U = PGL2(p) for a prime p � 5. By
primitivity of G we cannot have G  (U ⇥U). On the other hand, the presence of
�r forces U ⇥U  G, see the proof of Theorem 3.3, so G = A.

Let 1 be the set U is acting on, and let � := 1 ⇥ 1 be the set G = A
acts on. We show the existence of a genus 0 system of the required form for U =
Sm . Write 1 := {1, 2, . . . ,m}. Let ⌧ 2 G be the element which maps (i, j)
to ( j, i). Let 1  a < m be prime to m. For ↵ := (1, 2, . . . ,m) 2 Sm and
� := (a, a � 1, . . . , 2, 1)(m,m � 1, . . . , a + 2, a + 1) 2 Sm set �1 := (↵,�) 2 A,
�2 := ⌧ , �3 := (�1�2)

�1. We show that (�1, �2, �3) is a genus 0 system of G.
First we show that �1 and �2 generateG. Note that a,m�a, andm are pairwise

prime. Let r and s be integers such that rm ⌘ 1 (mod a(m�a)) and sa(m�a) ⌘ 1
(mod m). Then clearly � rm1 = (1,�) and � sa(m�a)

1 = (↵, 1). Conjugating with ⌧
shows that also (�, 1), (1,↵) 2 G. We are done once we know that ↵,� generate
Sm . But this is clear, because it is easy to see that the generated group is doubly
transitive and contains the transposition ↵� = (a,m).
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We compute the index of �i . The element �1 has a cycle of length ma, and
another one of length m(m � a). So ind(�1) = m2 � 2. Furthermore, ind(�2) =
(m2�m)/2, because �2 = ⌧ has exactlym fixed points, and switches the remaining
points in cycles of length 2. Next, �3 := ⌧ (↵�1,��1). The element (i, j) 2 � is a
fixed point of �3 if and only if j = i↵ and i = j� , hence j = i + 1 with i 6= a,m.
Thus there are exactly m� 2 fixed points. Now � 23 = ((a,m), (a+ 1, 1)) has order
2 and exactly (m � 2)2 fixed points. Lemma 4.1 gives

ind(�3) = m2 �
1
4
('(4)(m � 2) + '(2)(m � 2)2 + '(1)m2)

= (m2 + m)/2,

so the genus of (�1, �2, �3) is 0.
We now show that U = PGL2(p) does not occur. Again, let ⌧ be the element

which flips the entries of�. At least two of the elements in �1, . . . , �r�1 must be of
the form � = (↵,�)⌧ , with ↵,� 2 PGL2(p). This � is conjugate in G to (1,↵�)⌧ .
If ↵� = 1, then ind(� ) = ((p+1)2�(p+1))/2. Otherwise, ind(� ) � 2((p+1)2�
4)/3, because � 2 ⇠ (↵�,↵�) has at most 4 fixed points. If � has the form (↵,�),
then � has at most 4(p + 1) fixed points, so ind(� ) � ((p + 1)2 � 4(p + 1))/2.
As

Pr�1
i=1 ind(�i ) = (p + 1)2, it follows from these index bounds that r = 3, so �1

and �2 have the ⌧–part. Because not both �1 and �2 can be involutions (for G is not
dihedral), we obtain (p + 1)2 � ((p + 1)2 � (p + 1))/2+ 2((p + 1)2 � 4)/3, so
p < 5, a contradiction.

4.7.3. Almost simple action

Let S be the simple non-Abelian group with S  G  A  Aut(S), and �r again
the element with two cycles. We have to check the groups in Theorem 3.3(III) for
the existence of genus 0 systems of the required form.

If S = An (n even) in natural action, then it is easy to check that there are
many such genus 0 systems, and it is obviously not possible to give a reasonable
classification of them. Next, the cases except the infinite series 3c and 3d of The-
orem 3.3 are easily dealt with, using the atlas [9] and some ad hoc arguments, or
more conveniently using [17]. Now assume PSL2(q)  G  P0L2(q) in the nat-
ural action, with q � 5 a prime power. Note that q is odd. As n = q + 1 and
ind(�r ) = n � 2, the index relation gives

q + 1 =
r�1X

k=1
ind(�k).

We distinguish two cases. First assume G  PGL2(q). For � 2 PGL2(q) we easily
obtain (see e. g. [45]) that ind(� ) � (q � 1)(1 � 1/ord(� )). So the index relation
gives

r�1X

k=1
(1� 1/ord(�k)) 

q + 1
q � 1

.
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As G is not dihedral, either r � 4, or r = 3 and �1 and �2 are not both involutions.
In the first case, we obtain q = 5, and in the second case,

P2
k=1(1� 1/ord(�k)) �

(1� 1/2) + (1� 1/3) gives q  13. Check these cases directly.
Next suppose that G 6 PGL2(q), but G  P0L2(q). Check the case q = 9,

�r 62 PGL2(9) directly and exclude it in the following. Thus �r 2 PGL2(q) by Lem-
ma 3.47. Denote by �̄k the image of �k in the Abelian group P0L2(q)/PGL2(q).
Then the elements �̄k for k = 1, . . . , r � 1 are not all trivial and have product
1. Thus the order of two of the elements �1, �2, . . . , �r�1 have a common divisor
� 2. Furthermore, for � 2 P0L2(q), we have the index bound ind(� ) � (1 �
1/ord(� ))(q �

pq), see [45]. This information, combined with the index relation,
gives

5
4

=

✓
1�

1
2

◆
+

✓
1�

1
4

◆

r�1X

k=1
(1� 1/ord(�k))

1
q�

pq

r�1X

k=1
ind(�k)=

q + 1
q�

pq
.

Hence q  5pq + 4, so q = 9, 25, or 27. If q = 27 = 33, then the above argument
shows that the common divisor can be chosen to be 3, so the analogous calculation
gives 4/3  (27 + 1)/(27 �

p
27), which does not hold. Similarly, refine the

argument (using [45]) or simply check with GAP [17] that q = 25 does not occur.
The main case which is left to investigate is case III(d) of Theorem 3.3, namely

that PSLm(q)  G  P0Lm(q) acts naturally on the projective space, q is an odd
prime power, m � 2 is even, and �r is the square of a Singer cycle. The case m = 2
has been done above. The casem � 4, which is somewhat involved, will be handled
in the remaining part of this section. In order to finish the almost simple case, we
need to show that m = 4, q = 3, giving the degree n = 40 cases in Theorem 4.8.
For this we need the following index bounds:

Lemma 4.10. Let q be a prime power, and 1 6= � 2 P0Lm(q), where m � 4. Then
the following holds:

1. ind(� ) � (1� 1/ord(� ))(qm�1 � 1).
2. If ord(� ) is a prime not dividing q(q � 1), and � 2 PGLm(q), then ind(� ) �

(1� 1/ord(� ))qm�2(q + 1).
3. If ord(� ) is a prime dividing q, and � 2 PGLm(q), then ind(� ) = (1 �
1/ord(� ))(qm � q j )/(q � 1) for some 1  j  m � 1.

Proof. For 1 see [45]. Set N := (qm � 1)/(q � 1), and let s be the order of � .
Now assume the hypothesis in 2. Let �(� ) be the number of fixed points of � .
Then clearly ind(� ) = (N � �(� ))(1 � 1/s). Let �̂ 2 GLm(q) be a preimage of
� of order s. For ↵ 2 Fq , let d(↵) be the dimension of the eigenspace of �̂ with
eigenvalue ↵. Clearly

�(� ) =
X

↵2Fq

qd(↵) � 1
q � 1

.



422 PETER MÜLLER

So �(� )  (qd � 1)/(q � 1), where d =
P
↵ d(↵). On the other hand, as s does

not divide q � 1, �̂ must have eigenvalues not in Fq . So d  m � 2, and the claim
follows.

To prove 3, note that a preimage of order s of � in GLm(q) admits Jordan
normal form over Fq .

Recall that N = (qm � 1)/(q � 1). Note that ind(�r ) = N � 2, so the index
relation gives

r�1X

k=1
ind(�k) = N . (4.2)

Claim 4.11. r = 3.

Proof. Suppose that r � 4. From 1 in Lemma 4.10 we have ind(�k) � (1 �
1/ord(�k))(qm�1 � 1), hence

r�1X

k=1
(1� 1/ord(�k)) 

N
qm�1 � 1

= 1+
1

q � 1
+

1
qm�1 � 1

 1+
1

q � 1
+

1
q3 � 1

< 1+
2

q � 1
.

(4.3)

First note that if r � 4, then 3/2 < 1 + 2
q�1 , so q < 5 and hence q = 3. We get

more precisely
Pr�1

k=1(1 � 1/ord(�k))  1 + 1/(3 � 1) + 1/(27 � 1) = 20/13.
However, 2(1 � 1/2) + (1 � 1/3) = 5/3 > 20/13, so besides q = 3 we obtain
r = 4, and �1, �2, �3 are involutions. Note that �4 has cycles of even length, as
4|N . So these involutions do have fixed points by Lemma 4.2. Let �̂ be a preimage
in GLm(3) of an involution in PGLm(3)with fixed points. Thus �̂ 2 has eigenvalue 1
on the one hand, but is also scalar. So �̂ has only the eigenvalues 1 and�1, and both
eigenvalues occur. This shows �(� ) ⌘ 2 (mod 3), hence ind(� ) ⌘ (N � 2)/2 ⌘ 1
(mod 3). So we get the contradiction

1 ⌘ N =
3X

k=1
ind(�k) ⌘ 0 (mod 3).

Claim 4.12. q  7.

Proof. From (4.3) and r = 3 we obtain

1
ord(�1)

+
1

ord(�2)
� 1�

1
q � 1

�
1

qm�1 � 1
� 1�

1
q � 1

�
1

q3 � 1
. (4.4)

�1 and �2 are not both involutions (because G is not dihedral). This gives 1/2 +
1/3 � 1� 1/(q � 1) � 1/(q3 � 1), so q < 8.

In the following we assume ord(�1)  ord(�2).
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Claim 4.13. q 6= 7.

Proof. Suppose q = 7. From (4.3) we obtain 1/ord(�1) + 1/ord(�2) � 1� 1/6�
1/(73 � 1) > 3/4, hence ord(�1) = 2, ord(�2) = 3. Again, as 2|(N/2) = ord(�3),
we get that �1 has fixed points, and so �(�1) ⌘ 2 (mod 7), hence ind(�1) ⌘ 3
(mod 7). From 3 + 2(N � �(�2))/3 = 3 + ind(�2) ⌘ N ⌘ 1 (mod 7) it follows
that �(�2) ⌘ 4 (mod 7). So a preimage �̂2 2 GLm(7) of �2 has exactly 4 different
eigenvalues � in F7. Let �̂ 32 be the scalar ⇢. The equation X3 � ⇢ has at most 3
roots in F7, a contradiction.

Claim 4.14. q 6= 5.

Proof. Suppose q = 5. The proof is similar to the argument in the previous claim,
so we only describe the steps which differ from there. We obtain ord(�1) = 2 and
ord(�2) = 3 or 4.

First assume that ord(�2) = 3. As 3|N , we obtain that �2 has fixed points by
Lemma 4.2, so a preimage �̂2 2 GLm(5) has eigenvalues in F5. Suppose (without
loss, as gcd(q � 1, 3) = 1) that 1 is one of the eigenvalues. As (X3 � 1)/(X � 1)
is irreducible in F5, this is the only F5–eigenvalue of �̂2. So �(�2) ⌘ 1 (mod 5),
hence ind(�2) ⌘ 0 (mod 5). This gives �(�1) ⌘ 4 (mod 5), which is clearly not
possible.

Now assume that ord(�2) = 4. The index relation together with Lemma 4.1
gives

2�(�1) + 2�(�2) + �(� 22 ) = N . (4.5)

Clearly, �(� 22 ) � �(�2). If �(� 22 ) = 0, then �(�1) ⌘ 3 (mod 5), which is not
possible. Thus � 22 has fixed points.

First assume that �2 has no fixed points. Then �1 has fixed points by Lemma
4.2, so �(�1) ⌘ 2 (mod 5). From that we obtain

2((5a � 1) + (5m�a � 1)) + ((5b � 1) + (5m�b � 1)) = 5m � 1

for suitable 1  a, b  m � 1. However, 5a + 5m�a  5+ 5m�1, and similarly for
b, so 3(5+ 5m�1) � 5(5m�1 + 1). This gives 5m�1  5, a contradiction.

So �2 has fixed points as well, therefore all eigenvalues of a preimage �̂2 2
GLm(5) are in F5. Without loss assume that 1 is an eigenvalue of �̂2, and denote
by a, b, c, d the multiplicity of the the eigenvalue 1, 2, 3, 4 2 F5, respectively.
Clearly b + c > 0, as �̂2 has order 4. Also, a > 0 by our choice. We obtain that
�(� 22 ) = (5a+d � 1)/4+ (5b+c � 1)/4, hence �(� 22 ) ⌘ 2 (mod 5). Relation (4.5)
gives �(�1)+�(�2) ⌘ 2 (mod 5). If �1 has fixed points, then �(�1) ⌘ 2 (mod 5),
hence �(�2) ⌘ 0 (mod 5), which is not the case. Thus �(�1) = 0 and �(�2) ⌘ 2
(mod 5), so d = 0 and either b = 0 or c = 0. Suppose without loss c = 0. Hence
�(�2) = �(� 22 ), and we obtain

N =
5m � 1
4

= 2�(�2) + �(� 22 ) = 3�(�2) = 3
✓
5a � 1
4

+
5m�a � 1

4

◆
,
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so
5m + 5 = 3(5a + 5m�a)  3(5+ 5m�1),

a contradiction as previously.

Claim 4.15. If q = 3, then m = 4 and (ord(�1), ord(�2)) = (2, 3) or (2, 4).

Proof. As ind(�k) � (3m�1 � 1)/2, and ind(�k) � 2(3m�2 � 1) unless �k is an
involution in PGLm(3) of minimal possible index, we obtain from the index relation
(4.2) that

ind(�k) 

(
3m�1 in any case,
5·3m�2+3

2 for k = 2 if �1 has not minimal possible index.
(4.6)

We first note that no prime s � 5 does divide ord(�k), for (4.6) and Lemma
4.102 would give

(1�
1
5
)3m�24  ind(�k)  3m�1,

which is nonsense. Similarly, we see that 9 does not divide ord(�k). Let � 2
PGLm(3) have order 9, and let �̂ 2 GLm(3) be a preimage of order 9. So �̂ admits
Jordan normal form over F3, and there must be at least one Jordan block of size� 4
by Lemma 3.5. Thus �(� )  (3m�3� 1)/2, and also �(� 3)  (3m�1� 1)/2. Now

ind(� ) = (1�
1
9
)N �

2
3
�(� ) �

2
9
�(� 3)

by Lemma 4.1. Use the above estimation to obtain after some calculation that
ind(� ) � 32 · 3m�4 > 3m�1, contrary to (4.6).

Now suppose that 4 divides the order of �k . Let � be a power of �k of order 4.
As �k must have a cycle of odd length by Lemma 4.2, � must have a fixed point.
Thus there is a preimage �̂ 2 GLm(3) of � with �̂ 4 = 1. Let a and b be the number
of Jordan blocks of size 1 with eigenvalue 1 and �1, respectively, and let j be the
number of square blocks of size 2. The square of such a block matrix is a scalar
with eigenvalue �1. We have a + b + 2 j = m, and 2  a + b  m � 2. Also,
�(� ) = (3a � 1+ 3b � 1)/2 and �(� 2) = (3a+b � 1+ 32 j � 1)/2. From that we
obtain

ind(� ) =
3
4
N �

1
2
�(� ) �

1
4
�(� 2)

=
3
4
N �

3a + 3b � 2
4

�
3a+b + 3m�a�b � 2

8

�
3
4
N �

3m�2 � 1
4

�
3m�2 + 7

8
= 3m�1 � 1.

Note that ind(�k) � ind(� ). From that we see that k = 2, and by (4.6) it follows
that �1 is an involution with minimal possible index. Thus ind(�2) = 3m�1 again
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by (4.6). This shows that ord(�2) is not divisible by 3, because then a cycle of �2
of length divisible by 3 would break up into at least 3 cycles of � , so ind(�2) �
2+ ind(� ) � 1+ 3m�1, a contradiction to (4.6).

Similarly, we see that 8 does not divide ord(�2). Suppose otherwise. Then
we get the same contradiction unless ord(�2) = 8 and �2 has exactly 1 cycle of
length 8. But then � 42 has N � 8 fixed points, however �(� 42 )  (3m�1 + 1)/2, so
(3m � 1)/2� 8  (3m�1 + 1)/2, so 3m�1  9, a contradiction.

So ord(�2) = 4, and ind(�2) = 3m�1 by what we have seen so far. Express
ind(�2) in terms of a and b as above. As �̂1 fixes a hyperplane pointwise, and
<�̂1, �̂2> is irreducible, we infer that a, b  1. Also, a + b > 0, so a = b = 1
because a + b is even. Substitute a = b = 1 in the relation ind(�2) = 3m�1 to get
3m�1 = 27, so m = 4. This case indeed occurs.

Next we look at elements of order 6. Let � 2 PGLm(3) have order 6, and
�̂ 2 GLm(3) be a preimage. We have

ind(� ) =
5
6
N �

1
3
�(� ) �

1
3
�(� 2) �

1
6
�(� 3).

Clearly

�(� 2) 
3m�1 � 1

2
, �(� 3) 

3m�1 + 1
2

.

If � has no fixed points, then �̂ 6 = �1, and therefore � 3 has no fixed points as well.
In this case, we thus obtain ind(� ) � 5N/6 � �(� 2)/3 � (13 · 3m�1 � 3)/12 >
3m�1. This, in conjunction with (4.6), shows that if ord(�k) = 6, then �k has a fixed
point. Suppose that � = �k has order 6 and a fixed point. Then �̂ admits Jordan
normal form over F3, and one realizes easily that

�(� ) 
3m�2 � 1+ 31 � 1

2
=
3m�2 + 1

2
.

Using this, one obtains after some calculation

ind(� ) �
17 · 3m�1 � 9

18
.

However, (17·3m�1�9)/18 > (5·3m�2+3)/2, so we get from (4.6) that k = 2 and
�1 is an involution with minimal index. So ind(�2) = 3m�1 by (4.2), and �1 leaves a
hyperplane invariant. The irreducibility of<�1, �2> forces that �̂2 has eigenspaces
of dimension at most 1. On the other hand, the Jordan blocks of �̂2 have size at most
3. As m � 4, there is thus exactly one Jordan block with eigenvalue 1, and exactly
one with eigenvalue �1. Let u and m � u be the size of these blocks, respectively.
Clearly �(�2) = 2, �(� 22 ) = 4, and �(� 32 ) = (3u + 3m�u � 2)/2. From that one
computes

ind(�2) =
5 · 3m � 3u � 3m�u � 27

12
.
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Now ind(�2) = 3m�1 yields the equation 3m = 3u + 3m�u + 27, which gives
3m�u = (3u + 27)/(3u � 1). Check that the right hand side is never a power of 3
for u = 1, 2, 3.

It remains to look at ord(�2) = 3. Then ord(�1) = 2 or 3. Note that ind(�2) =
3m�1 � 3 j2�1 by Lemma 4.103, where j2 is the number of Jordan blocks. Suppose
that ord(�1) = 3, and let j1 be the number of Jordan blocks. The index relation
yields 3m�1 + 1 = 2(3 j1�1 + 3 j2�1). Looking modulo 3 shows that j1 = j2 = 1.
But this gives m = 2, a contradiction.

Finally, suppose ord(�1) = 2. As the cycles of �3 are divisible by 2, Lemma
4.2 shows that �1 has fixed points. Then ind(�1) = (3m � 3i � 3m�i + 1)/4, where
1  i  m � 1 is the multiplicity of the eigenvalue 1 of an involutory preimage of
�1 in GLm(3). The index relation yields

3m�1 = 3i + 3m�i + 4 · 3 j2�1 � 3.

If i = 1 or m � 1, then the right hand side is bigger than the left hand side. Thus
2  i  m � 2. Looking modulo 9 then shows that j2 = 2, so we get 3m�1 =
3i + 3m�i + 9. Looking modulo 27 reveals that 3i = 3m�i = 9, thus m = 4. This
occurs indeed.

5. Siegel functions over the rationals

5.1. Monodromy groups and ramification

The main arithmetic constraint on monodromy groups is given in the following
lemma, see [48, Lemma 3.4]:

Lemma 5.1. Let g(Z) 2 Q(Z) be a rational function of degree n = 2m � 2, such
that g�1(1) consists of two real elements, which are algebraically conjugate in
Q(

p
d), for d > 1 a square-free integer. Let t be a transcendental over Q, and L a

splitting field of g(Z) � t over Q(t).
Let D  A and I E D be the decomposition and inertia group of a place of L

lying above the place t 7! 1 of Q(t), respectively.
Then I = <�> for some � 2 G, and the following holds.

1. � is a product of two m–cycles.
2. � k is conjugate in D to � for all k prime to m.
3. D contains an element which switches the two orbits of I .
4. D contains an involution ⌧ , such that �⌧ = ��1, and ⌧ fixes the orbits of I
setwise.

5. If
p
d 62 Q(⇣m) (with ⇣m a primitive m–th root of unity), then the centralizer

CD(I ) contains an element which interchanges the two orbits of I .

The main result about the monodromy groups of Siegel functions over Q is.



CYCLIC TWO-ORBITS SUBGROUPS AND MONODROMY GROUPS 427

Theorem 5.2. Let g(Z) 2 Q(Z) be a functionally indecomposable rational func-
tion of degree n � 2 with |g�1(1)| = 2. Let A and G be the arithmetic and
geometric monodromy group of g, respectively. Let T be the ramification type of g.
Then one of the following holds:

1. n is even, An  G  A  Sn , many possibilities for T ; or
2. n = 6, G = PSL2(5), A = PGL2(5), T = (2, 5, 3) and (2, 2, 2, 3); or
3. n = 6, G = PGL2(5) = A, T = (4, 4, 3); or
4. n = 8, G = AGL3(2) = A, T = (2, 2, 3, 4), (2, 2, 4, 4), and (2, 2, 2, 2, 4); or
5. n = 10, S  G  A  Aut(S), where S = A5 or A6, with many possibilities
for T ; or

6. n = 16, G = (S4⇥S4) o C2 = A, T = (2, 6, 8), (2, 2, 2, 8); or
7. n = 16, G = C42 o S5 = A, T = (2, 5, 8), (2, 6, 8), and (2, 2, 2, 8).

The analogue of the previous theorem for Siegel functions with |g�1(1)| = 1
follows from the classification of the monodromy groups of polynomials. For com-
pleteness, we give the result from [45].

Theorem 5.3. Let g(Z) 2 Q(Z) be a functionally indecomposable rational func-
tion with |g�1(1)| = 1 and of degree n � 2. Let A and G be the arithmetic and
geometric monodromy group of g, respectively. Let T be the ramification type of g.
Then one of the following holds:

1. n is a prime, Cn = G  A = AGL1(n), T = (n, n).
2. n � 3 is a prime, Dn = G  A = AGL1(n), T = (2, 2, n).
3. n � 4, An  G  A  Sn , many possibilities for T .
4. n = 6, G = PGL2(5) = A, T = (2, 4, 6).
5. n = 9, G = P0L2(8) = A, T = (3, 3, 9).
6. n = 10, G = P0L2(9) = A, T = (2, 4, 10).

5.2. Proof of Theorem 5.2

Let E = (�1, �2, . . . , �r ) be a genus 0 system of G, and T its type, such that �r is
the element � from Lemma 5.1. So n = 2m, where �r has two cycles, both of length
m. We denote by L a splitting field of g(Z) � t over Q(t), and if U is a subgroup
of A = Gal(L/Q(t)), then LU is the fixed field of U in L . First suppose that A
is an affine permutation group (different from A4 and S4). Theorems 3.3 and 4.8
gives the candidates for G and A and genus 0 systems. The only possible degrees
are 8 and 16. Suppose n = 8. The only possible candidate with a genus 0 system is
G = AGL3(2) = A. The rational genus 0 systems inG have type (3, 4, 4), (4, 4, 4),
(2, 2, 4, 4), (2, 2, 3, 4), or (2, 2, 2, 2, 4). The (3, 4, 4)–tuple must have all branch
points rational. By [41], the minimal field of definition of such a cover has degree
2 over Q, so this case is out. In the (4, 4, 4) case, a minimal field of definition has
degree 4 over Q if all branch points are rational. There could possibly be two of
the branch points conjugate, which would lower the degree of the minimal field of
definition by at most a factor 2, so this does not occur as well. The cases with 4 and
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5 branch points all occur, see Section 5.3. Now suppose n = 16. The only cases
where G has a genus 0 system of the required form, and �r fulfills the necessary
properties in Lemma 5.1, are the following:

(a) G has index 2 in (S4⇥S4) o C2, T = (2, 4, 8).
(b) G = A = (S4⇥S4) o C2, T = (2, 6, 8) or T = (2, 2, 2, 12). (This is case

m = 4 in 2 of Theorem 4.8.)
(c) G = A = C42 o S5, T = (2, 5, 8), (2, 6, 8), and (2, 2, 2, 8).

We start excluding case (a), where G1 = (C3 ⇥C3)oC4, and E has type (2, 4, 8).
Here [A : G]  2. The group G has, up to conjugacy, a unique subgroupU of index
8. Set Ũ := NA(U). Then A = ŨG, so the fixed field LŨ is a regular extension of
Q(t). Look at the action of A on A/Ũ . With respect to this action, the elements in
E have cycle types 2�2, 2�2�4, 8. From that we get that LŨ has genus 0, and be-
cause of the totally ramified place at infinity, we have LŨ = Q(x) where t = f (x)
with f 2 Q[X]. Now A, in this degree 8 action, preserves a block system of blocks
of size 4, and the last element in E leaves the two blocks invariant. Suppose with-
out loss that �2 corresponds to 0. Then this yields (after linear fractional changes)
f (X) = h(X)2 with h 2 Q[X], where h(X) = X2(X2 + pX + p), where the ram-
ification information tells us that h has, besides 0, two further branch points which
are additive inverses to each other. This gives the condition 27p2�144p+128 = 0,
so p 2 Q(

p
3) \ Q, a contradiction.

Cases (b) and (c) however have the required arithmetic realizations. As the
proof involves a considerable amount of computations, we postpone the analysis to
Section 5.3.

None of the product action cases in 2 with m � 5 can occur, because by 3.3
there is no element with two cycles of equal lengths.

Now assume that A is an almost simple group. Suppose that A is neither
the alternating nor the symmetric group in natural action. Theorem 4.8 lists those
cases where a transitive normal subgroup G has a genus 0 system. In our case, the
permutation degree n = 2m is even, and one member �r of the genus 0 system
is a product of two m–cycles. The condition (b) in Lemma 5.1, namely that �r
is rational in A, already excludes most examples. The two biggest degrees which
survive that condition are n = 22 with G = M22, A = M22 o C2 and n = 24 with
G = A = M24. However, �r violates condition (d) of Lemma 5.1 in both cases.

Excluding the case n = 12, G = M12 for a moment, the next smallest cases
with rational �r have degree n  10. We go through the possibilities which fulfill
the necessary properties from Lemma 5.1, starting with the small degrees.

Let n = 6. Then A = PGL2(5), and G = PSL2(5) or G = PGL2(5). If
G = A, then T = (4, 4, 3), and an example is given by

g(Z) =
Z4(13Z2 � 108Z + 225)

(Z2 � 15)3
.
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Next suppose G = PSL2(5). There is the possibility T = (2, 5, 3), with an example

g(Z) =
Z5(Z � 2)
(Z2 � 5)3

,

or T = (2, 2, 2, 3), where

g(Z) =
(Z2 � 2Z + 2)(Z2 � 16Z + 14)2

(Z2 � 2)3

is an example.
Let n = 8. Then A = PGL2(7), and [A : G]  2. First suppose G = PSL2(7).

Then T = (3, 3, 4). Suppose the required g(Z) exists. Without loss assume that
1 is the branch point corresponding to �3. The two finite branch points could be
algebraically conjugate. But there is a Galois extension K/Q of degree dividing 4,
such that the branch points are in K , and g�1(1) ⇢ K . So, by linear fractional
twists over K , we can pass from g to

g̃(Z) =
(Z2 + a1Z + a0)(Z2 + p1Z + p0)3

Z4
.

If a1 6= 0, then we may assume that a1 = 1. If however a1 = 0, then p1 = 0
cannot hold, because g̃ were functionally decomposable. Thus if a1 = 0, we may
assume that p1 = 1. Thus we have two cases to consider. Together with the obvious
requirement a0 p0 6= 0, and the ramification information in the other finite branch
point, this gives a 0–dimensional quasi affine variety. See [43, Sect. I.9] where this
kind of computation is explained in detail. By computing a Gröbner bases with
respect to the lexicographical order we can solve the system. We obtain an empty
set in the second case, and a degree 4 equation over Q for p1 in the first case.
However, this degree 4 polynomial turns out to be irreducible over Q with Galois
group D4, hence p1 62 K , a contradiction.

Now assume G = A. Then T = (2, 6, 4). The corresponding triple is ratio-
nally rigid and �2 has a single cycle of length 6, so there exists a rational function
g(Z) with the required ramification data. Still, we need to decide about the fiber
g�1(1). We do this by explicitly computing g, getting g(Z) = Z6(9Z2�6Z+49)

(Z2+7)4 . So
the fiber g�1(1) is not real, contrary to our requirement.

Let n = 10. Then S  A  Aut(S) with S = A5 or S = A6. In view of the
results we want to achieve, there is little interest in investigating these cases more
closely.

Finally, we have to rule out the case n = 12, G = A = M12. We have
the following possibilities for T : (2, 5, 6), (3, 4, 6), (3, 3, 6), (4, 4, 6), (2, 6, 6),
(2, 8, 6), and (2, 2, 2, 6).

In the cases with three branch points, explicit computations are feasible, and it
turns out that only the two cases (3, 3, 6) and (4, 4, 6) give Galois realizations over
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Q(t). However, in both cases the subfields of degree 12 over Q(t) are not rational.
Indeed, in the first case, we get the function field of the quadratic X2+Y 2+ 1 = 0,
and in the second case, the function field of the quadratic X2 + 3Y 2 + 5 = 0. In
Section 5.3 we give explicit polynomials over Q(t) of degree 12 with Galois group
M12 and ramification type (3, 3, 6) or (4, 4, 6), respectively. However, a variation
of the argument below could be used as an alternative.

So we need to worry about the ramification type T = (2, 2, 2, 6). The criterion
in Lemma 5.1 is too coarse in order to rule out that case. However, we still get rid
of this case by considering the action of complex conjugation, and what it does to
a genus 0 system. Let E be a genus 0 system of type T , and suppose that a function
g(Z) exists as required. By passing to a real field k containing g�1(1), we may
assume that g(Z) = h(Z)/Z6, where h[Z ] 2 k[Z ] is a monic polynomial of degree
12 and h(0) 6= 0. If h(0) < 0, then h(Z) � t0Z6 has exactly 2 real roots for
t0 ⌧ 0 (by a straightforward exercise in calculus). However, M12 does not have an
involution with only 2 fixed points, so this case cannot occur.

Thus h(0) > 0. Then, for t0 � 0, h(Z) � t0Z6 has precisely 4 real roots.
Choose such a t0 2 k with Gal(h(Z) � t0Z6/k) = M12. By a linear fractional
change over k, we can arrange the following: t0 is mapped to t̃0, the branch points
of the corresponding rational function g̃ are all finite, and the real branch points
of g̃ are smaller than t̃0. Let t̃0 be the base point of a branch cycle description
� = (�1, �2, �3, �4) coming from the “standard configuration” as in [43, Sect. I.1.1]
or [16, Section 2]. Note that the order of the conjugacy classes here must not be
chosen arbitrarily. So the element of order 6 is one of the �i . As k ⇢ R, complex
conjugation ⇢ leaves the set of branch points invariant, but reflects the paths at the
real axis, inducing a new branch cycle description �⇢ . For instance, if all branch
points are real, we get

�⇢ =
�
��1
1 , (��1

2 )�
�1
1 , (��1

3 )�
�1
2 ��1

1 , (��1
4 )�

�1
3 ��1

2 ��1
1

�
,

and a similar transformation formula holds if there is a pair of complex conjugate
branch points. For this old result by Hurwitz, see [43, Theorem I.1.2], [16].

Identify the Galois group Gal(g̃(Z) � t̃/k(t̃)) with Gal(g̃(Z) � t̃0/k), so that
they are permutation equivalent on the roots of g̃(Z)� t̃ and g̃(Z)� t̃0, respectively.
Let  be the complex conjugation on the splitting field of g̃(Z) � t̃0. Then, under
this identification, � = �⇢ . (Here � means simultaneously conjugating the
components with  .) This is a result by Dèbes and Fried, extending a more special
result by Serre [55, 8.4.3] (which does not apply here), see [16] and [43, Theorem
I.10.3].

Now, for instance using GAP, one checks that in all possible configurations for
� and possibilities of real and complex branch points, an element  as above either
does not exist, or is a fixed point free involution. However, as we have chosen t̃0
such that g̃(Z) � t̃0 has precisely 4 real roots, the case that  has precisely 4 fixed
points should also occur. As this is not the case, we have ruled out the existence of
M12 with this specific arithmetic data.
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5.3. Computations

This section completes the proof of Theorem 5.2 in those cases which require or
deserve some explicit computations besides theoretical arguments. We continue to
use the notation from there.

5.3.1. n = 8, G = AGL3(2).

Here n = 8, and G = A = AGL3(2). We have already seen that the only possible
ramification types could be T = (2, 2, 2, 2, 4), (2, 2, 4, 4), and (2, 2, 3, 4). We will
establish examples for all three cases. While deriving possible forms of g(Z) we
do not give complete justification for each step, because the required properties of
g(Z) can be verified directly from the explicit form. Thus the description of the
computation is only meant as a hint to the reader how we got the examples.

In the construction of examples we employ a 2–parametric family of polyno-
mials of degree 7 overQ(t) with a (2, 2, 2, 2, 4) ramification type and Galois group
PSL2(7). This family is due to Malle, see [42]. Define

f↵,�(X) :=
(X3 + 2(� � 1)X2 + (↵ + �2 � 4�)X � 2↵)

X2(X � 2)
·

(X4 � 2(� + 2)X2 + 4�X � ↵).

One verifies that for all (↵,�) 2 Q2 in a non–trivial Zariski open subset of Q2,
the following holds: f↵,� has arithmetic and geometric monodromy group PSL2(7)
with ramification type (2, 2, 2, 2, 4). The elements of order 2 are double transpo-
sitions, while the element of order 4 has type 1 � 2 � 4. We take the composition
f↵,�(r(X)), where r 2 Q(X) has degree 2, and is ramified in 0 and 1. Multiplying
r with a suitable constant (depending on ↵ and �), one can arrange that the discrim-
inant of the numerator of f↵,�(r(X)) � t is a square. This can be used to show that
the arithmetic and geometric monodromy group of f↵,�(r(X)) is AGL3(2) in the
degree 14 action. One can now pass to the fixed field E of GL3(2) < AGL3(2) in
a splitting field L of f↵,�(r(X)) � t over Q(t). A minimal polynomial F↵,�(X, t)
for a primitive element of E/Q(t) can be computed, we do not print it here because
it is very long. For that we used a program written by Cuntz based on KASH [10]
which computes subfields in algebraic function fields.

It turns out that the degree in t of F↵,�(X, t) is 2. So we can easily derive a
condition for the genus 0 field E to be rational. In this case, we get that E is rational
if and only if�↵ is a sum of two squares inQ. For instance, the choice ↵ := �1/2,
� = 1 yields

g(Z)=
(13Z4+ 60Z3+ 100Z2+ 72Z + 20)(11Z4+ 8Z3� 12Z2� 16Z + 12)

(Z2 � 2)4
.

Next we want to see how to get the cases with 4 branch points. Let 1↵,�(t) be the
discriminant of a numerator of f↵,� � t with respect to X . A necessary condition
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for having only 4 branch points is that the discriminant of 1↵,�(t) with respect to t
vanishes. This gives a condition on ↵ and �, and if one performs the computation,
it follows that this condition is given by the union of two genus 0 curves which are
birationally isomorphic to P1(Q) over Q. For the computation of such a birational
map, wemade use of theMaple package algcurves byMark van Hoeij (available
at http://klein.math.fsu.edu/˜hoeij, also implemented in Maple V Release 5).

An example for the ramification type (2, 2, 4, 4) is

g(Z) =
(3Z2 � 15Z + 20)Z2

(Z2 � 5)4
,

whereas

g(Z) =
(11Z2 + 30Z + 18)(3Z2 + 30Z � 46)3

(Z2 � 2)4

is an example of ramification type (2, 2, 3, 4).

5.3.2. n = 16, G = (S4⇥S4) o C2

Here n = 16, and G = A = (S4oS4)oC2 in product action of the wreath product
S4 oC2. First suppose that E has type (2, 6, 8). There are two such possibilities, both
being rationally rigid. The first has fine type (2 � 2 � 2 � 2, 3 � 6 � 6, 8 � 8),
and the second one has fine type (2 � 2 � 2 � 2 � 2 � 2, 2 � 3 � 3 � 6, 8 � 8).
From this we can already read off that there is a rational function g(Z) 2 Q(Z)
of degree 16 and the ramification data and monodromy groups given as above. Let
�3 correspond to the place at infinity. One verifies that the centralizer CA(�3) is
intransitive, so g�1(1) ⇢ K [ {1}, where K is a quadratic subfield of Q(⇣8),
so K = Q(

p
�1), K = Q(

p
�2), or K = Q(

p
2). The first two possibilities

cannot hold, because complex conjugation would yield an involution in A, which
inverts �3, and interchanges the two cycles of �3. One verifies that such an element
does not exist. Let D̃ be the normalizer in A of I := <�3>. Then D̃ contains a
decomposition group D of a place of L lying above the infinite place ofQ(t). Also,
[D : I ] � 4 by rationality of �3. On the other hand, [D̃ : I ] = 4. Thus D = D̃. But
D̃ interchanges the two cycles of �3, so the elements in g�1(1) cannot be rational.
This establishes the existence of g of the required type.

In this situation, we were lucky that theoretical arguments gave a positive ex-
istence result. However, it is also quite amusing to take advantage of the specific
form of A and compute an explicit example from the data given here.

Recall that G = A = S4 oC2 is in product action. To this wreath product
there belongs a subgroup U of index 8, which is a point stabilizer corresponding
to the natural imprimitive action of A. The fine types of the two (2, 6, 8)–tuples
with respect to this degree 8 action are (2, 2� 6, 8) and (2� 2� 2� 2, 2� 3, 8),
respectively. One verifies immediately that LU is a rational field, indeed LU =
Q(x), where t = h(x)2 with h 2 Q[X]. The idea is to compute this field, and then
extract from that the degree 16 extension we are looking for.
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In the first case, we may assume h of the form h(X) = X3(X � 1), whereas
h(X) = X3(X � 8) + 216 (note that h(X) + 216 = (X � 6)2(X4 + 4X + 12)) in
the second case.

We have h(x)2 = t . Set y := h(x), and let x 0 be a root of h(X) = �y. Then
also h(x 0)2 = t . However, x + x 0 is fixed under a suitable point stabilizer of A with
respect to the degree 16 action of the wreath product S4 oC2 in power action.

Take the first possibility for h. Using resultants, one immediately computes a
minimal polynomial H(W, t) of w := x + x 0 over Q(t):

H(W,t) =W 16� 8W 15 + 27W 14 � 50W 13 + 55W 12 � 36W 11 + 13W 10 � 2W 9

+136tW 8� 544tW 7+ 892tW 6� 744tW 5+ 315tW 4� 54tW 3+ 16t2.

Here, however, t appears quadratic, so this does not immediately yield the function
g we are looking for. However, it is easy to write down a parametrization for the
curve H(W, t) = 0:

W =
Z(2Z + 3)
Z2 � 2

t = �
1
16

Z6(Z + 2)6(2Z + 3)3

(Z2 � 2)8
=: g(Z).

The function g(Z) parameterizing t is the function we are looking for.
Similarly, the second possibility of h gives a function

g(Z) =
(Z2 + 4Z + 6)(Z � 2)2(3Z2 � 4Z + 2)3

(Z2 � 2)8
.

By Theorem 4.8, there is, for this setup, also the possibility of a (2, 2, 2, 8) system.
This is no longer rigid. But even if we could show, for instance using a braid rigidity
criterion as in [43, Chapt. III], the existence of a regular Galois extension L/Q(t)
with the correct data, we would not be able to decide about rationality of the degree
16 subfield we are after. However, the following computations will display and
solve the problem.

With s 2 Q arbitrary set h(X) := X4+2sX2+(8s+32)X+s2�4s�24. One
verifies that the splitting field of h(X)2 � t over Q(t) is regular with Galois group
A, and that we have the ramification given by the (2, 2, 2, 8) system, provided that
s 62 �4,�3,�12. (The cases s = �3 and s = �12 give the first and second
possibilities from above, whereas for s = �4 the monodromy group of h is D4
rather than S4.) Again, let x be with h(x)2 = t , and x 0 be with h(x 0) = �h(x). As
above, derive a minimal polynomial H(W, t) for x + x 0 over Q(t). One calculates
that the curve H(W, t) = 0 is birationally isomorphic to the quadraticU2� 2V 2 =
4s+16. Of course, it depends on s whether this quadratic has a rational point, which
in turn is equivalent that LU (U from above) is a rational function field. But if one
chooses s such that 4s+16 = u20�2v

2
0 for u0, v0 2 Q, then LU is rational, and from

the explicit choice of a rational point on the quadratic we get g(Z), parametrized
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by (u0, v0), where two such pairs give the same function if u20� 2v20 = u0
0
2� 2v0

0
2.

Up to the details which are routine, this shows that the ramification type (2, 2, 2, 8)
appears as well.

5.3.3. n = 16, G = C42 o S5
Now G = A = C42 o S5, where the action of S5 is on the S5–invariant hyperplane
of the natural permutation module for S5 over F2. We verify that the genus 0
systems of type (2, 5, 8) and (2, 6, 8) are rationally rigid, also, it follows from the
ramification type, that the degree 16 field we are looking for is rational. As in the
previous case, we can recognize the decomposition group (belonging to the inertia
group I := <�3>) as the normalizer of I in A, and from the properties of NA(I )
we can read off, exactly as in the previous case, that g(Z) = h(Z)/(Z2� 2)8 exists
as required.

Explicit computation is different from the previous case. Suppose we have the
ramification type (2, 5, 8). As an abstract group, A = V o S5, where V < F52 is
the hyperplane of vectors with coordinate sum 0, and S5 permutes the coordinates
naturally. This interpretation of A as a subgroup of the wreath product C2 oS5 gives
an imprimitive faithful degree 10 action of A. LetU be the corresponding subgroup
of index 10. One verifies that LU is the root field of h(X2) � t , where h(Y ) =
(Y �1)5/Y . Let yi be the roots of h(Y )� t , i = 1, . . . , 5, and for each i , let xi be a
square root of yi . Set w = x1 + x2 + · · · + x5. We compute a minimal polynomial
H(W, t) for w. Namely consider H(W, t) :=

Q
(X + ✏1x1 + ✏2x2 + · · · + ✏5x5),

where the product is over ✏i 2 {�1, 1}, such that the sum of the entries for each
occurring tuple is 0. Obviously, H(w, t) = 0, and H(W, t) 2 Q[W, t]. As to the
practical computation, we computed the solutions of h(X) � t in Laurent series in
1/t1/5 around the place with inertia group order 5. Eventually, after calculations
similar as above, we get

g(Z) =
(Z � 1)(Z2 + Z � 1)5

(Z2 � 2)8
.

If the ramification type is (2, 6, 8), then L is the splitting field of h(X2) � t , with
h(Y ) = (2Y 2 � 27)2(Y 2 � 1)3/Y 2, and after similar computations we get

g(Z) =
(5Z2 + 4Z � 10)(Z + 2)2(5Z2 � 12Z + 6)3

(Z2 � 2)8
.

Also, the case (2, 2, 2, 8) is not hard to establish by the procedure described above.
An example (as part of a 1–parameter family) is

g(Z) =
(15Z4 � 74Z3 + 140Z2 � 124Z + 44)2

(Z2 � 2)8

·(47Z8�472Z7+1912Z6�4272Z5+4840Z4�1824Z3�288Z2�64Z�16).



CYCLIC TWO-ORBITS SUBGROUPS AND MONODROMY GROUPS 435

5.3.4. n = 12, G = M12

In order to rule out the ramification types T = (3, 3, 6) and (4, 4, 6), we computed
explicitly polynomials F(X, t) of degree 12 over Q(t), such that the splitting field
L has Galois group M12 over Q(t), and the ramification type T . From the explicit
form of F(X, t) we can read off that a degree 12 extension E in L of Q(t) cannot
be a rational field. Nowadays such computations are routine, so we just give the
polynomials.

For T = (3, 3, 6) we obtain

F(X, t) = X12 + 396X10 + 27192X9 + 933174X8 + 20101752X7

+ (�2t + 169737744)X6 + 16330240872X5

+ (8820t + 538400028969)X4 + (92616t + 8234002812376)X3

+ (�3895314t + 195276967064388)X2

+ (�48378792t + 3991355037576144)X
+ t2 + 62267644t + 30911476378259268,

and for T = (4, 4, 6) we get

F(X, t) = X12 + 44088X10 + 950400X9 + 721955520X8

+ 31696106112X7 + (2t + 5460734649920)X6

+ 393700011065856X5

+ (�120180t + 20231483772508800)X4

+ (�2587680t + 911284967252689920)X3

+ (137561760t + 21295725373309787136)X2

+ (4418468352t + 183784500436675461120)X
+ t2 + 31440107840t + 3033666001201482093568.

As t is quadratic in both cases, it is easy to compute a quadratic Q such that E is the
field of rational functions on Q. Then E is rational if and only if Q has a rational
point. However, in both cases there is not even a real point on Q. This actually
indicates that the argument we used to exclude T = (2, 2, 2, 6)might be applicable
here as well. One can verify that this is indeed the case.

6. Applications to Hilbert’s irreducibility theorem

Immediate consequences of Theorems 4.8, 4.9, 5.2, and 5.3 are

Theorem 6.1. Let k be a field of characteristic 0, and g(Z) 2 k(Z) a rational
function with the Siegel property. Then each non-Abelian composition factor of
Gal(g(Z) � t/k(t)) is isomorphic to one of the following groups: A j ( j � 5),
PSL2(7), PSL2(8), PSL2(11), PSL2(13), PSL3(3), PSL3(4), PSL4(3), PSL5(2),
PSL6(2),M11,M12,M22,M23,M24.
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Theorem 6.2. Let g(Z) 2 Q(Z) be a Siegel function over Q. Then each non-
Abelian composition factor of Gal(g(Z) � t/Q(t)) is isomorphic to one of the fol-
lowing groups: A j ( j � 5), PSL2(7), PSL2(8).

Theorem 6.3. Let g(Z) 2 Q(Z) be a Siegel function over Q. Assume that A =
Gal(g(Z) � t/Q(t)) is a simple group. Then A is isomorphic to an alternating
group or C2.

In [48] we showed that this latter theorem implies the following:

Corollary 6.4. Let f (t, X) 2 Q(t)[X] be irreducible with Galois group G, where
G is a simple group not isomorphic to an alternating group or C2.
Then Gal( f (t̄, X)/Q) = G for all but finitely many specializations t̄ 2 Z.

Similarly, Theorems 6.1 and 6.2 have the following application to Hilbert’s
irreducibility theorem. See [48], where we also have results of this kind which do
not rely on group-theoretic classification results.

Corollary 6.5. Let f (t, X) 2 Q(t)[X] be irreducible, and assume that the Galois
group of f (t, X) over Q(t) acts primitively on the roots of f (t, X) and has a non-
Abelian composition factor which is not alternating and not isomorphic to PSL2(7)
or PSL2(8). Then f (t̄, X) remains irreducible for all but finitely many t̄ 2 Z.

Corollary 6.6. Let k be a finitely generated field of characteristic 0, and R a finitely
generated subring of k. Let f (t, X) 2 k(t)[X] be irreducible, and assume that the
Galois group of f (t, X) over k(t) acts primitively on the roots of f (t, X) and has
a non-Abelian composition factor which is not alternating and is not isomorphic
to one of the following groups: PSL2(7), PSL2(8), PSL2(11), PSL2(13), PSL3(3),
PSL3(4), PSL4(3), PSL5(2), PSL6(2), M11, M12, M22, M23, M24. Then f (t̄, X)
remains irreducible for all but finitely many t̄ 2 R.
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