A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 2, pp. 439-465.

We prove a Carleson type estimate, in Lipschitz type domains, for non-negative solutions to a class of second order degenerate differential operators of Kolmogorov type of the form

Ł= i,j=1 m a i,j (z) x i x j + i=1 m a i (z) x i + i,j=1 N b i,j x i x j - t ,

where z=(x,t) N+1 , 1mN. Our estimate is scale-invariant and generalizes previous results valid for second order uniformly parabolic equations to the class of operators considered.

Publié le :
Classification : 35K65, 35K70, 35H20, 35R03
@article{ASNSP_2013_5_12_2_439_0,
     author = {Cinti, Chiara and Nystr\"om, Kaj and Polidoro, Sergio},
     title = {A {Carleson-type} estimate in {Lipschitz} type domains for non-negative solutions to {Kolmogorov} operators},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {439--465},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {2},
     year = {2013},
     mrnumber = {3114009},
     zbl = {1277.35081},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_2013_5_12_2_439_0/}
}
TY  - JOUR
AU  - Cinti, Chiara
AU  - Nyström, Kaj
AU  - Polidoro, Sergio
TI  - A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2013
SP  - 439
EP  - 465
VL  - 12
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://archive.numdam.org/item/ASNSP_2013_5_12_2_439_0/
LA  - en
ID  - ASNSP_2013_5_12_2_439_0
ER  - 
%0 Journal Article
%A Cinti, Chiara
%A Nyström, Kaj
%A Polidoro, Sergio
%T A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2013
%P 439-465
%V 12
%N 2
%I Scuola Normale Superiore, Pisa
%U http://archive.numdam.org/item/ASNSP_2013_5_12_2_439_0/
%G en
%F ASNSP_2013_5_12_2_439_0
Cinti, Chiara; Nyström, Kaj; Polidoro, Sergio. A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 2, pp. 439-465. http://archive.numdam.org/item/ASNSP_2013_5_12_2_439_0/

[1] P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), 153–173. | MR | Zbl

[2] L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621–640. | MR | Zbl

[3] L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393–399. | MR | Zbl

[4] L. Capogna and N. Garofalo, Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl. 4 (1998), 403–432. | EuDML | MR | Zbl

[5] L. Capogna, N. Garofalo and D. M. Nhieu, Examples of uniform and NTA domains in Carnot groups, In: “Proceedings on Analysis and Geometry” (Russian) (Novosibirsk Akademgorodok, 1999), 103–121, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000. | MR | Zbl

[6] C. Cinti, K. Nyström and S. Polidoro, A boundary estimate for non-negative solutions to Kolmogorov operators in non-divergence form, Ann. Mat. Pura Appl. (4) 191 (2012), 1–23. | MR | Zbl

[7] C. Cinti, K. Nyström and S. Polidoro, A note on Harnack inequalities and propagation sets for a class of hypoelliptic operators, Potential Anal. 33 (2010), 341–354. | MR | Zbl

[8] D. Danielli, N. Garofalo and A. Petrosyan, The sub-elliptic obstacle problem: C 1,α regularity of the free boundary in Carnot groups of step two, Adv. Math. 211 (2007), 485–516. | MR | Zbl

[9] D. Danielli, N. Garofalo and S. Salsa, Variational inequalities with lack of ellipticity. I. Optimal interior regularity and non-degeneracy of the free boundary, Indiana Univ. Math. J. 52 (2003), 361–398. | MR | Zbl

[10] M. Di Francesco, A. Pascucci and S. Polidoro, The obstacle problem for a class of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464 (2008), 155–176. | MR | Zbl

[11] M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differential Equations 11 (2006), 1261–1320. | MR | Zbl

[12] E. Fabes, N. Garofalo, S. Marín-Malave and S. Salsa, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227–251. | EuDML | MR | Zbl

[13] E. B. Fabes, N. Garofalo and S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536–565. | MR | Zbl

[14] E. B. Fabes andC. E. Kenig, Examples of singular parabolic measures and singular transition probability densities, Duke Math. J. 48 (1981), 845–856. | MR | Zbl

[15] E. B. Fabes and M. V. Safonov, Behavior near the boundary of positive solutions of second order parabolic equations, In: “Proceedings of the conference dedicated to Professor Miguel de Guzmán” (El Escorial, 1996), Vol. 3 (1997), 871–882. | EuDML | MR | Zbl

[16] E. B. Fabes, M. V. Safonov and Y. Yuan, Behavior near the boundary of positive solutions of second order parabolic equations. II, Trans. Amer. Math. Soc. 351 (1999), 4947–4961. | MR | Zbl

[17] E. B. Fabes and D. W. Stroock, A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash, Arch. Ration. Mech. Anal. 96 (1986), 327–338. | MR | Zbl

[18] F. Ferrari and B. Franchi, Geometry of the boundary and doubling property of the harmonic measure for Grushin type operators, Rend. Sem. Mat. Univ. Politec. Torino 58 (2000), 281–299 (2002). Partial differential operators (Torino, 2000). | MR | Zbl

[19] F. Ferrari and B. Franchi, A local doubling formula for the harmonic measure associated with subelliptic operators and applications, Comm. Partial Differential Equations 28 (2003), 1–60. | MR | Zbl

[20] M. Frentz, N. Garofalo, E. Götmark, I. Munive and K. Nyström, Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 437–474. | Numdam | MR | Zbl

[21] M. Frentz, K. Nyström, A. Pascucci and S. Polidoro, Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options, Math. Ann. (2010), 805–838. | MR | Zbl

[22] N. Garofalo, Second order parabolic equations in nonvariational forms: boundary Harnack principle and comparison theorems for nonnegative solutions, Ann. Mat. Pura Appl. 138 (1984), 267–296. | MR | Zbl

[23] S. Hofmann and J. L. Lewis, “The Dirichlet Problem for Parabolic Operators with Singular drift Terms”, Mem. Amer. Math. Soc., Vol. 151, 2001, viii+113. | MR | Zbl

[24] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. | MR | Zbl

[25] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math. 46 (1982), 80–147. | MR | Zbl

[26] C. E. Kenig and J. Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ. Mat. 45 (2001), 199–217. | EuDML | MR | Zbl

[27] N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 161–175, 239. | MR | Zbl

[28] E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 29–63. Partial differential equations, II (Turin, 1993). | MR | Zbl

[29] E. B. Lee and L. Markus, “Foundations of Optimal Control Theory”, Robert E. Krieger Publishing Co. Inc., Melbourne, FL, second ed., 1986. | MR | Zbl

[30] M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations 2 (1997), 831–866. | MR | Zbl

[31] K. Nyström, The Dirichlet problem for second order parabolic operators, Indiana Univ. Math. J. 46 (1997), 183–245. | MR | Zbl

[32] K. Nyström, A. Pascucci and S. Polidoro, Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators, J. Differential Equations 249 (2010), 2044–2060. | MR | Zbl

[33] M. V. Safonov and Y. Yuan, Doubling properties for second order parabolic equations, Ann. of Math. 150 (1999), 313–327. | EuDML | MR | Zbl

[34] S. Salsa, Some properties of nonnegative solutions of parabolic differential operators, Ann. Mat. Pura Appl. 128 (1981), 193–206. | MR | Zbl