
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XII (2013), 941-953

Perfect powers with few binary digits
and related Diophantine problems

MICHAEL A. BENNETT, YANN BUGEAUD AND MAURICE MIGNOTTE

Abstract. We prove that, for any fixed base x � 2 and sufficiently large prime
q, no perfect q-th power can be written with 3 or 4 digits 1 in base x . This is
a particular instance of rather more general results, whose proofs follow from a
combination of refined lower bounds for linear forms in Archimedean and non-
Archimedean logarithms.
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1. Introduction

A celebrated theorem of Mihăilescu [18] asserts that 8 and 9 are the only consecu-
tive perfect powers of positive integers. One way of interpreting this result is that
9 is the only perfect power which can be written in the form 10 . . . 01 (with at least
one digit 0) in some integer base. A (closely) related Diophantine problem is the
search for perfect powers N having only digits 1 in some integer base other than N
or N � 1 (observe than N is written 11 in base N � 1). We know precisely three
numbers with this property, namely

34 + 33 + 32 + 3+ 1 = 112, 73 + 72 + 7+ 1 = 202 and 182 + 18+ 1 = 73,

and it is widely believed that the corresponding Diophantine equation

xn � 1
x � 1

= yq , in integers x > 1, y > 1, n > 2, q � 2, (1.1)

commonly termed the Nagell–Ljunggren equation, has no solutions beyond the
three listed above. Remarkably, with the current technology, it is not even known
whether this equation has finitely many solutions in the four variables. For a given
fixed value of x , however, it is always possible to solve (1.1), at least in principle;
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this has been done for x  106, see [6, 8, 9] and the survey [7]. The key theoretical
tools used to bound q in equation (1.1), for given x , are estimates for linear forms
in two non-Archimedean logarithms. Refinements of this theory developed in [2,3]
enable one to solve equation (1.1) for large infinite families of x .

The starting point of the present paper is the following related problem. We
fix an integer base x � 2 and aim to determine all the perfect powers whose repre-
sentation in base x has relatively few non-zero digits. While an apparently simple
question, for the situation where we allow more than three such digits, it does not
appear to be a routine matter to determine whether the corresponding set of powers
is finite or infinite (but see [12] for the case x = 2 with at most 4 digits). Since
(1 + x`)2 = 1 + 2x` + x2` for ` � 1, there are infinitely many squares having
only three non-zero digits in base x . From a result of Corvaja and Zannier [10], for
x fixed, all but finitely many squares with this property can be classified by means
of polynomial identities. The dependence in the proof of this fact on the Subspace
Theorem, however, renders the finiteness statement ineffective (i.e. one may bound
the cardinality of the finite exceptional set, but not the heights of its elements). It
is still an open question to determine whether squares having only four non-zero
digits in base x > 2 can be classified likewise.

In the case of base x = 2, a completely explicit characterization of odd squares
with three binary digits has been obtained by Szalay [22]. Furthermore, Luca [16],
extending work of Scott [19], showed that there are no squares of the form pa +
pb + 1, where p is an odd prime and a > b > 0.

In the present paper, we establish a number of more general results along these
lines. We prove that, for any fixed base x � 2 and sufficiently large prime q, no
perfect q-th powers can be written with 3 or 4 digits 1 in base x . The key tool in our
proof is the theory of linear forms in two logarithms, and especially a refinement in
the non-Archimedean case obtained in [2, 3] (which, roughly speaking, allows one
to replace the product of the heights occurring in the classical estimates by their
sum, at least under certain technical hypotheses). This is the first application of this
refinement which really utilizes its full strength. Additionally, our method applies
to more general equations of the form xa1 + xb2 + xc3 + 1 = yq , where x1, x2, x3
are fixed positive integers: under the assumption that x1, x2, x3 have a common
prime divisor p 6⌘ 1 (mod q), we establish that q is effectively bounded in terms of
x1, x2, x3.

The same assumption of non-coprimality also appears in the work of Corvaja
and Zannier [10], where, amongst other results, it is shown that, for any fixed prime
q, the Diophantine equation

6a + 2b + 1 = yq

has only finitely many solutions.
As noted by Corvaja and Zannier (see [11, page 169]), the rather curious prob-

lems we consider here fit into a more general framework, as solutions to such
polynomial-exponential equations correspond to S-integral points on certain pro-
jective varieties, for suitable sets of primes S. Viewed in this light, finiteness state-
ments for these equations would follow from essentially the simplest open case of a
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deep conjecture of Lang-Vojta on Zariski denseness of S-integral points on varieties
of log-general type (see e.g. [13, page 486]).

The outline of this paper is as follows. The statements of our theorems are
gathered in Section 2. Section 3 is devoted to collecting a number of lower bounds
for linear forms in two logarithms from the existing literature. Our results them-
selves are proved in Section 4. We conclude the paper with a number of remarks
and open problems.

ACKNOWLEDGEMENTS. The authors would like to thank Umberto Zannier for
providing us with his preprint [12]. Thanks are also due to the referee for careful
reading and noticing several inaccuracies and obscure points.

2. Results

Throughout this paper, we denote by � the Euler totient function. For a prime num-
ber p and a nonzero integer x , we write ⌫p(x) for the largest power of p dividing
x , and, for nonzero rational x/y, set ⌫p(x/y) = ⌫p(x) � ⌫p(y). We begin with a
result on the representation of perfect powers in base x with digits in {0, 1}:

Theorem 2.1. There exists an absolute effective constant C with the following
property. Let x be a positive integer and suppose that there exist integers a, b, y
and a prime q such that

xa + xb + 1 = yq , a > b > 0.

Then q < C or q divides �(x).

What is of interest here is that, subject to the coprimality of q and �(x), the
upper bound for q is independent of x . As will be apparent from our proofs, this
coprimality condition can be replaced by the weaker assumption that y is congruent
to 1 modulo each of the prime divisors (other than q) of x . A like condition appeared
already in the study of the Nagell-Ljunggren equation (1.1); see [9, Theorem 1].

In point of fact, the techniques we employ here, with additional arguments,
enable us to treat rather more general equations, provided only that the “bases”
have a common divisor.

Theorem 2.2. There exists an absolute effective constant C with the following
property. Let x1 and x2 be positive integers with gcd(x1, x2) > 1. If there exist
nonnegative integers a, b, y and an odd prime q, with q coprime to (p � 1) for
some prime p dividing gcd(x1, x2), such that

xa1 + xb2 + 1 = yq , (2.1)

then q  C log2 max{x1, x2}.
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Theorem 2.3. There exists an absolute effective constant C with the following
property. Let x1, x2 and x3 be positive integers with gcd(x1, x2, x3) > 1. If there
exist positive integers a, b, c, y and an odd prime q, with q coprime to (p � 1) for
some prime p dividing gcd(x1, x2, x3), such that

xa1 + xb2 + xc3 + 1 = yq , (2.2)

then q  C log4 max{x1, x2, x3}.

In the preceding two theorems, the exponents 2 and 4 present in the quantities

log2 max{x1, x2}, log4 max{x1, x2, x3}

are included to provide a flavour of what can be obtained. They are far from optimal
and, as examination of our proofs suggest, may be readily reduced.

Our proofs demonstrate the power of the theory of linear forms in non-Ar-
chimedean logarithms; in some sense, they represent the first application of the
techniques of [2, 3] to fully utilize the improvements inherent therein.

In a companion paper [1], we make a number of these results entirely explicit,
solving completely, for example, the Diophantine equation xa + xb + 1 = yq for
x 2 {2, 3} and q � 2, and showing that neither of the equations 6a + 2b + 1 = yq
and 2a + 2b + 2c + 1 = yq has a solution with q � 5 prime.

3. Linear forms in two logarithms

In this section, we gather estimates for linear forms in two logarithms, both in
Archimedean and in non-Archimedean settings.

We begin with a very special version of a corollary obtained in [15]; here and
henceforth, if r is a nonzero rational with r = m/n for m and n coprime integers,
we define the logarithmic height of r as h(r) = max {log |m|, log |n|, 1}.

Theorem 3.1. Let ↵1 and ↵2 be multiplicatively independent positive rational num-
bers, and b1 and b2 be positive integers. Define

3 = |b2 log↵2 � b1 log↵1| .

Then
log3 � �25.2

�
max

�
log b0 + 0.38, 10

 �2 h(↵1) h(↵2),

where
b0 =

b1
h(↵2)

+
b2

h(↵1)
.

A more complicated statement, involving an additional parameter E , is given in
[15]. This parameter allows us to considerably sharpen the lower estimate when ↵1
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and ↵2 are very close to 1. Since this assumption is not fulfilled in the present work,
we have chosen to quote this simplified statement.

We now turn our attention to non-Archimedean results. Suppose we are given
two multiplicatively independent positive rational numbers ↵1 and ↵2. We define
g to be the smallest positive integer such that both ⌫p(↵

g
1 � 1) and ⌫p(↵

g
2 � 1) are

positive. Further, choose E so that

⌫p(↵i � 1) � E >
1

p � 1
, for i = 1, 2.

As a special case of [2, Theorem 2], we have:

Theorem 3.2. Let ↵1 and ↵2 be multiplicatively independent positive rational num-
bers, and b1 and b2 be positive integers. Consider the “linear form”

3 = ↵
b2
2 � ↵

b1
1 .

Then, for any fixed prime number p,

⌫p(3)


36.1 g

E3(log p)4
⇣
max{log b0+log(E log p)+0.4, 6 E log p, 5}

⌘2
(log A1) (log A2) ,

(3.1)

if p is odd or if p = 2 and ⌫2(↵2 � 1) � 2, where

b0 =
b1

log A2
+

b2
log A1

and log Ai � max{h(↵i ), E log p}.

If p = 2 and ⌫2(↵2 � 1)  1, then

⌫p(3)  208
�
max{log b0 + 0.04, 10}

�2
(log A1) (log A2) .

No parameter E occurs in the earlier bounds for the p-adic distance between two
powers of rational numbers. By taking E = 1 in Theorem 3.2, we recover es-
sentially an estimate proved in [5]. When the parameter E is large compared
with the heights of ↵1 and ↵2, however, the results of [5] may be substantially
improved. Indeed, if E is as large as min{log A1, log A2} (it cannot be much
larger), then the quantity (log A1)(log A2)/E becomes max{log A1, log A2}. Thus,
the product (log A1)(log A2) arising in the classical estimates [5] is replaced by
max{log A1, log A2}.

Theorem 3.2 was subsequently generalized in [3] to treat simultaneously sev-
eral non-Archimedean places. The assumptions of the next theorem (a special case
of [3, Theorem 3]) are very restrictive, but are satisfied (and easy to check) in our
context. Note that if m = p j11 · · · p jkk where the pi ’s are distinct primes and ji 2 N,
we define, for a nonzero integer x ,

⌫m(x) = min
1ik


⌫pi (x)
ji

�
.
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Theorem 3.3. Let ↵1 and ↵2 be positive rational numbers with ↵1 6= 1, b1 and b2
be positive integers and set

3 = ↵
b2
2 � ↵

b1
1 .

For any set of distinct primes p1, . . . , pk and positive integers j1, . . . , jk , we set
m = p j11 · · · p jkk and suppose that there exists a positive integer g such that for each
i , we have

⌫pi (↵
g
1 � 1) � ji and ⌫pi (↵

g
2 � 1) � 1, if pi � 2,

and also
⌫pi (↵

g
1 � 1) � 2 and ⌫pi (↵

g
2 � 1) � 2, if pi = 2.

Then, if m, b1 and b2 are relatively prime, we have

⌫m(3)
66.8 g

(logm)4

⇣
max{log b0 + log(logm) + 0.64, 4 logm}

⌘2
(log A1) (log A2) ,

where
b0 =

b1
log A2

+
b2

log A1
and log Ai � max{h(↵i ), logm}.

For an odd prime number p, the choice of m = pE illustrates that Theorem 3.3
is really a generalization of Theorem 3.2; we have included the latter result for
sake of clarity. We stress that ↵1 and ↵2 need not be multiplicatively independent
in Theorem 3.3; indeed, under this additional assumption, the constant 66.8 in the
upper bound for ⌫m(3) may be improved to 53.6.

4. Proofs

We first state a useful elementary lemma, which will be applied in several places.

Lemma 4.1. Let y � 2 be an integer and q be a prime. Assume that yq ⌘
1 (mod q). Then y ⌘ 1 (mod q) and yq ⌘ 1 (mod q2). Moreover, if in addition
q � 3, then ⌫q(y � 1) = ⌫q(yq � 1) � 1.

To prove the lemma, observe that the binomial theorem gives

yq � 1
y � 1

=
((y � 1) + 1)q � 1

y � 1

= (y � 1)q�1 +

✓
q
1

◆
(y � 1)q�2 + . . . +

✓
q

q � 2

◆
(y � 1) + q

= (y � 1)q�1 + Kq(y � 1) + q,

for a suitable positive integer K .
Throughout our proofs, the constants implicit in the Vinogradov symbols ⌧

and� are absolute and positive. We assume that q is suitably large and show how
to derive an upper bound for q.
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4.1. Proof of Theorem 2.2

We will begin by proving the somewhat general Theorem 2.2. Let us suppose
that there exist positive integers x1, x2, a, b, y and q satisfying equation (2.1), with
gcd(x1, x2) = d > 1. Without loss of generality, we may assume that x1 � x2 � 2,
and that q � 1.

Suppose first that a and b satisfy xa1 > x2b2 . Then

0 < q log y � a log x1 < 1� xa1 y
�q

= y�q(xb2 + 1) < y�q
⇣
xa/21 + 1

⌘
< y�q

⇣
yq/2 + 1

⌘
,

(4.1)

whereby, setting 3 = |a log x1 � q log y|,

log3 ⌧ �q log y. (4.2)

We use this inequality, in conjunction with lower bounds for linear forms in two
complex logarithms, to determine an upper bound for q.

Let us apply Theorem 3.1 with b1 = q, b2 = a,↵1 = y and ↵2 = x1. Here, x1
and y are multiplicatively independent since the fact that gcd(x1, x2) > 1 implies
the existence of a prime p dividing x1 and x2, but not y (via the equation xa1 + xb2 +
1 = yq ). Note that the inequality a log x1 < q log y implies that

b0 ⌧
q

log x1
.

Applying Theorem 3.1 to inequality (4.2), we thus have either

log
✓

q
log x1

◆
⌧ 1,

or
q log y ⌧ log2

✓
q

log x1

◆
log y log x1.

We thus conclude, in either case, that q ⌧ log x1, where the implied constant is
absolute.

Similarly, if we assume that a and b are such that xb2 > x2a1 , we may apply
Theorem 3.1 to the linear form 3 = |b log x2 � q log y| to reach a like conclusion.
We may therefore suppose that a and b satisfy

xa/21  xb2  x2a1 . (4.3)

Since d > 1, there exists a prime p dividing both x1 and x2. By assumption we
may suppose that q is coprime to (p � 1). To deduce an upper bound upon q
is this situation, we will appeal to lower bounds for linear forms in p–adic loga-
rithms. Specifically, we apply Theorem 3.2 with ↵2 = y, b2 = q, b1 = 1 and either
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↵1 = xa1 + 1 or ↵1 = xb2 + 1, chosen to guarantee that ↵1 and y are multiplicatively
independent. Note that if all three of y, xa1 + 1 and xb2 + 1 are pairwise multiplica-
tively dependent, then, from the equation xa1 + xb2 + 1 = yq , every prime dividing
y necessarily divides both x1 and x2, an immediate contradiction. We thus have
g = 1 and may assume that ab � 2. If q = p, then, Lemma 4.1 and ⌫q(yq �1) � 1
give that ⌫q(yq � 1) � 2, whereby min{a ⌫p(x1), b ⌫p(x2)} � 2 and hence we may
take E = min{a ⌫p(x1), b ⌫p(x2)} � 1. Otherwise, since q fails to divide (p � 1),
we may choose E = min{a ⌫p(x1), b ⌫p(x2)}. If (p, E) 6= (2, 1), then applying
Theorem 3.2 yields

E ⌧
M2

E3 log4 p
log y log↵1,

where

M = max
⇢
log

✓
1

log y
+

q
log↵1

◆
+ log(E log p) + 0.4, 6E log p, 5

�
.

Notice that (4.3) implies ↵1 > 1
2 y

q/2, whereby M = 6E log p since q � 1, and so

E2 log2 p ⌧ log y log↵1 ⌧ q log2 y.

From inequality (4.3), we have

a log x1 � q log y, b log x2 � q log y.

Recalling that x1 � x2,

E � min{a, b} � 1 �
q log y
log x1

,

and hence q ⌧ log2 x1, as desired. In case (p, E) = (2, 1), then min{a, b} = 1 and
so (4.3) and the fact that x1 � x2 imply that a = 1, whereby yq  x21 + x1 + 1 and
q ⌧ log x1. This completes the proof of Theorem 2.2.

4.2. Proof of Theorem 2.3

Our approach is similar to that of the preceding subsection. Suppose that there
exist positive integers x1, x2, x3, a, b, c, y and q satisfying equation (2.2), with
gcd(x1, x2, x3) > 1, and fix a prime p | gcd(x1, x2, x3) such that q does not di-
vide (p � 1). Without loss of generality, we may assume that

a ⌫p(x1) � b ⌫p(x2) � c ⌫p(x3), (4.4)

and that q � 1. Suppose first that a, b and c are such that

xa1 >
⇣
xb2 + xc3

⌘2
.
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Then we have

|a log x1 � q log y| < y�q(xb2 + xc3 + 1) < y�q
⇣
xa/21 + 1

⌘

< y�q
⇣
yq/2 + 1

⌘
< 2 y�q/2.

Applying Theorem 3.1 and arguing as in Section 4.1 leads, again, to the conclusion
that

q ⌧ log2 max{x1, x2, x3}.

Similarly, we reach an identical conclusion if either xb2 >
�
xa1 + xc3

�2 or xc3 >
�
xa1 + xb2

�2. We will thus suppose that

max
n
xa1 , x

b
2 , x

c
3

o
 min

⇢⇣
xa1 + xb2

⌘2
,
�
xa1 + xc3

�2
,
⇣
xb2 + xc3

⌘2�
. (4.5)

Notice that inequality (4.5) implies that

max{b, c} �
q log y

logmax{x1, x2, x3}
,

where the implicit constant is absolute, whereby, from (4.4),

b �
q log y

log2 max{x1, x2, x3}
. (4.6)

We turn now to consideration of non-Archimedean valuations. On the one hand, we
have

⌫p(yq � (xc3 + 1)) � b ⌫p(x2) � b �
q log y

log2 max{x1, x2, x3}
.

Let ` = ⌫p(x3). By (4.6) we may assume that b⌫p(x2) � 2. If p = q, it
then follows from Lemma 4.1 that y p ⌘ 1 (mod p2), whence `c � 2 and y ⌘
1 (mod p`c�1). Otherwise, from the fact that q does not divide (p � 1), it follows
that y ⌘ 1 (mod p`c). Since we do not know a priori whether or not the integers y
and xc3 + 1 are multiplicatively independent, it is more convenient to apply Theo-
rem 3.3 with m = p`c�1 and g = 1 or 2, than Theorem 3.2 with E = `c � 1. We
conclude that

⌫p(yq � (xc3 + 1)) ⌧ `c⌫m(yq � (xc3 + 1)) ⌧
1

`3c2 log4 p
M2 log y log x3,

where

M = max
⇢
log

✓
1

log y
+

q
`c log x3

◆
+ log(`c log p) + 0.64, 4`c log p

�

⌧ max{log q, `c log p}.
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If q > p`c, then we have

q
log2 q

⌧
log x3 log2 max{x1, x2, x3}

`3c2 log4 p
⌧ log3 max{x1, x2, x3},

and so q ⌧ log4 max{x1, x2, x3}. If, on the other hand, q  p`c, then

q ⌧
log x3 log2 max{x1, x2, x3}

` log2 p
⌧ log3 max{x1, x2, x3}.

This concludes the proof of Theorem 2.3.

4.3. Proof of Theorem 2.1

In this section, we will show that the upper bound upon q inherent in the equation
xa1 + xb2 + 1 = yq can be made (essentially) absolute, in the case x1 = x2 = x .
Here, we will appeal to lower bounds for linear forms in m-adic logarithms, due to
the second author [3].

Since a > b, we have yq ⌘ 1 (mod xb). If q divides x , we deduce from
Lemma 4.1 that yq ⌘ 1 (mod q2). Furthermore, denoting by q` the largest power
of q dividing x , this implies that b` = ⌫q(yq � 1) � 2 and that y ⌘ 1 (mod qb`�1),
by Lemma 4.1 again and using that q � 3. Since we suppose q to be coprime to
�(x) (actually, assuming that q is coprime to �(x/qmax{0,⌫q (x)�1}) is sufficient), we
derive that y ⌘ 1 (mod xb/q) if q divides x , while, otherwise, y ⌘ 1 (mod xb). In
any case, we may conclude that log y > b log x � log q � (b log x)/2.

We apply Theorem 3.3 with ↵1 = y,↵2 = xb + 1, b1 = q, b2 = 1 and
m = xb/q or m = xb, depending on whether q divides x or not. Observe that
logm � (b log x)/2 in either case. If x is odd or if b � 2, we may choose g = 1;
otherwise, take g = 2. Since log y > (b log x)/2, Theorem 3.3 implies that

⌫m

⇣
yq � (xb + 1)

⌘
⌧
log2

✓
2q

b log x

◆
log y

b3 log3 x
+

log y
b log x

.

Considering the cases where q
b log x < xb and q

b log x � xb, separately, the inequality

⌫m

⇣
yq � (xb + 1)

⌘
=

ha
b

i
�

q log y
b log x

implies, in either situation, that q ⌧ 1. This completes the proof of Theorem 2.1.

5. Concluding remarks

Remark 5.1. The techniques of the preceding sections may be readily modified to
treat equations of the shape (by way of example)

d1xa1 + d2xb2 + d3xc3 + 1 = yq ,
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for where d1, d2 and d3 are fixed integers and, as previously, x1, x2 and x3 share
a nontrivial common factor. To make such statements explicit requires recourse
to lower bounds for linear forms in three logarithms; the corresponding theory is
somewhat less well-developed than that for two logarithms.
Remark 5.2. We are unable to bound q in general, for the equation

xa + xb + xc + xd + 1 = yq ,

where a > b > c > d > 0. It is possible to do so, however, under the additional
assumption that b is not too large compare to c, say c � b for  be a positive real
number. Indeed, assuming that q is coprime to �(x), Theorem 3.1 again implies
that q ⌧ 1 if a � 2b. Then, we may assume that b � a/2 and proceed exactly as
in Section 4, using that y ⌘ 1 (mod xd ). Since y > xd , we find that

h c
d

i
⌧

log y
d log x

+
log2

✓
q

d log x

◆
log y

d3 log3 x
.

From the inequality c � b, we thus obtain q log y ⌧ c log x and hence conclude
that q is bounded by a constant depending only on  . The same conclusion remains
true for the more general equation

xa1 + xa2 + . . . + xak�1 + xak + 1 = yq ,

where q is coprime to �(x) and a1 > a2 > . . . > ak > 0 are such that ak�1 � a2.
The upper bound obtained again depends on  .
Remark 5.3. We briefly discuss a related question. Let x, y � 2 be integers. In
1973, Senge and Straus [20] proved that the number of integers, the sum of whose
digits in each of the bases x and y lies below a fixed bound, is finite if, and only
if, x and y are multiplicatively independent. Their proof rests on the Thue-Siegel-
Roth theorem and, hence, is ineffective. Using Baker’s theory of linear forms in
logarithms, in 1980 Stewart [21] succeeded in establishing an effective version of
Senge and Straus’ theorem. He showed that if x and y are multiplicatively indepen-
dent, then, for every c � 1, each integer m > 25 whose sum of digits in base x as
well as in base y is bounded by c satisfies

log logm
log log logm + c1

< 2c + 1,

where c1 is a positive constant which is effectively computable in terms of x and y
only (see also [17]).

This means that a positive integer cannot have simultaneously very few digits
in base x and in base y, when x and y are multiplicatively independent. Further-
more, for any given positive integer c, one is able, in principle, to determine the
(finite) set of positive integers having no more than c digits in base x and in base y.
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Examples of complete resolution of the corresponding equations are given in, for
instance, [4] and [23]. An open problem of a similar flavour is a conjecture of Erdős
to the effect that there should be at most finitely many powers of 2 whose ternary
representation contains only the digits 0 and 1. This appears to be well out of reach,
at present; the interested reader is directed to the paper of Lagarias [14].

References

[1] M. A. BENNETT, Y. BUGEAUD and M. MIGNOTTE, Perfect powers with few binary digits
and related Diophantine problems, II, Math. Proc. Cambridge Philos. Soc. 153 (2012),
525–540.

[2] Y. BUGEAUD, Linear forms in p-adic logarithms and the Diophantine equation (xn � 1)/
(x � 1) = yq , Math. Proc. Cambridge Philos. Soc. 127 (1999), 373–381.

[3] Y. BUGEAUD, Linear forms in two m-adic logarithms and applications to Diophantine
problems, Compositio Math. 132 (2002), 137–158.

[4] Y. BUGEAUD, M. CIPU and M. MIGNOTTE, On the representation of Fibonacci and
Lucas numbers in an integer base, Ann. Math. Qué. 37 (2013), 31–43.
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