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INEQUALITIES FOR BOUNDARY VALUE PROBLEMS FOR

SYSTEMS OF PARTIAL DIFFERENTIAL OPERATORS

by

Gerd GRUBB

INTRODUCTION.

one of the classical techniques for studying homogeneous boundary value pro-
blems for elliptic operators was to rephrase them in terms of integro-differential
sesquilinear forms, After it was discovered that there exist boundary problems with
optimal regularity, but which cannot be expressed by sesquilinear forms, the method
was abandoned by many people, However, others have stayed with it because it handles
existence and uniqueness questions in a very convenient way, and they have applied it
to more general differential operators, without worrying much about which boundary

problems could be treated (there was always the Dirichlet problems, and other examples),

The first part of this lecture will be concerned with filling this gap, deter-
mining exactly which boundary problems enter in the variational framework, It will be

seen that as soon as one requires some semiboundedness - more precisely, that

(I) Re (Au,u) - const.||u||j , all u satisfying boundary conditions, A being

a differential operator of order om - then (and only then) the boundary condition
falls within the class associated with sesquilinear forms on Hm, This holds not
only for elliptic operators, but for quite general ones, e.g, the degenerate elliptic
operators, Qur treatment can be extended to systems of "mixed order", giving new

information on these, The inequality (1) will be called '"weak semiboundedness",
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In the second part of the lecture we study "G&rding's inequality"

2
(I1) Re (Au,u) > cmluli - co|u|O , all u satisfying bdry. cond.,

characterizing the boundary conditions for which it holds. Here
and in the first part the methods are inspired from a general "ab-
stract" theory for boundary problems [3 ], [4 ]. However, we thought
it might be useful to show how (II) can be treated directly, with-
out the whole machinery.

In the third part, the above results are applied, with some
use of the abstract theory, to show that when A 1is strongly ellip-

tic, the negative eigenvalues of the selfadjoint elliptic realiza-

tions AB satisfy

(1) [ N (agt) = 1 2o 1 < o(ay) V2 o-/2m

-t<A. <0 T
J

for t—>o0, improving results of Agmon and HBrmander,

1. WEAKLY SEMIBOUNDED REALIZATIONS

compact
Let £l be an n-dimensional riemannian manifold with boundary

I and interior Q=JL~T. Let E be a C* hermitian vector bundle
over f1, of fiber dimension gq > 1. Then the spaces of square inte-
. 2 2., s
grable sections, L°(E) and L (h|r), and the Sobolev spaces H (E),
HS(EIP) (s €IR) and HS(E) (s > 0) may be defined; we denote inner
products over & by ( , ) and inner products (and dualities) o-

ver T by <, > . With a normal derivative Dn defined in E as

in H8rmender [6 ], we have the trace operators Yx defined by
:ue» (D k )| k=20
Xk : n Mlip o = Us1,2,... ,

they are continuous from H°(E) into Hs-k-1/2(E|r), for 8>k+1/2,cr,[8].
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We sh2ll study boundary value probvlems definel as follows:
-

Given a linear differential operator A in E of order 2m,

m integer > 0. Denote

(1.1) M= {o,..,2m-1} , My = 0,0 w1}, w, - {my...,2m-1}

and denote

(1.2)  Qu =fyquyeres¥pp qub “[Yioler » ¥0 ={¥kukce!4r\’ va ={Xku}ké}l1’
v

respectively the Cauchy data, Dirichlet data and Neumann data of wu
with respect to A (usually regarded as column vectors).

Given for each Jjé€M & hermitian vector bundle Fi over [
of fiber dimemsion p, > O . For each pair §3,k}€2XH  there is gi-
ven a differential operator Bjk from E]r to Fj of order J - k;
we use the convention that differential operators of negative order
are zero., Note that the operators Bkk are of order zero, so they
are locally multiplication by a Py Xq - matrix, globally they may he
viewed as vector bundle morphisms froam E!F to Fk . Of course Bjk
is 0 if py =0 (i.e. F = x{0}). Altogether, the Py form a
2mx2m - matrix of differential operators, B = (Bjk)j,keM , 1t is
of type (-k’-j)j,keM in the notation of [6 ], i.e. continuous from

T & Elr) to T E79(F) , for all €r.
keM JEM J

The boundary condition is now given by
(1.3) Bou =0,

and we shall study the realization AB of A defined by

(1.4) Az uwe> hujy D(Ay) = {ueHzm(E) | Beu -0} .

(1.3) is a reformulation of the usual systems of boundary conditions,
where we have grouped together cond®tions of the same normal order,
and permitted the range space for each group to be a nontrivial tundle,

We shall assume thmughout that the following definition is satisfied:
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Definition 1.1 The boundary condition B gu =0 - or the
operator B - will be said to be normal when all the morphisms

B, (keM) are surjective (so in particular p $a, all keM ).

The assumption is partly justified by the observation of Seeley
[11] tnat, for elliptic AB , Agmon's necessary and suffjcient con-
dition for the existence of a "ray of minimal growth" implies nor-
mality; and when (II) holds (even with c, =0 ), there are many
rays of minimal growth. We believe that normality is mecessary for
(1) under much more general circumstances. - The definition is a
vector bundle versisn of that of Seeley [11], It is more general

than thzt of Ceymonat [ 2] for matrices, which may be shown to hold

A
exactly when ker Bkk is a trivial bundle, for all keM H
B is a lower triangular matrix, since Bjk =0 for j<k.
It is the sum of its diagonal part Bd and its subtriangular part Bs
(1.5) By = ( éjkBjk)j,keM v Bg = B - By

we call matrices with zeroes in and on one side of the diagonal

subtriangular. Bd is a surjective morphism from B Elr to (22 Fj .
keM JjeM

Proposition 1.2 Bd has the right inverse

-1
= * %
Cq = BY (BdBd) y

and B has the right inverse

¢ (-3 c )"
+ooo+d-sd H

C = Cd - CstC

d

C is sn injective triangulsr differential operator from ;f; Fk
to -~ EIP of type (-k’_j)j,keM .

jeM

In the proof it is used that Bst is = subtriangular diffe-
rential orerstosr in 2% ?j , thus nilpotent.

ieM
1) The definition clearly extends the original definition of Oronszajn

and Milgram for the case where A is scalar (i.e.g. = 1).
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Define for we R

(1.6)  2%(8) = {9e T v 1/2(x| ) | 5g- 0} , 2(x) = U &(x),

keM «< &R

Y, R(I-cB) = U Rr(I-CR) ,
oAET

—k-1/7
(1.7) Rz - cB) = (1-c2) | w7z
kel

and define similarly R™S(B*) , R(B*) , 2™((I-CB)*) and 2Z((I-CB)*) .

One has immediately

Lemma 1.3 Ior all «€RR

(1.8) 7%(B) = ®R™(1-CB) , 72(®) = R(I-CR) ,

(1.9)  R%(m*) = z%((1-cB)*) ,  R(P*) - 2((I-CB)*) .

We shall later need the following lemma:

Lemma 1.4 There exists a differentiazl operator § from € 2

- - - kel ¥
to @ E]r. of type (-k’_j)j,keM , with injective diagonal part,
jeM
such that
z¥() -F T H"'k"/z(zk) , 51l x€R
keM
here Zk denotes the bundle ker Bkk , keM ,

By Proposition 1.2 applied to §* , § has a left inverse ¥,

triangular differential operator with surjective diagonal part.

Next, we shall establish the necessary Green's formulae., The

following version of Green's formulz is well knawn (cf., [ 9], : 6])
(1.10) (Au,v) = (u,dv) = <&Qu, @v> , all uel "(Z) ;

here A' denotes the formal adjoint of A , and G is 2 skew-trisn-

3, ket wvhere d’-’k is of order
, kel

5

gular 2mx 2m - matrix &= (ajk)

2m-j-k=1 ; the elements in the second diagonral, d.) Pme1-j are
g Tl =

of order O , and they are vectcr burdle isomorphisms if and ornly

if [ is noncharacteristic for 4 .
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split @ in four blocks (recall (1.1) )
0 1
2’ & ;
al = ’ (i
&° o

then (1.10) becomes, in view of (1.2)

€
- (R, ;
ik J‘M&,kéMi ’

(1.11)  (Au,v) = (u,A'v) = <@ooxu,xv> + <@O1Yu,\‘v> + <d1oxu,vv> .
We shall also need the "halfways" Green's formula (proved in [5])

Proposition 1.5 Let a(u,v) be a sesquilinear form on H"(E)

associated with A , i.e. a form

(1.12)  alwv) = 2 (QuPv)

iel

with Qi and Pi of order { m , indexed by & finite index set I ,

m
and with 2. P1Q, = A, Then for all uGHzm(E) , all veH (E) ,
iel

(1.13) (Au,v) = a(u,v) + <6291Vu,8v> + <5pxu,(v> ,

where 99 = (Efgk)j,kéMo is & differential operator of type

(~k,-2m+1+3) .

J,kﬁMo in E]P. Conversely, for any such Ef there

kéMO

exists & sesquilinear form a(u,v) associated with A , such that

(1.13) holds.

Now split B and C in blocks z1g9 :

BOO 0 Cnn
B = ) C = ]
B1O B11 10 C11
e fe _ 0o
where B’ = (Bjk)jeMJ’k‘Mi and C°% - (cjk)j‘MJ,keMi 3 then C
11

and. 011 are the right inverses of BOO resp. B by the construc-
tion in Proposition 1.2. Then the boundary condition may be written

¢}
(1.14) B OXu =0, B1ozu + B11vu =0,

Moreover, we observe that by Lemma 1.3
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Lemma 1.6 A section uGHQm(E) satisfies (1.14) if and only if

(1.15) yr ez (3%9) vu + ¢ '8'%uez?(s'")
and if and only if
(1.16) XueRQm(I-COOBOO) , vu + ¢''8'Ou er®(1-c' '8!

The theorem can now be stated,

Theorem I The following statement are equivalent:

(i) For some ¢ > O,

(1.17) Re (Aw,u) » =¢ ful? , for al1 ued(Ay)

i.e.y AB is weakly semibounded.

(ii) The identity holds

(1.18) (1029890 @' (1-c"'8"") - 0

(iii) There exists 2 sesquilinear form aB(u,V) on H™(E)

associated with A , for which

(1.19) (Au,v)= aB(u,v) , for all u,véD(AB) .

(iv) For some ¢ > 0,

l (Au,v) l

[LPAN

¢ Jul, Ivl, s for all u,ved(ay) .

A detailed proof is given in [ 5] ; let us just explein how
(1.18) enters: In the formula (1.13), the only term on the right si-
de that is not continuous on H™(E)xH™(E) is <a91Vu,XV>. How=
ever, when u and v eD(AB), then by (1.16)

o, yv - (I_CooBoo)Y

for suitable ¢s s SO when (1.18) holds, then

1 11B11

1
vu + C B1OXu = (I-c

1
<@u,pv> = <& (1-¢""8"")p, (1-c"%8C > - <&'c" 18" Opu, gv>

(1.20) 1110

- 0 - <& Oy,

A

and ‘thus |<@01Vu,xv>| c Iulm Ivlm for u,veD(AB) .
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Then (i) and (iv) are valid, and (iii)follows by use of the last part
of Provosition 1.5. Conversely, (1.18) is seen to be recessary even
for (i) , since ¢ varies indeperdently of yu .

Let us give a few more remarks on (1.18), for the case where

" is noncharacteristic for A . Then (1.18) implies 3, pj.2 mq ,
ieM a

ancé when ji p, = mg (the cases ususlly considered for elliptic op-
jer ¢

erators), (1.18) is eguivalent with the statement

o) * 1.2 *
and with

o) * o *
(1.22) R €S s UL

0
Yow yD(4y) - 22m(0%)

, and it is easily seen that the formally ad-
joint realization AQ)' is defined by a normal boundary condition
B'?u = 0 , for which
21 01 ~01%\=1_2 *
7 T’](B' )r)) _ (5!/01 ) R m(B11 ) .

Thus (1.21) means

=<
i

2

51

7
1

(D(A'B,) .
so  when (&

Tris is symmetric in {4,B} and {2',B} 5  helds Ay, is also

weakly semibounded.

Finally, we mention the treatment of systems of "mixed order"

(details are given in [5 J). Let A = (Ast)s,t=1,...,q , where each

is & d4i“ferential operator on S& of order m_+m for a given

t 9

.
FzY
st

set of nonnegative integers {m1,...,mp}. Denote max n,o= oo Then
4

ore can ectablish & Green's formula
~ 20,0 ] 301 1 0 100 1
(1.23)  (au,v) = {g,h'v) = KR u, 3 v+ B, B V<R pu,pv>,

C . .
where ﬁ“u is = zertain renrrangement of the Tirichlet traces
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1 .
{Y0u1""’Xm1—1u1; coe ;xouq""’quduq} , and [\ u is a resrran-

gement of the traces{xm1 Upgeos ’Km1+m-1u1 $ eee ;xmﬁuq, e ’Kmp‘m" 1.”‘3 ,
L

5 01 310 . . .
and R and @@ are skew-triangular matrices of matrix-valued

differential operators on " . when T is noncharecteristic for & ,

o201 ~10 . they are

@ is surjective and I is injective (but bijective only if

all mt equal m ). Proposition 1.5 extends, and normal boundary

conditions can be defined. (This treatment seems new.) Now Theorem I

can be proved in a version completely analogous to the 2m-order case,

~

B, wvu and @—01 replaced by /sou ’ /!Ju and a_01 , respectively.

Moreover, we find that the boundary conditions satisfying the

statements in Theorem I, are actually normal boundary ccnditions on

{',Ou and é01 1u (when T is noncharacteristic, and the number cf

boundary conditions is Myteootm like in elliptic prokhlems). Tor

on the basis of (1.23).

2, GARDING'S INEQUALITY

GArding has shown that A must be strongly elliptic in order
for (II) to hold even for ueCS(E), 8o we assume from rnow on that

A is strongly elliptic. Define the "real" part of A

(2.1) AT = 1/2 (A +4Y),

it is also strongly elliptic. We can assume that a sufficiently lar-

ge constant has been added to A so that (with ¢, e, >0 )

¢ lul2 < (ATu,u)= (Au,u) < e |u|2 , for ueHm(E)nnzm(g) ;
1 m = . / ALPY L 9
realizations
the Loundary conclition

then the Dirichlet Ay and A§ defined bty yu = C , i.e. with “domains

D(ay) = D(A§) - HS(E)nHzm(E) ,

are bijective (onto L2(E) Y.

- 179 -



GRUBB

(2.2)
N R
t¥07) = {uen™E) | ATu -0} .
Tor ued™(E) , let

T L Ty=1, r r
ul':(‘ll’) Au , Ug = U = Up,

iuis defines a decomposition of jzm(F) (by u = u§ + u§ ) e
Hzm(E) = D(A?) 1 ng(Ar) (topological direct sum) .

"It follows from the theory of Lions and Magenes [8 ], that

(2.3) ¥: 2%(aT) = ;g;o H*-k-1/2(Ek“)

is an icomorphism for all «elh ; we call it x§ . Then we can defi-
ne the composed operator
T ry=1 x-k=1/2 -k=1/2
(2.0) T ve@d) s M EV2E1) - T a2,
keM keM
0 1
and it is a consequence of [ 6], [ 9] (see also [ 4]), that PT¥ is

an elliptic pseudo-differential operator, of type (-k’—j)jeM1,kGMo .
~
Note that when uel "{1) , we have

Ko - up) = qu

yu - Pr¥u .

vy

T
Yuyp

<
<
o
]
(@)
-

(2.5)

[}

<
o
w
i
o
<
o
w
i}
d
o<
o

The analogous formulae hold for A (omit r everywhere).

o)
Lemme 2.1 Let uel ™(E) . Then

(2.6) Re (4u,u) = (Aru§,uf) + Re <6201vu,xu>

+ < 15 (@OO* + (@10* - a,m)Pr)x‘u,xu) .

i T T
Proof: Write u = v + w , where v = uy and w = u.s . Theu
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Re (Au,u)

1 1
5 (Au,u) + 1 (u,Au)
= 2(av,v) + (Av,w) + (Aw,v) + (Aw,w)]
+ %[(V,AV) + (vyAw) + (w,av) + (w,Aw)]
~r Green's formula (1.11), we find using tuat yv=0:
(VyAV) = (A'ch) [
(wyhv) = (A'w,v) + <yw, & lvv> ,
, 00, 01 10
(wyaw) = (Arw,w) + <qw, @ gw + B vwd + v, &' pw> .

This gives, using (2.1),
Re (Au,u) = (Av,v) + (a7w,v) + (v,A7w) + (A%w,w) +
+ %[(W, 3,01VV>+< @91vv,(w>+<¥w, @,OO(W+ @01'Vw>4-<)fw, 0—10(10] .
Here ATw = 0 . Using (2.5) we then find
Re (Au,u) = (Aruf,ug) ¥ %[(xu, &1 (yu-Prru)> +
+ <@ (Vu-Pr(u),xu> + <yu, arooxm» ¢1Pr‘ﬁ>+<Prxu, ajogu>]
= (Aru;‘,ug)me( @O1Vu,xu>+<%( 6,00*+( &' g )Pr)xu,xw .

Corollary 2.2 When AB is weakly semibounded, then

(2.7) Re (Au,u) = (Aru:.,ug) + Re <Ryu,fu> , where
(2.8) Q _ _a01c11B10 + %wo* . %(@10* _ a,01)Pr )

Proof: By the chgracterization of weak semibcundedness given
in Theorem I, we have in particular from (1.20) :
<'?,O1‘.'u,§u> = =< 7010”B105u,xu>

for u€D(A.) ; the corollary follows by inserting this in (2.6) .

We can now show

Theorem IT Let A be strongly elliptic, and let AB be the

realization of a norma. boundary condition B?u = 0 . Then AB sa-

tisfies GArding's inequality
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2 2
(11) Re (fu,u) > cmﬂuﬂm - col!uﬂo , all ueD(AB)

for some ¢ =~ and c,-> 0, if and only if (i) and (ii) hold

(11) Re (%) = [ %% ) + ¢®(Z)*] 1s positive definite

on T™(C)\0 , where

(2.9) -3,

§ being the differential operator obtained by applying Lemma 1.4

0
to pO° ; here X is a pseudo-differentisl operator in & Zk
keM
0

3 its principsl symbol is defined accordingly.

of

+ [ 3
tvpe (=X, 2m+1+3)j,k¢1’10

Proof: Ve know from Theorem I that (i) is necessary for (II),
so we may assume it to hold. Then (2.7) nolds on D(AB). Now it is

proved just as in [4 , Theorems 3.3 and 4.3] that (II) is equivalent

with
. 2 2 ;
(2.10)  Re <Ryu,yw> > cr;lﬂ(u[]{m_kd/a— céhuﬂ{_k_1/2,’, all K\J.GLD(AB),
where we denote the norm in 1 Hq_k-1/2(Elr.) vy |-l “_k_1/2}.Here
e, {
2 00 2m-k-1/2
12035) - 2@ - T At
keM

0
by Lemmas 1.4 end 1,6, Inserting yu = @CF, we find, using the con-

tinuity of & and its left inverse W, that (2.10) is equivalent with
-~ " ? " ?
(2.11) Re<PREQyp> 2 Cm{"“’!"{m-k-u/z}‘ °on‘fi(-k-1/2}’

/
al1qe TT g?m=k=1/2¢5 y
k€M, k

o now denotine the nerm in M I{“—k-1/2(z ) . It is easily
i \[;(_‘,_1/3} .. k
o kel

checked that °

. M ¥ T o-2m+k+1
é*jﬁ@: % ic covtinuous from ¥ (Zk) to g (Zk)
e : xe't
_\GA.,) K

v
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3 1 1. .
for all o¢ 3 in particular it is of type (maE—k,—m+§+3)j so

kel
by & well-known theorem on pseudo-differential operators, (2.11)

holds if and only if Re (%) >0 on T*(F) 0 .

Remark 2,3 Consider the case where A is formally selfadjoint.
o*
Then A =AY , P=P etc, Moreover, &* = -& , so &9 _ . @po,
* %
@1 =-d0, a'% _ _a®' | rthen

r

R - -0 L1 L @0 p . @810, p) - 190,
Assume now furthermore that §:pj = mq . Then we have by (1.21)
jeM

(2.12) ZZHI(BOO) _ (a01*)—1B11* TlI— HZm—j-1/2<r‘j) .

[

* - * . . - 00 N
Thus,writing yu (am ) 1! ¥ , ond using that Re< & “yu,yu> = 0 ,

P - * -0 -
Re‘<ﬁxu,gu> = Re<-c.291(c?1B’°+P)(aO1*) 113“«‘~,(c<“1*) 113“1}>
= Re <7<1'\r,\1/> ,
where
10 11 JO1% (=1 _11%
(2.13) F, == (B +3B P)(& )'B ,

1

& pseudo-differential operator in € T, ; and (II) holds if and only
€M
1

if Re fo(731) > 0 . (This gives & somewhat simpler formula.)

3., NEGATIVE EIGENVALUIS

From now on we assume that A is formally selfadjoint, besides

being strongly elliptic. Let A, be a selfadjoint, elliptic reali-

B

zation defined by a boundary condition Beu = O (necessarily normal);
the mentioned properties
the general theory shows that Ly has if and only if (1.18) nolds

and 3?1 , defined by (2.13),is celfadjorint and elliptic, The spectrum

. 2 .
of A (as an operator in L°(E) ) consist of the two seguences

- 183 -



GRUBB

[PaN

A5

i

ss0ce §

C <Ay

9> x1

v

A2

(V4

e 3

{7«;} goes to + e0 and {).;} is either finite or goes to =~ oo ;
it is finite if and only if 60(7?5) > 0 ., By adding a real constant
to A if necessary, we obtain that AB is invertible,

Denote (cf. (2.3) and Lemma 1.6)
(3.1) ver -y 2 (e%) - {ug | wen(a)} ,

5
and denote its closure in L (E) by V. The general theory asserts

that there corresponds to A, an unbounded selfadjoint invertible

operator T in V with domain D(T) = vém , satisfying

(3.2} (Au,u) = (Aur,u‘) + (Tug,ut) , for all ue'D(AB) 3
(3.3) a3t - A§1 Lo o 12wy,

(=1) -1 ) (=1)
where T £ = T 'projyf (orthogonal projection). By (3.3), T

is compact. (Formulae like (3.2) = (3.3) have been applied by Krein
and by Birman to semibounded problems.) Note that it follows from (%.2),

(2.7) and Remark 2.3 that
(304) (Tuy,ug) = <k]Y’Y>’ when us=rg1 (a01*)—1B11*\t’ .

Denote by N+(AB;t) resp. N‘(AB;t) the number of positive

resp. negative eigenvalues in ] -t,t[ (t < ®o). It is known that
(3.5) W (agst) - o(a)t/2m o grelnme)/amy
(3.6) ¥ (Agst) =c9(t(n‘e)/2m) as t —voo ,

for © < % (Agmon |1 ]) (and seemingly for © < 1 in certain cases
as consequence of HYrmander [7 ]). We shall now show that (3.6) holds

with 8 = 1 (actually we give a more precise result).

(3.2) - (3.3) imply
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an T

B e

Proposition 3.1 (i) N-(AB;°‘) = N (T30°) (i.e., A

(11) N (agst) < N (T38) for all te[0,e0[ .
In order to apply this, we need

Proposition 3.2 There exists an elliptic pseudo-differential

. .1
operator A in gfL Fj of type (0,-j=- E)j,keM1 , such that the
composed operator

XE1 ( &01*)'13“*/\

jeM1

The proof uses [4, Example 6.3].
* o *
Denote @ F, = F' and denote (6201 ) 1 ® , then
jeM1

clearly YD(AB) =®A H2m(F1) . Now, when u_= x;1®/\7 , where

1y
,.LeH2m(F1) , then by (3.4)

(Tus,us) - <7(1/\al,/\«l> - <.7';2,az> s

where

9_= /\*k1/\

is seen to be an elliptic pseudo-differential operator in F1 of or=-

der 2m , bijective from Hzm(F1) onto L2(F1) . Moreover, by Propo-

sition 3.1,

Tu,, <Tm,m>

..(_.lis._l.l.;_) - __ﬁ , all u éD(T) .

Ju l? Inl? s
5'12(R) ALL2(F1)

Thus, by the mini-max principle, applied to the inverses, T and 9—
have the same eigenvalues,

Since [T is (n-1)-dimensional, it follows from a theorem of See-
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ley [10] , that for a certain constant ¢ (J) depending on G'O(yp),

(T 51) - ()02 (n=1)/2my

-1)/ -
(with o(t(n 1)’2m) replaced by 67(t(n 2)/?m) when J is scalar or
a certain root condition is satisfied so that [ 7] applies) . We ha-

ve as an immedizte applicetion ,using ‘onrosifion 2.1

Theorem III

N (i 500) = K (I 500) ,

(3.7) ¥ (agst) <N (T58) = () gn=1)/2m R(t) for t [0,00[,

where R(t) is in general o(

(n-1)/2
gt )/ ") for t > oo , &nd is

—_—

£ (1(n2)/22y

in certain cases.

Let us finally mention that one can also prove that, at least

when the Bjy in BO1 are permitted to be pseudo-differential opera-
tors, thers exists for any ¢ > O and any normal BOO an elliptic

selfadjoint realization A, satisfying (in addition to (3.7) )

N—(AR;t) > ¢ t(n-1)/2m .

Remark. Some of the results presented here have been announced
in Comptes Rendus Acad. Sci. (Sér. A) 1972, p.319-323 and p. 409-412,
and briefly explained in Séninaire Coulsouic-Schwartz 1971-1972 (ex-
& XIX et 19 bis). The complete details for section 1 are given in
"5]; an article "Properties cf normal boundary problems for elliptic
systems"elaborating the results of sections 2 and 3 is under prepara-

tion.
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