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Systems of symplectic forms on four-manifolds

SIMON G. CHIOSSI AND PAUL-ANDI NAGY

Abstract. We study almost-Hermitian 4-manifolds with holonomy algebra, for
the canonical Hermitian connection, of dimension at most one. We show how
Riemannian 4-manifolds admitting five orthonormal symplectic forms fit in this
picture and we classify them. In this set-up we also fully describe almost-Kähler
4-manifolds.

Mathematics Subject Classification (2010): 74K20 (primary); 74B20 (sec-
ondary).

1. Introduction

The existence of orthogonal harmonic forms on an oriented Riemannian four-mani-
fold (M4, g) typically encodes relevant properties of the metric. An orthonormal
frame of closed 1-forms, for instance, will flatten g.

Also closed, orthonormal 2-forms impose severe constraints on (M4, g), es-
sentially according to the choices of orientation available. Many cases have been
addressed in the literature: couples or triples of this kind, defining the same ori-
entation, were studied in [20, 21, 27], whereas [10] dealt with pairs of oppositely-
oriented symplectic forms.

The aim of this note is to consider smooth Riemannian manifolds (M4, g)
admitting a system of five symplectic forms {!k, 1  k  5} such that

g(!i ,! j ) = �i j i, j = 1, . . . , 5. (1.1)
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As we will see in Section 2, equation (1.1) is equivalent to considering, on a 4-
manifold M , a so-called 5-frame, that is five non-degenerate 2-forms satisfying

!i ^ ! j = ±�i j !5 ^ !5 i, j = 1, . . . , 4 (1.2)

at each point of M . A closed 5-frame is a 5-frame of symplectic forms. It is known
that if !1, . . . ,!6 is an orthonormal frame of closed 2-forms then the metric g must
be flat, a case we will exclude a priori.

It is easy to see that, up to re-ordering, three of the 2-forms are anti-self-dual,
and furnish a hyperKähler (hence Ricci-flat) metric g. The remaining 2-forms in
the frame are self-dual and give a holomorphic-symplectic form: this in turn yields
a complex structure I , for which g is necessarily Hermitian.

Our first result is:

Theorem 1.1. Let (M, g) be a non-flat Riemannian 4-manifold equipped with a
closed 5-frame. Then

(i) there exists a tri-holomorphic Killing vector field for the hyperKähler struc-
ture;

(ii) (M, g) is locally isometric to R+
⇥ Nil 3 equipped with metric

dt2 +

⇣
2
3 t

⌘3/2
(� 21 + � 22 ) +

⇣
2
3 t

⌘
�2/3

� 23 ,

where {�i } is a basis of left-invariant one-forms on the Heisenberg group Nil 3
satisfying d�1 = d�2 = 0, d�3 = �1 ^ �2.

Moreover the 5-frame is unique, up a constant rotation in O(3) ⇥U(1).

We are thus dealing with Hermitian, self-dual, Ricci-flat surfaces, classified
in [5]. To prove Theorem 1.1 we need to determine, first, which metrics in [5]
admit a holomorphic-symplectic form, and then determine that form explicitly.

The technique used for the proof is indicative of another point of view for
looking at closed 5-frames, namely that of holonomy. We prove that the curvature
tensor eR of the canonical Hermitian connection of (g, I ), cf. Section 3, is alge-
braically defined by the structure’s Lee and Kähler forms (Proposition 5.3). This
is used to show that the holomorphic Killing field X , coming from the Goldberg-
Sachs theorem [4, 25] for Einstein-Hermitian metrics, is actually tri-holomorphic
for the hyperKähler structure. This proves part (i), and as a consequence, we know
that g is essentially described by the celebrated Gibbons-Hawking Ansatz.

By changing the sign of I on the distribution spanned by X, I X we obtain a
Kähler structure (g, J ) with “negative” orientation. This allows us to use [5, Theo-
rem 1], and eventually the metric g is given as in (ii). Note this is a cohomogeneity-
one Bianchi metric of type II (see [29] for details).

The holonomy approach to close 5-frames leaves much space (Section 5) for
investigating almost-Hermitian 4-manifolds (M, g, I ) for which the holonomy
group of the canonical Hermitian connection is “small”: since this has dimension
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bounded by four, small will mean of dimension zero or one. Then there are three
possibilities for the two-form corresponding to the holonomy generator. It can van-
ish identically, in which case we prove g must be flat (Theorem 5.1), generalising
earlier results [8,9]. It can be proportional to the Kähler form !I of (g, I ), and this
is precisely the set-up of self-dual Ricci-flat 4-manifolds (Proposition 5.3). In the
third case the holonomy generator has a component orthogonal to !I that defines
a Kähler structure reversing the orientation. In this situation almost-Kähler struc-
tures are explicitly classified (Theorem 5.5). The corresponding examples are built
deforming the product of R2 with a Riemann surface, in the spirit of [1, 15].

ACKNOWLEDGEMENTS. The authors thank Simon Salamon for suggestions and
the ensuing conversations. It is a pleasure to acknowledge the hospitality of Uwe
Semmelmann at various stages of this work and that of the Department of Math-
ematics at the University of Auckland. We are grateful to the referee for useful
suggestions on how to improve this paper.

2. Two-forms on 4-manifolds

Consider a smooth oriented Riemannian 4-manifold (M, g). The Hodge star opera-
tor ? acting on the bundle of two-forms32 is an involution, with the rank-three sub-
bundles of self-dual and anti-self-dual 2-forms3±

= ker(?⌥ Id32) as eigenspaces.
The resulting decomposition

32 = 3+

�3� (2.1)

is loosely speaking the “adjoint” version of the fact that the Lie algebra so(4) =

so(3) � so(3) is semisimple.
Now let I in T ⇤M ⌦ T M be an orthogonal almost complex structure, that is

I 2 = � IdT M , g(I ·, I ·) = g(·, ·).

The Kähler form !I = g(I ·, ·) is non-degenerate at any point of M , and induces,
by decree, the positive orientation: !2I = vol(g). The almost complex structure I
extends to the exterior algebra by

(I↵)(X1, . . . , X p) = ↵(I X1, . . . , I X p),

where ↵ is a p-form on M and X1, . . . , X p belong to T M . We shall work with
real-valued forms, unless specified otherwise. Notation-wise, ()[ : T M ! 31M is
the isomorphism induced by the metric, with inverse ()].

The bundle of real 2-forms also decomposes under U(2) as

32 = �1,1 � �2, (2.2)
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where �1,1 denotes I -invariant two-forms, and �2 anti-invariant ones. If h!I i is
the real line through !I we further have �1,1 = h!I i � �1,10 , where the space of
primitive (1, 1)-forms �1,10 is the orthogonal complement to h!I i in �1,1. The real
rank-two bundle �2 has a complex structure I↵ = ↵(I ·, ·) that makes it a complex
line bundle isomorphic to the canonical bundle of (M, I ). So in presence of an
almost-Hermitian structure, 3+ splits as

3+

= h!I i � �2

under U(1), and comparing (2.2) and (2.1) leads to 3�
= �1,10 .

Slightly changing the point of view, we briefly recall how to recover a confor-
mal structure in dimension four from rank-three subbundles of two-forms. Consider
a smooth oriented manifold M of real dimension four with volume form vol(M).
The bundle 32 possesses a non-degenerate bilinear form q given by

↵ ^ � = q(↵,�)vol(M)

whenever ↵,� belong to32. Any subbundle E of32 of rank three and maximal, in
the sense that q|E is positive, determines a unique conformal structure on M such
that E = 3+ [26]. The proof of this descends from the fact that q has signature
(3, 3) and that at any point x of M the set of maximal subspaces of 32TxM is
parametrised by

GL(4, R)

CO(4)
⇠
=

SL(4, C)

SO(4)
⇠
=

SO0(3, 3)
SO(3) ⇥ SO(3)

.

Here CO(4) = R+
⇥ SO(4) is the conformal group. In particular:

Lemma 2.1. A closed 5-frame on a smooth 4-manifold determines

(i) a Riemannian metric g such that

span{!1,!2,!3} = 3�, {!4,!5} ⇢ 3+, (2.3)

up to re-ordering;
(ii) an orthogonal complex structure I defined by !5 = !4(I ·, ·).

Proof. (i) The !i are linearly independent as the metric q is neutral; for the same
reason, in (1.2) there are effectively 3 minus signs and 2 pluses,1 e.g. !21 = !22 =

!23, and in the chosen conformal class there exists a unique Riemannian metric g
such that {!4,!5} are orthonormal, so that �!21 = !24 = !25.
(ii) The closure of !4 and !5 implies automatically that I is integrable [27].

1 Or the other way around, but we will suppose three minuses.
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The convention throughout this note will be that of (2.3). Then the fundamental
form !I = g(I ·, ·) 2 3+ completes the 5-frame to an orthonormal basis of 32.
When the metric g is flat the forms !4,!5 must be parallel for the Levi-Civita
connection of g by a result of [7], so from now we consider non-flat 5-frames, that
is, g will be assumed not flat.

Since the triple {!1,!2,!3} defines a hyperKähler structure, the metric g
is Ricci-flat and self-dual. By Lemma 2.1 the classification of closed 5-frames
amounts to that of Ricci-flat, self-dual Hermitian structures (g, I ) equipped with a
complex-symplectic structure, that is a closed, constant-length two-form !4 + i!5
in 30,2I M = 32(M, C) \ ker(I + 2i).

The article [5] contains the complete local-structure theory for Ricci-flat, self-
dual Hermitian surfaces; to locate closed 5-frames in that classification we will set
up, in the next section, an equivalent curvature description. Before doing so we
remind that Gibbons and Hawking [22] have generated, locally, all hyperKähler 4-
manifolds admitting a tri-holomorphic Killing vector field using Laplace’s equation
in Euclidean three-space. We outline below their construction to show how closed
5-frames fit therein.

Take a hyperKähler 4-manifold (M4, g, J1, J2, J3) with a vector field X such
that LX Ji = 0, 1  i  3 and LXg = 0. Choose a local system of co-ordinates
(u, x, y, z) on M with X =

d
du and where x, y, z, given by Xy!J1 = dx , etc., are

the momentum maps. In these co-ordinates the metric reads

g = U(dx2 + dy2 + dz2) +U�1(du +2)2,

where U(x, y, z) = kXk
�2 is defined on some domain in R3, and the connection

one-form 2 is invariant under X and such that 2(X) = 0. The fundamental forms
of (g, Jk), 1  i  3,

!J1 = Udydz + dx(du +2), !J2 = Udxdy + dz(du +2),

!J3 = Udzdx + dy(du +2)

are closed if and only if 2 satisfies the monopole equation d2 = ?R3dU . In
particularU is harmonic on some open region ofR3, and conversely such a function
completely determines the geometry as explained above.

Moreover the (non-necessarily closed) forms

!I1 = Udydz � dx(du +2), !I2 = Udxdy � dz(du +2),

!I3 = Udzdx � dy(du +2)

are orthonormal and yield a trivialisation of 3+.
Example 2.2. Imposing that the forms !I1 and !I2 be closed forces Ux = Uz = 0,
so U = ay + b for real constants a, b; one can explicitly take 2 =

a
2 (zdx � xdz).

In this situation !I1 and !I2 build, together with !Jk , 1  k  3, a closed 5-frame,
which is not flat for a 6= 0 since d!I3 = 2adxdydz does not vanish.

Roughly speaking, Theorem 1.1 explains why this example is no coincidence.
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3. The curvature of the canonical connection

In order to characterise closed 5-frames in terms of curvature we need some facts
from almost-Hermitian geometry; these will serve us beyond the 5-frame set-up as
well, so the presentation will be general.

Let (M4, g, I ) be almost-Hermitian. The Levi-Civita connection r of g de-
fines the so-called intrinsic torsion of (g, I )

⌘ =

1
2
(r I )I 2 31 ⌦ �2.

Its knowledge is the main tool to capture, both algebraically and not, the geometry
of almost-Hermitian manifolds: indeed, the components of ⌘ inside the irreducible
U(2)-modules into which 31 ⌦ �2 decomposes determine the type and features
of the structure under scrutiny (e.g., Kähler, Hermitian, conformally Kähler and so
on). When indexing a differential form with a vector we shall mean �X = Xy� =

�(X, ·, . . . , ·), and in particular ⌘X =
1
2 (rX I )I.

The canonical connection e
r = r + ⌘

of the almost-Hermitian structure (g, I ) is a linear connection that preserves Rie-
mannian and almost complex structures, e

rg = 0 and e
r I = 0, hence it is both

metric and Hermitian. It coincides with the Chern connection (see [19]) if I is
integrable. Since the torsion tensor T of er is given by

TXY = ⌘XY � ⌘Y X

for any tangent vectors X,Y , we have ⌘ = 0 if and only if (g, I ) is Kähler.
The canonical Hermitian connection naturally induces an exterior derivative on
bundle-valued differential forms. For instance if ↵ belongs to 31(M, �2), we
have de

r↵(X,Y ) = (erX↵)Y � (erY↵)X for any X,Y in T M . On ordinary dif-
ferential forms one defines de

r
: 3M ! 3M in analogy with the usual exterior

derivative, that is de
r

=

P4
i=1 ei ^

e
rei where {ei , 1  i  4} is an orthonormal

basis of each tangent space. If the action of T on some 1-form ↵ is defined by
(T↵)(X,Y ) = ↵(TXY ) for any X,Y in T M , we may compare differentials

de
r↵ = d↵ � T↵.

Given a local gauge I1, that is a locally-defined orthogonal complex structure such
that I1 I + I I1 = 0, we define I2 = I1 I , and write

r I = a ⌦ I2 + c ⌦ I1, or equivalently 2⌘ = �a ⌦ I1 + c ⌦ I2, (3.1)

for local 1-forms a, c on M . The curvature tensor eR 2 32 ⌦ �1,1 of the canonical
connection, defined by eR(X,Y ) = �[

e
rX , e

rY ]+
e
r[X,Y ], X,Y in T M , has in general

not all of the symmetries enjoyed by the Riemannian counterpart R. It fails to be
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symmetric in pairs, and does not satisfy the first Bianchi identity, due to the terms
involving the intrinsic torsion in

eR(X,Y ) = R(X,Y ) � de
r⌘(X,Y ) + [⌘X , ⌘Y ] � ⌘TXY (3.2)

for any X,Y in T M , see e.g. [14]. The algebraic summands above can be computed
locally from (3.1); in particular

[⌘X , ⌘Y ] =

1
2
8(X,Y )I (3.3)

for all X,Y in T M , where 8 = a ^ c. The first Chern form e�1 of the canonical
connection is the 2-form defined by

e�1(X,Y ) = h
eR(X,Y ),!I i

for any X,Y in T M , where the brackets h·, ·i denote the inner product on forms.
The differential Bianchi identity forces it to be closed, de�1 = 0, and moreover
1
2⇡e�1 is a de Rham representative for c1(M, I ). Splitting the Ricci tensor Ric =

Ric0 +Ric00 into invariant and anti-invariant parts under I , and taking the scalar
product with !I in (3.2), yields

e�1 = ⇢ I + W+!I +8�

s
6
!I . (3.4)

Here ⇢ I = hRic0 I ·, ·i 2 �1,1, s is the scalar curvature of g and W±
=

1
2 (W ±W?)

are the positive and negative halves of the Weyl curvature considered as a bundle-
valued 2-form

W = W+

+ W�,

reflecting (2.1). The 4-manifold is called self-dual or anti-self-dual according to
whether W�

= 0 or W+
= 0.

One may also compute the first Chern form locally, by expanding the covariant
derivative of a local gauge I1:

e
r I1 = �b ⌦ I2, e

r I2 = b ⌦ I1 (3.5)

where b is a local 1-form on M , which implies

e�1 = �db. (3.6)

Expression (3.2) for eR simplifies considerably if one uses the Weyl tensor. Let Ric0
denote the trace-free component of the Ricci tensor and h =

1
2 (Ric0+

s
12g) be the

reduced Ricci tensor of g. Then R = W+h^g, where (h^g)(X,Y ) = hX^Y+X^

hY for any X,Y in T M . The latter can be written as (h^g)F = {F, h} for any F in
32 ⇠

= so(T M), where {·, ·} denotes the anti-commutator. Due to the isomorphism
Sym20 ⇠

= 3+
⌦3� described by the map S 7! S�, where S�(F) = {S, F}

�, F in
32, we also know that {Sym20,3±

} ✓ 3⌥.
The next lemma generalises a statement of [18].



724 SIMON G. CHIOSSI AND PAUL-ANDI NAGY

Lemma 3.1. On an almost-Hermitian manifold (M4, g, I ) the curvature of the
canonical connection can be decomposed as

eR = W�

+

s
12
Id3� +

1
2
Ric�0 +

1
2

e�1 ⌦ !I .

Proof. Expanding (3.2), and using (3.3) along the way, we obtain
eR(X,Y ) = W�(X,Y ) + W+(X,Y ) + hX ^ Y + X ^ hY

� de
r⌘(X,Y ) +

1
2
8(X,Y )!I � ⌘TXY

for any X,Y in T M . Now, since de
r⌘(X,Y ) + ⌘TXY belongs to �2 and eR lives in

32 ⌦ �1,1, by taking into account that W+ only acts on h!I i � �2, we can project
onto invariant 2-forms and infer

eR = W�

+ (h ^ g)�1,1 +

1
2
(W+!I +8) ⌦ !I .

From �1,1 = 3�
�h!I i we further get (h^ g)�1,1 = (h^ g)� +

1
2 h{h, I }·, ·i⌦!I ,

and the claim follows by definition of h and equation (3.4).

3.1. Elements of Hermitian geometry

We now specialise the facts above to a Hermitian (M4, g, I ). Equivalently ⌘ 2

�1,1 ⌦31, which in a local gauge I1 means that the 1-forms c, a of (3.1) satisfy

c = �I a, ✓ = 2I1a (3.7)

where the Lee form ✓ is defined by d!I = ✓ ^ !I . A simple computation yields

⌘U =

1
4
(U [

^ ✓ + (IU)[ ^ I✓)

for any U in T M . Consequently ⌘⇣ = ⌘I ⇣ = 0, where ⇣ = ✓]. It easily follows
that

8 =

1
4
(✓ ^ I✓ + |✓ |2!I ). (3.8)

Let  = 3hW+!I ,!I i be the conformal scalar curvature, which differs from the
usual scalar curvature by

 � s = �3d?✓ �

3
2
|✓ |2, (3.9)

see [18]. Given a one-form ↵ we denote by d±↵ the components of d↵ in 3±

respectively, so that d↵ = d�↵ + d+↵. An important property [4] of the positive
Weyl tensor of the Hermitian structure is

W+

=



4

✓
1
2
!I ⌦ !I �

1
3
I d

|3+

◆
�

1
4
9 ⌦ !I �

1
4
!I ⌦9
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where 9 = d+✓(I ·, ·) belongs to �2I . In particular W
+!I =


6!I �

1
2d

+✓(I ·, ·),
hence (3.4) updates, with the aid of (3.8) and (3.9), to

e�1 = ⇢ I �

1
2
(d?✓)!I +

1
4
✓ ^ I✓ �

1
2
9. (3.10)

It is well known that d+✓ = 0 is equivalent to demanding W+ to be degenerate,
which is a short way of saying that W+ has a double eigenvalue.

4. Proof of Theorem 1.1

As mentioned earlier, closed 5-frames are equivalently described by Ricci-flat, self-
dual Hermitian manifolds (M4, g, I ) that admit a holomorphic-symplectic structure
compatible with the complex orientation.

The crucial observation is the following characterisation of such structures by
means of the curvature of their canonical Hermitian connection. This approach will
be taken up in the next section, in a more general situation.

Proposition 4.1. A Hermitian manifold (M4, g, I ) admits, around each point, a
closed 5-frame if and only if

eR = �

1
4
d(I✓) ⌦ !I .

Proof. Lemma 3.1 guarantees that the metric g is Ricci-flat and self-dual if and only
if eR =

1
2 e�1 ⌦ !I . Equivalently, there exists a g-compatible hyperKähler structure

{!1,!2,!3} spanning 3� around each point in M . There remains to show that
the existence of an orthonormal pair !4,!5 of closed forms in �2I is the same ase�1 = �

1
2d(I✓).

Suppose I1 is a local gauge for (g, I ) in the notation of (3.5). Then by writing
r I2 = �a⌦!I +b⌦!I1 , the closure of !I2 is equivalent to�a^!I +b^!I1 = 0.
But equation (3.7) says a ^ !I = �

1
2 I1✓ ^ !I =

1
2 I✓ ^ !I2 , hence b =

1
2 I✓ .

Now, assume first that eR = �
1
4d(I✓)⌦!I , so that e�1 = �

1
2d(I✓). A straight-

forward computation shows that the Hermitian connection D =
e
r �

1
4 I✓ ⌦ I has

zero curvature. Take a local orthonormal frame e1, e2 = I e1, e3, e4 = I e3 such
that Dek = 0, 1  k  4. Then !I = e12 + e34 (e12 meaning e1 ^ e2), and the
other self-dual forms e14+e23, e13+e42 can be written as g(I1·, ·), g(I2·, ·) respec-
tively, with I2 = I1 I . Since I2 is D-parallel we have e

r I2 =
1
2 I✓ ⌦ I1. Equation

(3.5) gives b =
1
2 I✓ , hence !I2 is closed, and so is !I1 [27]. The anti-self-dual

forms e12 � e34, e13 � e42, e23 � e14 are D-parallel by construction. But they are
r-parallel as well, for D� r belongs to31 ⌦3+, and self-dual and anti-self-dual
forms commute. The construction of the 5-frame is thus complete.

Vice versa, assume that !4 = g(I1·, ·),!5 = g(I2·, ·), with I = I2 I1, are
closed forms in �2I . The above argument gives b =

1
2 I✓ , hence again e�1 =

�
1
2d(I✓) by (3.6).
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If in addition M is simply connected the 5-frame is global. At this point we invoke
the theory of self-dual Hermitian-Einstein manifolds, as presented in [5]. Well-
known facts are collected in the following:
Proposition 4.2 ([4, 16, 25]). Let (M4, g, I ) be Hermitian, Ricci-flat and self-dual,
but not flat. Then:
(i) !I is an eigenform of W+, i.e., W+!I =


6 !I ;

(ii) the conformal scalar curvature  and Lee form ✓ satisfy ✓ +
2
3d = 0, and

(
2
3 g, I ) is Kähler;

(iii) X = I grad(�
1
3 ) is a Hamiltonian Killing vector field;

(iv) d+X [ = �
1
12

2
3!I .

Conditions (i) and (ii) are equivalent on any compact, not necessarily Einstein, Her-
mitian complex surface [5, 13]. Part (i) holds for compact self-dual Hermitian sur-
faces [3] as well.

Proof of Theorem 1.1. Since a closed 5-frame induces a self-dual, Ricci-flat Her-
mitian metric, in order to use the classification of [5] we will show first that the
Killing field X above is tri-holomorphic for the local hyperKähler structure. Exam-
ples in [30] confirm that this is not true in general.

(i - ii) The conformal scalar curvature  is nowhere zero, otherwise the metric
g would be flat. Ricci-flatness implies d✓ = 0 by (ii) in the proposition above. By
Proposition 4.1 we have e�1 = �

1
2d(I✓), hence (3.10) implies

�

1
2
d(I✓) =

1
4
✓ ^ I✓ �

d?✓
2
!I .

Using Proposition 4.2 (ii), and the comparison formula (3.9), we get d(�
1
3 I✓) =

��
1
3 ( 3 +

|✓ |2

2 )!I . Since X [ =


�
1
3
2 I✓ we obtain d�X [ = 0; it follows that

the Killing vector field X is tri-holomorphic with respect to the local hyperKähler
structure.

At the same time, by comparing with Proposition 4.2 (iv), it follows that
|X |

2
+

1
12

1
3 = 0 or equivalently |✓ |2 = �


3 . Then dln |✓ | = �

3
4✓ belongs to

the distribution D spanned by ✓], I✓]; this means, according to [5, Theorem 1],
that the orthogonal almost complex J , obtained by reversing the sign of I alongD,
is integrable. Its fundamental form

!J = !I + 2|✓ |�2✓ ^ I✓

belongs to 3� and is closed; indeed d✓ = 0, and since X is tri-holomorphic,
dX [ = �

1
12

2
3!I by Proposition 4.2, so

d!J = ✓ ^ !I � 2✓ ^ d(|✓ |�2 I✓) = ✓ ^ !I + 12✓ ^ d(�
2
3 X [)

= ✓ ^ !I + 12�
2
3 ✓ ^ dX [ = 0.
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Therefore (g, J ) is a Kähler structure. Now [5, Theorem 1], case b1) of its proof
to be precise, warrants that self-dual Ricci-flat Hermitian 4-manifolds with X tri-
holomorphic and (g, J ) Kähler reduce to the Gibbons-Hawking Ansatz with U =

ay + b for constants a, b. Since g is not flat we can take a 6= 0, and without of loss
of generality let a = 1 by rescaling the metric, and b = 0. In this way g is of the
form claimed, with t =

2
3 y
3/2, �1 = dz, �2 = dx, �3 = du +2 in the notation

of Example 2.2.
As for the theorem’s last statement, the anti-self-dual part of a closed 5-frame

is unique up to an O(3)-rotation. Let now !0

4,!
0

5 be orthonormal and closed in
3+. Up to a sign they determine [27] the same orthogonal complex structure as
!4,!5, since W+ is degenerate and never zero and so they belong to �2I . Then
!0

4 + i!0

5 = f (!4 + i!5), with f : M ! U(1) holomorphic with respect to I due
to the closure of the forms, and therefore constant.

At this juncture a few comments are in order. First, a non-flat closed 5-frame is
incompatible with the manifold being compact. In fact, if the induced metric were
even only complete, X would become a global tri-holomorphic Killing vector field,
in contradiction to [12, Theorem 1 (iii)]. Secondly, Theorem 1.1 can be considered
as a local 4-dimensional analogue, for two-forms, of the following result:
Theorem [23]. Let (M, g) be a compact Riemannian n-manifold with b1(M) =

n � 1 and such that every harmonic 1-form has constant length. Then (M, g) is a
quotient of a nilpotent Lie group with 1-dimensional centre, equipped with a left-
invariant metric.

5. Small holonomy and further examples

The proof of Theorem 1.1 suggests a wider perspective should be considered, name-
ly that of almost-Hermitian 4-manifolds with small holonomy.

Given (M4, g, I ) almost-Hermitian, consider the holonomy algebra fhol ✓

u(2) of the canonical connection at a given point of M , and assume it at most
1-dimensional. Then any generator of fhol must be invariant under parallel trans-
port by e

r, so it must extend to an element F of 32 such that erF = 0. Since the
curvature tensor eR takes its values in fhol we can write

eR = � ⌦ F

for some two-form � on M . As e
r is Hermitian F must have type (1, 1), hence we

can split
F = F0 + ↵!I ,

where F0 is in �1,10 and ↵ a real number.
Three possible scenarios unfold before us: either the entire curvature eR van-

ishes, or F0 is zero, or F0 is non-zero.
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5.1. The flat case

We begin with the simplest situation, in which the almost-Hermitian manifold
(M4, g, I ) has eR = 0 everywhere.

Theorem 5.1. Let (M4, g, I ) be almost-Hermitian and such that eR = 0. Then

(i) the metric g is flat;
(ii) if (�1, �2, �3) is a r-parallel orthonormal basis of self-dual forms,

!I = �1 cos' cos + �2 cos' sin + �3 sin'

where ' and  are locally-defined maps on M subject to d ^ d' = 0.

Proof. (i) By Lemma 3.1 the tensorsW�,Ric ande�1 all vanish. Therefore,W+!I =
�8 by (3.4), implying the two-form 8 belongs to 3+. But 8 is decomposable in
any local gauge, hence it squares to zero. This means that 8 vanishes, too:

W+!I = 0, 8 = 0.

Since g is Einstein and W+ has zero determinant, [11, Proposition 16.72] forces
W+

= 0, and g is indeed a flat metric.
(ii) A local gauge for !I is given by

!I1 =�1 sin' cos + �2 sin' sin � �3 cos'
!I2 = � �1 sin + �2 cos .

A straightforward computation yields a = �d', c = cos'd , b = sin'd .
From the proof of part (i), eR = 0 is equivalent to 8 = a ^ c = 0 when g is flat.
Therefore cos'd' ^ d = 0, and we conclude by a density argument.

In addition, the theorem of Frobenius tells that  =  (') is a local function
of one variable.

Corollary 5.2. Let (M4, g, I ) be either Hermitian or almost-Kähler, with eR = 0.
Then (g, I ) is a flat Kähler structure.

Proof. The Hermitian and almost-Kähler conditions are both characterised in a lo-
cal gauge by c = ⌥I a, so the claim follows from a ^ c = 0 and Theorem 5.1
(i).

In the almost-Kähler case the corollary was proved in [17] assuming compact-
ness, albeit differently and for arbitrary dimensions. Similar results can be found
in [8, 9], again for compact M .

5.2. The case F0 = 0

This is a very familiar situation as the next observation shows.
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Proposition 5.3. On an almost-Hermitian manifold (M4, g, I ) the following are
equivalent:
(i) the curvature of the canonical connection is generated by the Kähler form of I :

eR =

1
2

e�1 ⌦ !I (5.1)

(ii) Ric = 0 and W�
= 0.

Proof. The statement is an immediate consequence of Lemma 3.1.

Note that on a self-dual, Ricci-flat manifold any positive orthogonal almost
complex structure satisfies (5.1).

5.3. The case F0 6= 0

Because F0 is e
r-parallel, it has constant length. By rescaling � , if necessary, we

may parametrise F0 = !J = g(J ·, ·) by means of an orthogonal complex structure
J with orientation opposite to that of I .
Proposition 5.4. Let (M4, g, I ) be almost-Hermitian. The following statements
are equivalent:
(i) the holonomy algebra of the canonical connection is 1-dimensional, generated

by F in �1,1I with non-vanishing primitive part;
(ii) e

r is not flat and there is a negatively-oriented, g-compatible Kähler structure
J such that e�1 = ↵⇢ J , where ↵ is a non-zero real constant.

Either assumption implies

eR =

⇢ J

2
⌦ (↵!I + !J ).

Proof. (i) ) (ii) It is clear that e
r J = 0. Since ⌘ =

e
r � r belongs to 31 ⌦

�2 ✓ 31 ⌦ 3+, it follows that r J = 0, for self-dual and anti-self-dual forms
commute. Therefore (g, J ) is Kähler and compatible with the negative orientation.
In particular the Ricci tensor of g is J -invariant and

W�

=

✓ s
6 0
0 �

s
12

◆

with respect to 3�
= h!J i � �2J . Equivalently,

W�

+

s
12
Id3� +

1
2
Ric�0 =

1
2
⇢ J ⌦ !J . (5.2)

Lemma 3.1 gives then eR =
1
2⇢

J
⌦ !J +

1
2 �̃1 ⌦ !I . From eR = � ⌦ F

1
2
⇢ J ⌦ !J +

1
2
e�1 ⌦ !I = � ⌦ !J + ↵� ⌦ !I

follows, and proves the claim.
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The implication (ii) ) (i) is a direct consequence of (5.2) and Lemma 3.1,
which also prove the final assertion.

In the rest of this section we explicitly determine the almost-Kähler structures
(M4, g, I ) with dim fhol  1. We first describe a slightly larger class of almost-
Kähler 4-manifolds.

Let (6, g6, I6) be a Riemann surface with area form !6; we equip R2 with
co-ordinates x, y and let z = x + iy. For any w : R2 ⇥6 ! {z 2 C : |z| < 1} we
consider the almost-Kähler structure (g, I ) on R2 ⇥6, where

g =

4
1� |w|

2 (dz � wdz) � (dz � wdz) + g6

g(I ·, ·) =

i
2
dz ^ dz + !6 .

(5.3)

We assume w holomorphic in the 6-variable, that is I6d6w = id6w where d6 is
differentiation on 6; then (g, J ) is Kähler, where

g(J ·, ·) = �

i
2
dz ^ dz + !6 .

These examples generalise the construction in [1] where w is chosen to depend
only on 6; also, they particularise the twisting construction in [15] to the case of
the trivial line bundle over a Riemann surface.

Theorem 5.5. Let (M4, g, I ) be almost-Kähler with dim fhol  1.Then:

(i) I is integrable, or
(ii) g is Ricci-flat and self-dual, or
(iii) (g, I ) is locally given by (5.3), where w does not depend on R2 and the metric

(1� |w|
2)

1
4(↵�1) g6,↵ 2 R\{±1} is flat, or

(iv) (g, I ) is locally given by (5.3), where g6 is flat.

Proof. By the previous results only the case fhol = R(↵!I +!J ), where ↵ is a real
number and J is an orthogonal, negative Kähler structure, has to be looked at. We
shall also assume that I is non-integrable.

The rank-two distributions D± = ker(I J ⌥ Id) are parallel for the canonical
Hermitian connection and allow to decompose !I = !+ + !�, !J = �!+ + !�.

Since (g, I ) is almost-Kähler, ⌘I X IY = �⌘XY for all X,Y in T M; it follows
that the restrictions of ⌘ to D± are symmetric. Since the latter are e

r-parallel the
distributions D+ and D� must be both integrable. In particular the Levi-Civita
connections of the induced metrics coincide with the restrictions of e

r to D±. Let
s± = 2heR(!±),!±i be the corresponding scalar curvatures; from the general for-
mula eR =

1
2⇢

J
⌦ !J +

1
2 �̃1 ⌦ !I we get

�s+ = h�̃1 � ⇢ J ,!+i, s� = h�̃1 + ⇢ J ,!�i. (5.4)
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We now parametrise ⇢ J =
s
4!J + µ!I + '1, with '1 in �2I ; in particular ⇢

I
=

s
4!I + µ!J . Let us also write W+!I =


6!I + '2, where '2 belongs to �2I and

 is the conformal scalar curvature of (g, I ). We fix a local gauge I1 for I with
connection forms a and b and impose �̃1 = ↵⇢ J . Since (g, I ) is almost-Kähler,
using (3.4) with c = I a and 8 = a ^ I a we get

'2 = ↵'1

a ^ I a =

⇣
↵µ �

s
12

�



6

⌘
!I +

⇣↵s
4

� µ
⌘
!J .

(5.5)

Note that  = s + 6|a|2.
In particular I a is orthogonal to J1a, J2a where J1 is a local gauge for J and

J2 = J1 J . Since it is also orthogonal to a it follows that I a = ±Ja on the open set
where a 6= 0.

a) I a = �Ja. Then a belongs to 31D+, therefore D� is the Kähler nullity of
(g, I ), that is ⌘D�

= 0. SinceD� = ker a \ ker(I a) is integrable, the structure
equations

da + b ^ I a = R(!I2), d(I a) � b ^ a = R(!I1)

of (g, I ) imply that R(!�) is orthogonal to �2I . But the component in �
2
I of

R(!�) =
1
2 (R(!I )+ R(!J )) =

1
2 {h, I }+

1
2 (W

+(!I )+⇢
J ) is precisely 12 ('1+

'2) and therefore it must vanish.
a1) When ↵ 6= �1, we have '1 = '2 = 0 by (5.5). This means Ric is I -invariant

and !I is an eigenform of W+. These almost-Kähler manifolds form the so-
called classAK3; using their classification in [1] we get that (g, I ) is locally
given by (5.3), where w depends only on 6. Consequently Ric = 0 on D+,
and as a ^ I a = �|a|2!+, the scalar relations in (5.5) are equivalent to
↵�1
2 s = |a|2. But

|a|2 =

|d|w||
2

2(1� |w|
2)2

,

and since w is holomorphic it is easy to check that (d I6d)ln (1 � |w|
2) =

8|a|2!6 . The flatness of (1� |w|
2)

1
4(↵�1) g6 follows now from the conformal

transformation rule of the scalar curvature.
a2) When ↵ = �1 the bundle D� is flat for the canonical connection. The

second equation in (5.5), now equivalent to 2µ +
s
2 + |a|2 = 0, contains no

further information; its left hand side computes in fact s� by (5.4).
Pick locally-defined unit vectors e2 = I e1 such that e

rek = 0, k = 1, 2.
Because (g, I ) is almost-Kähler with Kähler nullity D�, it follows that the
dual forms satisfy de1 = de2 = 0. Now write locally M = 6⇥R2 for some
2-dimensional manifold 6 where the co-ordinates x, y on R2 are such that
e1 =

d
dx , e2 =

d
dy . Since the distribution D+ is also integrable 6 can be

chosen to correspond to D+, i.e., to admit local co-ordinates t, u such that
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D+ = span{ ddt ,
d
du } and !+ = dt ^du. Then J ( d

dx ) =
d
dy whereas on6 the

complex structure J is determined by a family of complex structure compat-
ible with !+, possibly depending on x, y. Therefore J = (1� S)�1 I0(1� S)

on 6 where I0 is given by I0(du) = dt, S =

✓
Re w Im w
Im w �Re w

◆
in the basis

{du, dt}, andw : R2⇥R2 ! {z : |z| < 1}. Now requiring J to be integrable
amounts to

Jy = J Jx
on 6. However this linearises as Sy = I0Sx and the claim easily follows.

b) I a = Ja. Replace J by �J and apply part (a). Note that ↵ transforms into
�↵.

Part (ii) in the above theorem is a manifestation of a closed ‘4-frame’, whose local
geometry is more complicated. The only known explicit examples are given by the
Gibbons-Hawking Ansatz for a translation-invariant harmonic map, see [6] and its
generalisations [2].

In the compact case Theorem 5.5 can be enhanced as follows.

Theorem 5.6. A compact almost-Kähler 4-manifold (M, g, I ) with dim fhol  1
must be Kähler.

Proof. If fhol = {0} this is granted by corollary 5.2. Assume now that fhol is gener-
ated by F = F0 + ↵!I . If F0 = 0 the metric g is Ricci-flat by Proposition 5.3 and
the integrability of I follows from [28].

There remains to treat the case when F0 6= 0, when after re-normalisation(see
Section 5.3) we may assume that F0 = !J where (g, J ) is Kähler compatible
with the negative orientation. If ↵ 6= ±1 a case-by-case inspection of the proof
of Theorem 5.5 shows that '1 = '2 = 0 in {x 2 M : ⌘x 6= 0}. Now in any
open set U where ⌘ = 0 the structure (g, I ) is Kähler hence g is a local prod-
uct; from the definition of '1 and '2 it is easy to see they vanish in U as well.
By a standard density argument we conclude that '1 = '2 = 0 over M hence
the almost-Kähler structure (g, I ) belongs to the class AK3. Because M is com-
pact it follows that (g, I ) is Kähler by the classification of Apostolov-Armstrong-
Dr ăghici in [1]. To complete the proof there remains to examine the following
cases.

a) ↵ = �1. We will first show that ⌘D�
= 0 everywhere in M; note that it suffices

to prove this at points where ⌘ 6= 0. Working around such points and using the
same local choices as in the proof of Theorem 5.5, the second equation in (5.5)
reads

a^ I a = �

 � s
6

!+�

✓
2µ +

2s + 

6

◆
!� = �|a|2!+�

✓
2µ +

2s + 

6

◆
!�.

In particular ha ^ I a,!+i + |a|2 = 0 after taking the scalar product with !+. If
I a = Ja the form a vanishes onD+ hence ha^ I a,!+i = 0 and further a = 0,
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contradicting the assumption that ⌘ 6= 0. Therefore around points where ⌘ 6= 0
we have I a = �Ja hence ⌘D�

= 0. The claim on the vanishing of ⌘D�
in M

is therefore proved. SinceD� is parallel with respect to e
r it follows thatD� is

totally geodesic.
Now having ↵ = �1 means that bundleD� is flat with respect to the canonical
connection, in particular s� = 0. In the terminology of [24] the foliation induced
by the integrable distributionD+ is transversally totally geodesic with vanishing
transverse Ricci curvature. Because the Kähler manifold (M, g, J ) is compact,
Proposition 2.1 in [24], applied to the foliation induced by D+, shows that the
latter is parallel with respect to the Levi-Civita connection of g. Equivalently,
(g, I ) is Kähler and the theorem is proved in this case.

b) ↵ = 1. Replace J by �J and apply part a) above.
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[21] H. GEIGES and J. GONZALO PÉREZ, Contact geometry and complex surfaces, Invent.

Math. 121 (1995), 147–209.
[22] G. W. GIBBONS and S. W. HAWKING, Gravitational multi-instantons, Phys. Lett. B 78

(1978), 430–432.
[23] P.-A. NAGY and C. VERNICOS, The length of harmonic forms on a compact Riemannian

manifold, Trans. Amer. Math. Soc. 356 (2004), 2501–2513.
[24] P.-A.NAGY, On length and product of harmonic forms in Kähler geometry, Math. Z. 254

(2006), 199–218.
[25] P. NUROWSKI, “Einstein Equations and Cauchy-Riemann Geometry”, D. Phil. Thesis,

SISSA, Trieste, 1993.
[26] S. M. SALAMON, Instantons on the 4-sphere, Rend. Sem. Mat. Univ. Pol. Torino 40 (1982),

1–20.
[27] S. M. SALAMON, Special structures on four-manifolds, Riv. Mat. Univ. Parma, 17 (1991),

109–123.
[28] K. SEKIGAWA, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39

(1987), 677–684.
[29] K. P. TOD, Cohomogeneity-one metrics with self-dual Weyl tensor, In: “Twistor Theory”

(Plymouth), Lecture Notes in Pure and Appl. Math., Vol. 169, Dekker, New York, 1995,
171–184.

[30] R. S. WARD, A class of self-dual solutions of Einstein’s equations, Proc. R. Soc. Lond. Ser.
A 363 (1978), 289–295.

FB 12 / Mathematik und Informatik
Philipps-Universität Marburg
Hans-Meerwein-Str. / Campus Lahnberge
35032 Marburg, Germany
simon.chiossi@polito.it

Department of Mathematics
University of Murcia
Campus de Espinardo
30100-Espinardo, Murcia, Spain
paulandi.nagy@um.es


