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INEQUALITIES FOR BOUNDARY VALUE PROBLEMS FOR 
SYSTEMS OF PARTIAL DIFFERENTIAL OPERATORS 

by 
Gerd GRUBB 

INTRODUCTION. 

One of the classical techniques for studying homogeneous boundary value pro­
blems for elliptic operators was to rephrase them in terms of integro-differential 
sesquilinear forms. After it was discovered that there exist boundary problems with 
optimal regularity, but which cannot be expressed by sesquilinear forms, the method 
was abandoned by many people. However, others have stayed with it because it handles 
existence and uniqueness questions in a very convenient way, and they have applied it 
to more general differential operators, without worrying much about which boundary 
problems could be treated (there was always the Dirichlet problems, and other examples). 

The first part of this lecture will be concerned with filling this gap, deter­
mining exactly which boundary problems enter in the variational framework. It will be 
seen that as soon as one requires some semiboundedness - more precisely, that 

(i) Re (AU,U) ^- const. ||u||̂  , all u satisfying boundary conditions, A being 

a differential operator of order 311 - then (and only then) the boundary condition 
falls within the class associated with sesquilinear forms on Hm. This holds not 
only for elliptic operators, but for quite general ones, e.g. the degenerate elliptic 
operators, our treatment can be extended to systems of "mixed order", giving new 
information on these. The inequality (l) will be called "weak semiboundedness". 
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In the second part of the lecture we study "Garding1s inequality" 

(II) Re (Au,u) > CmJ.u||m - cQ|u|0 , all u satisfying bdry. cond., 

characterizing the boundary conditions for which it holds. Here 
and in the first part the methods are inspired from a general "ab­
stract" theory for boundary problems [3 ], [4 ]• However, we thought 
it might be useful to show how (il) can be treated directly, with­
out the whole machinery. 

In the third part, the above results are applied, with some 
use of the abstract theory, to show that when A is strongly ellip­
tic, the negative eigenvalues of the selfadjoint elliptic realiza­
tions A.,, satisfy 

(III) [ N"(JL,;t) = ] 2 1 1 < c(Ajf- 1 )/ 2 m + ̂ t^" 1 )/ 2 m) 
B -t<V<0 = B 

J 
for t—>oo, improving results of Agmon and Hbrmander. 

1. WEAKLY SEMIBOUNDED REALIZATIONS 
compact 

Let Tl be an n-dimensional riemannian manifold with boundary 
P and interior Sl= i lM" 1 . Let E be a C 0 0 hermitian vector bundle 
over JT , of fiber dimension q > 1. Then the spaces of square inte-

2 2 ^ grable sections, L (E) and L (E|p), and the Sobolev spaces H (E), 
H S(E| P) (s 6IR) and H^(E) (S > 0) may be defined; we denote inner 
products over Ci by ( , ) and inner products (and dualities) o-
ver P by < , > • With a normal derivative D^ defined in E as 
in Httrmander [6 ], we have the trace operators defined by 

& ! u ( \ k u ) l r * k = ° ' 1 > 2 > — • 

they are continuous from H S(E) into H
S " K " " 1 / 2 ( E |p), for B>k+l/2f Cf. [8]. 
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We shall study "boundary value problems defined as follows: 
Given a linear differential operator A in S of order 2m, 

m integer > 0, Denote 

(1.1) M= {o,...,2m-l} , M Q = {0,...,m-l} , M1 = {m,...,2m-l} , 

and denote 

(1 .2 ) r -firou»--"fem-W =fakuh*M • K u -hAw* v u °-fykuW» 

0 1 

respectively the Cauchy data, Dirichlet data and Neumann data of u 
with respect to A (usually regarded as column vectors). 

Given for each J6-M a hermitian vector bundle F. over P 
of fiber dimension p. > 0 • For each pair [j,k}6MXM there is gi-3 ~~ 
ven a differential operator 3.. from El — to F. of order j - k; 

Jk » 
we use the convention that differential operators of negative order 
are zero. Note that the operators B ^ are of order zero, so they 
are locally multiplication by a PVX<1 - matrix, globally they may be 
viewed as vector bundle morphisms from El-, to F, . Of course B.. 

T k jk is 0 if p. = 0 (i.e. F . -Tx foJ ) . Altogether, the B., form a 3 3 3 
2mx2m - matrix of differential operators, B = (B ). , it is 

j K 3 i k€:^ 
of type (-k,-j). , M in the notation of [6 ], i.e. continuous from 
T H^"k(E|p) to T T H ° ^ ( F . ) , for all«63R. 

The boundary condition is now given by 

(1.3) B<̂ u = 0 , 

and we shall study the realization A^ of A defined by 
(1.4) AFI s u H* Au ; D(AB) = {u6H 2 m(E) | B^u •= 0 } . 
(1.3) is a reformulation of the usual systems of boundary conditions, 
where we have grouped together conditions of the same normal order, 
and permitted the range space for each group to be a nontrivial bundle. 

We shall assume throughout that the following definition is satisfied: 
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Definition 1.1 The boundary condition B =0 - or the 
operator B - will he said to he normal when all the morphisms 
B ̂  (k€M) are sur.jective (so in particular p^ < q , all k£-M ). 

The assumption is partly justified by the observation of Seeley 
[11 ] that, for elliptic , Agmon's necessary and sufficient con­
dition for the existence of a "ray of minimal growth" implies nor­
mality; and when (il) holds (even with c = 0 ), there are many 

m 
rays of minimal growth. We believe that normality is necessary for 
(l) under much more general circumstances, - The definition is a 
vector bundle version of that of Seeley [11]. It is more general 
than that of Geymonat [ 2] for matrices, which may be shown to hold 
exactly when ker is a trivial bundle, for all k*M . 

B is a lower triangular matrix, since B = 0 for j < k • 
It is the sum of its diagonal part B^ and its subtriangular part Bg 

(1-5) B, = ( .. B ) . , , B = B - B, ; v J J d jk jk'jjksM ' s d ' 

we call matrices with zeroes in and on one side of the diagonal 
subtriangular. B is a surjective morphism from ® E|p to P. • 

kcM ' j£M J 

Proposition 1.2 B^ has the right inverse 

cd = Bd ад) • 
and B has the right inverse 

N 2m C = C, - C,B C,+ ... + C,(-B C-) ; d d s d dv s d' ' 
C is an infective triangular differential operator from F 

kfeM 
to 6> E| of type (-k,-j) . 

In the proof F t is uŝ d that B s
c
d
 i s a subtriangular diffe­

rential operator in @ T . , thus nilpotent. 

1) The definition clearly extends the original definition of Qronszajn 
and Milgram for the case where A is scalar (i.e.g. = 1). 

- 174 -



INEQUALITIES 

Define for E 

(1.6) Z«(b) ={«elT N * - K - 1 / 2 ( E L ) | B ? = 0 } , Z(E) U ^ ( P ) , 

(1.7) R*(l - CB) = (I-C3)T ^" k" 1 / / î ?(E |p) , R(I-CB) = U R(I-C3) , 

and define similarly R*(B*) , R(B*) , Z ^ ( I-CB )* ) and Z((l-CB)*) . 

One has immediately 

Lemma 1 . 3 For all c*e]R 

(1.8) Z ^B) = R^(I-CB) , Z(B) = H(I-CB) , 

(1.9) R*(B*) = Z*((l-CB)*) , R(B*) --- Z((I-CB)*) . 

We shall later need the follov/ing lemma: 

Lemma 1.4 There exists a differential operator <§ from © Z, 
k*M K 

to ^ E L £f type (-k,-j) . , M , with infective diagonal part, 

such that 
Z"(B) « $ " t T H*"k"1/2(Z ) , all océE 

k«M 

here Z^ denotes the bundle ker B ^ , ke-K . 

By Proposition 1.2 applied to J * , ^ has a left inverse ̂ £ , 

triangular differential operator with surjective diagonal part. 

Next, we shall establish the necessary Green's formulae. The 

following version of Green's formula is well knr-m (cf. [ 9]» [ 6 ] ) 

(1 .10 ) (Au,v) - (u,AV) = <^u, <̂>v> , all u*H2m(E) ; 

here A1 denotes the formal adjoint of A , and is a skew-trian­

gular 2m X 2m - matrix (St= (&..). ,T where of order 

2m-j-k-1 ; the elements in the second diagonal, , are 

of order 0 , and they are vector bundle isomorphisms if and only 

if r is noncharacteristic for A . 
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Split in four blocks (recall (1.1) ) 

К 3 « ? 1 ì h 

V tv и у 

then (1.10) becomes, in view of (1.2) 
( 1 . 1 1 ) (Au,v) - (u,A»v) = <<Z°°ju,fv> + <#°1yu,yv> + <#1°yu,yv> . 

We shall also need the "halfways" Green's formula (proved in [5]) 

Proposition 1.5 Let a(u,v) be a sesquilinear form on Hm(E) 
associated with A , i.e. a form 

(1.12) a(u,v) = Z (Q^.P.v) , 

with Qj, and P_̂  of order < m , indexed by a finite index set I , 
and with Z P'Q. = A . Then for all u*H2m(E) , all v*Hm(E) , 

161 1 

( 1 . 1 3 ) (Au,v) = a(u,v) + <#?1Vu,jv> + <^^^v> , 

where = ( 5^^) j jLs a differential operator of type 

(-k,-2m+1+j)^k^M in E|^# Conversely, for any such there 

exists a sesquilinear form a(u,v) associated with A , such that 
( 1 . 1 3 ) holds. 

Now split B and C in blocks s i s o • 

B = B 1 0 B 1 1 ' C = c 1 0 c 1 1 ' V J r > 
where B*£ = (B..).t„ . M and C*C = (C..). M . „ s then C°° 

11 00 11 
and- C are the right inverses of B resp. B by the construc­
tion in Proposition 1.2. Then the boundary condition may be written 

(1.14) B°°fu = 0 , B 1 0£u + B11yu = 0 . 

Moreover, we observe that by Lemma 1.3 
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2m 
Lemma 1 .6 section u € H (E) satisfies (1 .14) if and only if 

( 1 . 1 5 ) y u * Z 2 B ( B 0 0 ) , vu + c 1 1 B 1 0

r « z 2 M ( B 1 1 ) ; 

and if and only if 

(1.16) r e E 2 m ( i - c 0 0 B 0 0 ) , vu + c 1 1 B 1 V ^ m ( i - c 1 , B 1 1 ) . 

The theorem can now be stated. 

Theorem I The following statement are equivalent: 
(i) For some c > 0, 

( 1 . 1 7 ) Re (Au,u) > -c |uj2 , for all u*D'(A ) 

i.e., A_ is weakly semibounded. 
_D 

(ii) The identity holds 
(1.18) ( I . C 0 0 B 0 0 ) * « ? 1 ( I - C 1 1 B 1 1 ) - 0 . 

(iii) There exists a sesquilinear form &g(u,v) on Hm(E) 
associated with A , for which 

(1 .19) (Au,v)= a B( u, v) , for all u,v6D(AB) . 

(iv) For some c > 0 , 
|(Au,v)| < c ||u||m | v | m , for all u,v€D(AB) . 

A detailed proof is given in [ 5] ; let us just explain how 
(1.18) enters: In the formula ( 1 . 1 3 ) , the only term on the right si­
de that is not continuous on H M(E) /KH M(E) is <<£?1Vu,tfv>. How­
ever, when u and v €rD(A^), then by (1 .16) 

vu + C 1 1 B 1 V - ( I - C 1 1 B 1 1 ) ? , R - ( I - C 0 0 B O C ) Y 

for suitable cp, -vf* s o when (1.18) holds, then 

<<*°Vu,r> - <^ 0 1(i - c 1 1 B 1 1)<p,(i - c 0 0 B 0 0 ) F > - <*? 1c 1 1B 1 0

r » . C > 

( 1 # 2 0 ) - o - <(5t 0 1 c 1 1 B 1V,r > . 

and thus |<#01yu,yv>| < c |u|m |v| f f l for u,v £D(Ag) . 
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Then (i) and (iv) are valid, and (iii)follows "by use of the last part 
of Proposition 1.5» Conversely, (1 .18) is seen to he necessary even 
for (i) , since ^ varies independently of ̂ u . 

Let us give a few more remarks on (1 .18), for the case where 
P is noncharacteristic for A • Then (1 .18) implies 51. p ..> mq , 

and when 2. p. = mq (the cass usually considered for elliptic op-

erators), (1 • 1 8) is equivalent with the statement 

(1.21) Z 2*(B°°) = ( « . 0 1 * ) - 1 E 2 N ( B 1 1 * ) , 

and with 
(1.22) B ° ° « 2 , 0 1 V B 1 1 * - 0 . 

Now ^D(A^) = Z2m(B^^) , and it is easily seen that the formally ad­
joint realization (A ) ! is defined hy a normal boundary condition 
E'̂ u = 0 , for which 

Z 2 m(B- 0 0) = (^°1*)-1R2ffl(B11*) . 

Thus (1 .21 ) means 
/Г>( = УТ)(А' .) . 

30 vwkeh 
This is symmetric in {A,B} and ^A1 , B'} ; HoWs, A'^, is also 
weakly ssmibounded. 

Finally, we mention the treatment o r systems of "mixed order" 
(details are ̂ iven in [5 1). Let A = (A ) + 1 , where each 

s x s, 0— 1 , • • •, q A , is a differential operator on J ! , of order m +m, , for a given st * s t ' 
set of nonnegative integers {m.j ,... ,mr} . Denote max = m • Then 
one can establish a Green's formula 

(1.23) (Au,v) - (u,A»v) <^°/bu,(iv> + <* J 1(i 1u,(Sv>+<^ 1 J(ltt f(ly> , 

where is a crrtain rearrangement of the Lirichlet traces 
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1Y0U1 *пц - 1 и 1 ' *ïo\""*Xm - 1 V ' a n d Л u i s a r s e- r a r'-
gement of the tracesfym u, tfm ^ V ••• tfm V • • .jfm + m _ ^ ( 3 ' 

£ 01 ^ 1 0 

and uC and # are skew-triangular matrices of matrix-valued 
differential operators on P . When P is noncharacteristic for A , 
(Z is sur.jective and ^ is infective ("but bijective only if 
all equal m ). Proposition 1 .5 extends, and normal boundary 
conditions can be defined. (This treatment seems new.) Now Theorem I 
can be proved in a version completely analogous to the 2m-order case, 

, Vu and replaced by pPu , ^u and , respectively. 
Moreover, we find that the boundary conditions satisfying the 

statements in Theorem I, are actually normal boundary conditions on 
A u and when \ is noncharacteristic, and the number of 
boundary conditions is m̂ +...+m , like in elliptic problems). T'or 
such conditions, it is possible to extend the Lions - Hagenes the ->ry, 
on the basis of ( 1 . 2 3 ) . 

2 . GARDING1S INEQUALITY 

Garding has shown that A must be strongly elliptic in ord̂ r 
for (il) to hold even for U € C ^ ( E ) , so we assume from now on that 
A i?. strongly elliptic. Define the "real" part of A 

(2 .1 ) A r = 1 /2 (A + A1 ) , 

it is also strongly elliptic. We can assume that a sufficiently lar­
ge constant has been added to A so that (vliiU c<[ > CX > ® ^ 

^ M * < (APu,u)= (Au,u) < c 2 H 2 , for u*Hj(E)ftH2B(E) 5 
realizations 

1« -the G«W-"̂ CMT̂  c©îe4i"ttow 
then the Dirichlet A^ and A^ defined by jfu = C , i.e. with domains 

D(A<) - B(A') - H»(E)AH2M(E) , 

are bijective (onto L"(E) ). 
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T'efine for each «*€]R 
Z°Y.A) = ( U * H ~ ( E ) i A u = 0 } , 

(2-2) 
Z V(A r) = {ue-H^E) | Aru = 0 } . 

ror u€.H2m(E) , let 
r / r v -1 , r r û , = ) IIU , = u - , 

this defines a decomposition of H'~m(p) ("by u = u£ + u^ ) : 

H 2 M ( E ) = D(Ay) 4- Z 2 m(A r) (topological direct sum) . 

"It follows from the theory of Lions and Magenes [ 8 ], that 

(2.3) Y ! S 0 H't-k-l/2(E|r) 

r 
is an isomorphism for all O<€-TE ; we call it ^ ̂  . Then we can defi­
ne the composed operator 

(2.4) P r= V . ( T ' R 1 : TT H«-k-1/2(E|p) TT H*-k-1/2(E|p) , 

and it is a consequence of [ 6], [ 9 ] (see also [ 4]), that P r is 
an elliptic pseudo-differential operator, of type (-k,-j). M , M . 

2m J^ 1 F K«ll 0 

Note that when ufK (LI) , v/e have 

XuJ = 0 , = J(« " 4 ) = KU ' 
( 2 . 5 ; r r r " 1 " r r Vu^ = P yû  = P jju , yur •= yu - P |fu . 
The analogous formulae hold for A (omit r everywhere). 

Lemma 2.1 Let ueH 2 m(E) . Then 

(2.6) Re (Au,u) = (Aru£,u£) + Re <dt01yu,fu> 
+ < I ( 6 l 0 0 % ( ^ - a ° V > , y u > . 

r r 
Proof: Write u = v + w , where v = u^ and w = u^ . Then 
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1 1 

Re (Au,u) = ̂  (Au,u) + - (u,Au) 

= ̂ [(Av.v) + (Av,w) + (Aw,v) + (Aw,w)] 

+ 7>[(v,Av) + (v,Aw) (w,Âvj + (w,Aw)] 
"-r Green's formula (1.11 ) , we find using xnat = 0 : 

(v,Av) = (A'v,v) , 

(w,Av) = (A»w,v) + <yw,#°1Vv> , 

(w,Aw) = (A'w,w) + <Yw, &°°yw + &01yw> + <WW,^I10J'W> . 

This gives, using (2.1), 

Re (Au,u) = (Arv,v) + (APw,v) + (v,Arw) + (Arw,w) + 

+ |[<yw, &°Vv>+<^°V,yw>+^^^ . 

Here Arw = 0 . Using (2.5) we then find 

Re (Au,u) = (Arujffuî) + ^[<*u, (>m-Pryu)> + 

+ <6^0l(v/u-PV)»ifu> + <jp, #?°yu+ 6291Pryù>+<Pryu, eÔ°gu>] 

= (A% V£) +Re< ^ ° V u ^ ^ . 

Corollary 2.2 When A^ is weakly semibounded. then 

(2.7) Re (Au,u) = (Aru£,u£) + Re <#)fu,Çu> , where 

(2.8) # = - é t ° V V 0

 + !a?°* + i ( a
1 0 * - a ? V r . 

Proof: By the characterization of weak semiboundedness giver* 

in Theorem I, we have in particular from (1,20) : 

/ <7°ï , \ , -701̂ 11̂ 10̂  v v 

for U€D(A. r) ; the corollary follows by inserting this in (2.6) . 

We can now show 

Theorem II Let A be strongly elliptict and let A^ be the  

realization of a normal boundary condition B^u = 0 . Then A^ sa­

tisfies Gârding1s inequality 
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(II) Re (Au.u) > cjuj 2 - e0|u|g , all u *D(AB) 

for some c and cn-> 0 , i_f and only if (i) and (ii) hold : 

(i) (I - C 0 0B 0 0)**° 1(I - C 1 1B 1 1) - 0 ; 

(ii) Re <J°(*f) = \[ <T°{7<. ) + <f°(K)*] is positive definite 
on T*(r) \ 0 , where 

(2.9) K = §*# $ , 

f "being the differential operator obtained by applying Lemma 1 .4  

to B ' j here 3? _is a pseudo-differential operator in © Z of 
k e M o 

type (-k4-2m+1+j). , ,r ; its principal symbol is defined accordingly. 

Proof: We know from Theorem I that (i) is necessary for (ii), 
so we nay assume it to hold. Then (2.7) holds on D(AB). NOW it is 
proved just as in [4 , Theorems 3*3 and 4.3] that (ii) is equivalent 
with 
(2.10) Re <ttxu,ju> > = ; l ^ l (

2

n _ k _ l / 2 > - c o ! H { - K - l / 2 V a 1 1 j f ^ V ' 

where we denote the norm in T P H "~ " 1 ( E L ) by 1 * I, , w^.Here 

<D(AB) = Z2m(B°°) - $ 7 T H 2 m- k- 1/ 2(Z k) 
k*MQ 

by Lemmas 1.4 and 1.6. Inserting vu = Q <̂> , we find, using the con­
tinuity of ^> and its left inverse"^ , that (2.10) is equivalent with 

(2.1,) Re<$.*$f,r> > c ; l < f ! j m _ k _ l / 2 j - c S l f I {

? _ k . l / 2 } > 

alltffeT H 2 m _ k- 1/ 2(Z. ) , 

!| -J* , /^now denoting the nrrm in TT H*~k~1^2(Zk) . It is easily 
checked that 

is c,-'ir,u,u, - 0 0 T l ^ ( Z k ) to T lf" 2 m + k + 1(Z k) 
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1 1 
for all oc ; in particular it is of type (m-—-k,-m+—+j). , so 

c 3 9 ̂ i'ir\ 

"by a well-known theorem on pseudo-differential operators, (2,11 ) 
holds if and only if Re <f°(?C) > 0 on T*(r) 0 . 

Remark 2.5 Consider the case where A is formally selfadjoint. 
Then A = A r , P = P r etc. Moreover, <£* = , so #?°* = - &°°, 

a?'* = - &)° , <s0°* = _ * 0 1 . Then 

# - - £ ° 1 C 1 1 B 1 0 - l a 0 0 - a0' p - - o ? 1 ( c 1 V ° + p) - \c£Q . 

Assume now furthermore that 2 p. = mq . Then we have by ( 1 . 2 1 ) 
(2 .12) Z 2 M ( B 0 0 ) = ( d l 0 1 * ) - 1 B 1 1 * TT H 2 M - J - 1 / 2 ( . . ) . 

Thus,writing fu = ( ( ^ . 0 1 * ) ~ 1 B 1 1 * Y , and using that Re< <£°°yu, fu> = 0 , 

Be<^a,yu> - R e < - £ 2 . ° 1 ( C ? 1 B , 0

+ P ) ( a 0 1 * R 1 B 1 1 ^ , ( C e 0 1 * ) - 1 B 1 1 Y > 

= Re <^y,Y> , 

where 
(2 .13) 3 ^ - - (B 1 0

 + B 1 1P ) ( 6 c 0 1*)- 1B 1 1* , 

a pseudo-differential operator in © F. ; and (il) holds if and only 

if Re <T ( ^ ) > 0 . (This gives a somewhat simpler formula.) 

3. NEGATIVE EIGENVALUES 

From now on we assume that A is formally selfadjoint, "besides 
being strongly elliptic. Let A^ he a selfadjoint« elliptic reali­
zation defined by a boundary condition Bju = 0 (necessarily normal); 

the mentioned properties 
the general theory shows that a_ has if and only if (1.18) holds 

B 

and J( , defined by (2 .13) , is selfadj :>int and elliptic. The spectrum 
of A^ (as an operator in L̂ (E) ) consist of the two sequences 
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c < *T $K < I 

o > *~ > >~ > ; 

f } goes to +o© and {X~} is either finite or goes to - ; 
it is finite if and only if (T̂ (̂ f̂ ) > 0 . By adding a real constant 
to A if necessary, we obtain that A-g is invertible. 

Denote (cf. (2.3) and Lemma 1.6) 

( 3 - D V 2 m - y; 1Z 2 l D(B 0 0) = ^ u ? | u*D(AB)} , 

and denote its closure in IJ 2(E) by ¥. The general theory assorts 
that there corresponds to A^ an unbounded selfadjoint invertible 
operator T in V witn domain D(T) = V^m , satisfying 

(3.2) (Au,u) = UupUy) + (Tû ,û ) , for all u e D(AB) ; 

(3.3) A~ 1 = A"1 + T^"1) on L2(E) , 

where T^"1^f = T"1projyf (orthogonal projection). By (3.3)» T̂ ""1 ̂  
is compact. (Formulae like (3*2) - (3*3) have been applied by Krein 
and by Birman to semibounded problems.) Note that it follows from (*3.2L), 
(2.7) and Remark 2.3 that 

(3.4) (TuT,u^) = < ^ , Y , Y > , when u r y ; 1 ( ^ 0 1 * ) " 1 B 1 1 * Y • 

Denote by N+(A ;t) resp. N~(A_;t) the number of positive 

resp. negative eigenvalues in ] —t, t T (t <»«>). It is known that 

(3.5) N+(AB;t) - c(A)tn/2m
 m0(t(*-*V2*) as t DO , 

(3.6) N"(AE?t) -<0(t ( n- e )/ 2 n) a s t , 
for 0 < -| (Agmon [1 ]) (and seemingly for 0 < 1 in certain cases 
as consequence of Hbrmander [7 ])* We shall now show that (3*6) holds 
with 0 = 1 (actually we give a more precise result). 

(3.2) - (3.3) imply 
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Proposition 3.1 (i) N~(AB;<*>) = N"(T;*o) (i.e., and T 
have the same number of negative eigenvalues). 

(ii) N"(AB;t) < N"(T;t) for all t*[0fo©[ . 

In order to apply this, we need 

Proposition 3.2 There exists an elliptic pseudo-differential  
operator /\ in 6& F. of type (0,-j- \ ) . , M , such that the  
composed operator 

^ 1(tf° 1*)-V 1*A 
2 

maps L ( ®~ P.) isometrically onto V. 
jeM1

 J = 

The proof uses [4, Example 6.3]. 
Denote ® F. = F1 and denote (# 0 1*)~ 1B 1 1* = © , then 

clearly Y^(AB) = €> A H 2 m(F 1 ) . Now, when u^ = Y ^ ^ A ^ ' w h e r e 

^ 6 H 2 m(F 1) , then by (3.4) 

(Tu^,us) = <^A^,A<ip = <7^,^> , 
where 

T- A ^ A 
i 

is seen to be an elliptic pseudo-differential operator in F of or-
2m 1 2 1 

der 2m , bijective from H (F ) O N ^ 0 L (F ) • Moreover, by Propo­
sition 3» 1 > 

(Tu ,u ) ' <7^,<y> 

K " 2, x h 2, 1 \ 
* IT(E) CL^(F 1) 

Thus, by the mini-max principle, applied to the inverses, T and 7* 

have the same eigenvalues. 
Since r is (n-1)-dimensional, it follows from a theorem of See-
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i ey 9 that for a certain constant c~{T ) depending on G"°(,7~), 

N-(y;t) - c-(7-)t ( n- l )/ 2 ! n = <v(t ( n- l )/ 2 m) 

(with ^(t ( n _ l )' / 2 m) replaced by (P{t
(n_2)/2m) when .7" is scalar or 

a certain root condition is satisfied so that [ 7] applies) . We ha­
ve as an immediate application L̂A.si"̂  ~pro|>o-s it Co* 3 . 4 

Theorem III 
N_(AB;oo) = N~(,T;<H») , 

and 
(3.7) N"(AB»t) < K"(>T;t) = c~ ( D t ( n- l )/ 2 m + R(t) for t [0,oo[, 

where R(t) Is in general ^-(t^n ^'/^m) for t ->oc , and is 
(P(t^n ^)/^m) _in certain cases. 

Let us finally mention that one can also prove that, at least 
when the B., in B^ are permitted to be pseudo-differential opera-

00 

tors, there exists for any c > 0 and any normal B an elliptic 
self&djoint realization satisfying (in addition to (3.7) ) 

K-(Ap;t) > c t ( n"' )/ 2 m . 

Remark. Some of the results presented here have been announced 
in Comptes Rendus Acad. Sci. (Ser. A) 1972, p.319-323 and p. 409-412, 
and briefly explained in Séminaire Coulaouic-Schwartz 1971-1972 (ex­
poses XIX et 19 bis). The complete details for section 1 are given in 
[5] ; an article "Properties of normal boundary problems for elliptic 
systems"elaborating the results of sections 2 and 3 is under prepara­
tion. 
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