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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

PRELIMINARY NOTES FOR THE TALK 

"TRACES OF ANALYTIC SOLUTIONS OF THE HEAT 
EQUATION" 

by N. Aronszajn 

Préface 

In this paper necessary preliminaries are given for understanding 

the talk "Traces of analytic solutions of the heat équation. " Since 

the talk is restricted to one hour, it is hoped that the audience will 

have had a chance to look over thèse preparatory notes. 

No proofs are given here. Some of the proofs in Chapter I and 

ail the proofs for Chapter II will be published in a forthcoming mono-

graph on polyharmonic functions which is referred to in this paper as 

PHF. 

Contents. 

Chapter I. General analytic functions. 
§1. Notations. 

§2. Entire functions; exponential order and type. 
§3 A new type of Cauchy formula; Almansi expansion. 
§4. Analytic functionals. 
§5, Symbolic intégrais. 

Chapter II. Polyharmonic functions. 
§1. General définitions and properties; Laplacian order 

and type, 
§2, Almansi development of polyharmonic functions. 
§3, Relations between entire and polyharmonic functions. 

Chapter III. Analytic solutions of the heat équation. 

§1. General properties and relations with polyharmonic 

functions of Laplacian order 2. 

§2, Developments in Hermite polynomials. 

§3. The spaces G.UL and CtV^ and their duals. 
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ARONSZAJN 

CHAPTER I. 

GENERAL ANALYTIC FUNCTIONS . 

§1. Notations. 

The notations used here are chosen in order to abbreviate the 

formulas in this paper. It should be noted that they differ in many respects 

from notation of other authors working in related branches of mathematics. 

IRn is considered as the real subspace of C n (the imaginary subspace 

is iIR n). For a vector x € <Cn, x * (x, , x , , • • •, x ), we put 

2 ' 
| x | = L (|x | ) , ||x|| = max l x

k l • 
k=l k=l, •••, n 

2 £ 2 x = 2J X, 
k=i k 

For two vector s x and y in <Cn we put 

(x,y) = L x k y ^ , (xy) = L x k y k 

For x 6 <Cn and a a complex number we write 
a . Z.a/Z i or ^ or x = (x ) ' • x =11 x, 

1 k=i k 

n \a n a k If or - (or. , * * * , or ) € C , we write also x | = II x, . 
1 n k=l K 

For nonnegative integers we adopt a notation which in one respect is 

not consistent with that for gênerai complex number s. To avoid any 

misunderstanding, we will reserve the email letters j , k, t, m, n t p, q, 

for nonnegative integers or finite Systems of such (uniess otherwise 

indicated). If k is a System, k = {k.} we write 

|k | = E | k | . 
j J 

We maintain the notation k | a as for gênerai complex Systems and write 

k! = n (k.!) . 
j J 
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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

We will dénote by B R (x°) the open bail [x € IRn: | x-x° | < R ] ; its 

boundary will be denoted by S R ^"(x^). If x^ = 0 we will just write B R 

and S^~* . We will use the same notation in <Cn which will be identified 

with IR 2 n . 

§2. Entire functions. 

We will adopt the following définitions of exponential order and type 

for entire functions f(z) of n complex variables, z = (z^, • • • , z ). 

f(z) is of exponential order p, 0 _i p < oo if for every e > 0 

there exists a constant C such that 
e 

Il l | P + e 

(1) |f(z)| _ C £ e l | z | 1 for ail z € <Cn . 

The smallest p of this kind is called the least exponential order of f. 

f(z) is of exponential order p and type T , 0 < p < oo, 0 =i T < oo , 

if for every G > 0 there exists a constant Cg such that 

(2) |f(z)| ë C' e

( T + e ) H I P for ail z € C n . 

If p is the least order of f then the smallest T of this kind (if it exists) 

is called the least type of f. 

Every entire function will be considered as of exponential order oo 

and type 0. 

Proposition I. If f is of order p (with type T) then for every compact 

KC (Dn and every e > 0, there exists a constant C T, such that «- , rv, e • 111 

| f ( z ) | - C K > e e l ! z - x H P + e 

or 

|f{»)| S C K > g e <
T + e > l | z - * H P 

for every x G K, z € C n . 
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THEOREM III. Let f(z) = f(z»;z") be analytic in G c <Cn and let  

the set A c G H TRn be such that at every x € A the restriction of f to 

z" is an entire function. Then if A is of positive Lebesgue measure in 

IR the restriction of f to z1 1 at every point x € G, is entire. " 

As a conséquence, under assumptions of the theorem the full 

analytic continuation of f(z) has for domain G1 X <C n~m where G1 is 

in gênerai a covering manifold over (C m . 

§3, A new type of Cauchy formula; Almansi expansion. 

Consider the bail B R c IR n and the corresponding harmonicity 

cell B R c <Cn (the gênerai définition of harmonicity cells will be given 

in Chapter II, §1. )<. B R can be defined as the set of ail z = x + iy, x and 

y in IR n, such that 

2 X 2 , 9 / 2 2 , ~2 . D 2 x + y + 2N/ x y -(xy) < R . 

is a circled convex domain and the extrême points of the closure B.? R R 
form a real analytic n-dimensional manifold r** consisting of ail points 

R 
z = 69 with 9€ and 6 € Sl

R c (C1 . 
THEOREM I. Let f(z) be analytic regular in G. If B ^ C G then 

for x € B^ we have R . 

{ ï ) f ( x ) = z 4 r f f J l _ f ( i e ) d o ( e ) d i , 
2 m œ n J . J

n ( ê e - x ) n 

where uo is the area of S, , do(0) is the area élément on S, . Another n 1 v 1 

form of this formula in terms of exterior differential forms is 

X* The proof is given in PHF by using analytic capacities introduced there. 

A somewhat weaker version of the theorem can be obtained by using results 

of P . Lelong [see Ann. Inst. Fourier, XI (1961) pp. 515-562]. 
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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

Proposition. II. Let x € <Dn. An entire function f(z) is of exponential  

order p (type T) if and only if for V e > 0, 3 C x g such that 

| D k f ( x ) | M _ C , ( k l ) V N | k |-l/(P+€> 
X, C 

or | D k f ( x ) r | k | - C x # e (W )VM |k | -W (ep(T+c))W 

k 1. 
for every derivative D . If for C we choose the smallest constant L ,— x, e 

satisfying this relation, then for fixed c, as function of x, g is 

locally bounded on <Cn . 

Remark. Our définition of exponential order and type does not 

correspond to the classical définitions and was introduced in order to 

simplify the relations between exponential and Laplacian order and type. 

The classical order and type are more akin to the least order and type. 

The exact connection between classical and our terminilogy is as follows: 

Classical Terminology Terminology of this paper 

Order p maximal type ^ > Least order p without type 

Order p type T <" > Least order p with least type T 

Order p of minimal type «^==> Least order p with type 0. 

The next theorem deals with gênerai entire functions. 

Let f(z) be analytic in G c <TJn . Divide the variables z, , • • • , z 

into two groups z' = (z^ , • • • , z^) and z" = ( z

m + 1 » * * ' > z n ) . Thus z = (z';z") 

(similarly, x = (x1 ;x f t) etc. ). Consider x € G. In a small neighborhood 

consider the function f(x !, z n ) as function of z" for fixed x 1 . This function 

will be called the restriction of f at x to z M . 

h For k = (k. , • • •, k ) D K • . 
Sz . . . ô z n 
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d') f ( x , = _ U f f ( z ) d*. A-'-Adz- . L  

( ' 2 T t l U n J (z-x) n 1 

Remark 1. 1? The manifold covers twice its géométrie image _________________________ rv. 
in CDn; 2? for n odd we détermine the value of (z-x) n = ((z-x) ) n ' for 

z = Ç0 € T R , x € B R by choosing the positive value when C = R ( i .e . z = R0 € S R CIRn 

and x € c IR n. It is then easy to prove that by analytic continuation (z-x) n 

R 
becomes a single-valued function on T R X B R and there is no ambiguity in (1) or (l 1). 

As an immédiate conséquence of Theorem I we obtain 

THEOREM II. (Almansi development). If f is regular in B R + x^, 

x^ € <Dn there exists a unique development, the Almansi development at x^ 

(2) f(x) = E ( x - x ° ) 2 \ (x°;x), 

0 
where h^(x ;x) is a harmonie function in the complex variables x. 
Formula (Z) is valid for x-x € B R , the séries in (Z) converging absolutely  

and uniformly on compacts. The Almansi coefficients h k(x^;x) can be  

obtained for any R^ , 0 < R̂  < R and x € B R by the formula 

(3) K ( X ° ; x ) = C % : j X " X ° ) 2 f ( z + x ° } dz.A—Adz . v ' kv ' ZTTIOJ J Zk+Z . . 0xn 1 n n " z (z-x+x ) 

By using the Laplace operator in complex variables, A = —^ ***' ' ' * — J 
dx, ox 1 n 

we obtain the useful formula 

IA\ Akr/ <\ A , . r(k+(n/2)) , , 0 0. R . A i o 
(4) A f(x ) = 4 k! —V (n /2) k ( x ; x ) f o r k = °> 2» ' * ' » 
and any x^ in the domain of regularity of f . 

A short proof can be given by using exterior differential forms and 

calculus of residues in <Cn (see J. Leray, Bull. Soc. Math, de  

France , 87(1959), pp. 81-180 ). In PHF a longer but more elementary 

proof leading to (1) is given. 
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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

§4. Analytic functionals. 

For a domain G c £ n we dénote by^.(G) the class of ail analytic 

regular functions in G with the Montel topology of uniform convergence 

on compacts. The class #'(G) of continuous linear functionals on #(G), 

commonly called analytic functionals was well studied in récent years 

and we will s tress here only a few needed facts. 

If the domains G k satisfy G

k

 c G

k + 1

 a n d u G

k = G t h e n u G'tG^-tf1 (G). 

We will be especially interested in the case when G is a polycylinder 

P*(x°) = [ z ë <Dn; | z k - x ° | < r k ] , r = ( r 1 . " - . r n ) . 

In this case the analytic functionals i n ( P ^ ( x u ) ) can be identified 

with the class of ail analytic functions regular on the closed polycylinder 

pî1/ (x^), • — = (—, • * * , — j . The corresponding scalar product <f, F >, 
y r r \ r n ' 

f€ M(P"(x°)), F € M ' ( P r ( x ° » i s given by 

(1) C f(z + x ° ) F ( x 1

0 + l , - - - , x ° +\. )dz i - - -dz n 

nr

n,(0) 1 

where r 1 = (r' , • • • , r ' ), 0 < r\ < r, the function F(z) being regular on the closed 1 n K K 

polycylinder P ^ ^ x ^ ) and 

n^,(0) = [z6 Œn; | z k | = r R ] . 

The intégral in (1) is independent of the choice of r ' satisfying the prescribed 

condition. 

§ 5 . Symbolic intégrais. 

To introduce symbolic intégrais we first consider them in the elementary 

case of functions u(x) defined on IRn and then pas s to the case of analytic 

functions u(x) defined in some domain of IRn or of <En . 
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1? (elementary case). Let u(x) be a locally integrable function 

on IR n. For any point x € IR n, put 

(D M (x°, R) = -L C u(x° + R0 ) do(0 ) . 
n J ^ . 

For fixed u and x^, M^(x^, R) exists and is finite for almost ail R 

and we write 
oo 

(2) JJ u(x)dx = J OJ n R
n " 1 M u (x°,R)dR 

0 0 
when the last intégral exists and is finite. 

Z? (The case of analytic functions..) Let u(x) be an analytic function 

in a domain D e IRn (or in G c <Cn). For any x^ in its domain, define 

M u (x° , R) by (1) for sufficiently small R . M u (x^ f R) is an even analytic 

function of the real variable R. If it has an analytic continuation to the 

whole real R-axis and if the intégral in (2) exists and is finite we define 

again \ u(x)dx by (2). 

Going back to the elementary case we notice that if u € L (IR ) then 

^ u(x)dx = j u(x)dx, 

hence £ u(x)dx is independent of x^. This property is essential for 

what we will call the symbolic intégral of u denoted by u(x)dx. We 

will give sufficient conditions for this property to hold and will consider 

in the sequel the symbolic intégral only when thèse conditions are satisfied.*' 

This restriction is sufficient for our présent purposes, but in future 

applications it may well be désirable to consider less restrictive conditions 

for the symbolic intégral. 
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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

The function u(x) for which we will consider ^ will often dépend 

on several other variables besides the variables of intégration. Thèse 

variables will be considered as parameters varying in a domain in some 

<CAN. The uniformity condition will refer also to thèse parameters . In 

our applications we will need the symbolic intégrais essentially for 

analytic functions u(x) in some domain D C IRn or G c <£n. We will 

therefore define the uniformity conditions for analytic functions and 

thereader can easily find the simplification and changes needed in the 

elementary case. 

Uniformity Condition. Let u be an analytic function defined in 

some domain D e IR $ n è 2, or G c: <E depending also on N parameters 

y j varying in a domain E c C . We will say thâ fe u satisfies the  

uniformity condition if for every compact K c D and every compact 

K' c E the intégral 

oo 
J u J n R

n " 1 | M u ( x 0 , R ) | d R 
0 is uniformly bounded for x € K and the parameters lying in K1. 

For n = 1 the uniformity condition will mean: if u(x) is analytic  

in an interval D c IR* (or G c <c\ ) we will require that^ufo 0 + | ) ha s an  

analytic continuation on the whole real axis £ and that | u(x^ + j) | d£ be 

uniformly bounded for x U in any compact in the domain of u and any compact 

of the domain of parameters. 

THEOREM I. If u satisfies the uniformity conditions then 

a) ^ u(x)dx = ̂ u(x)dx for any x^ and x* in the domain of u. 
0 1 

b) if u is holomorphic in its parameters in their domain, then the 

^u(x)dx is holomorphic in the parameters . 
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Remark 1. The necessity of changing the définition of uniformity 

condition for n = 1 can be traced to the fact that S^ is disconnected. 

With our définition Theorem I is trivial for n = 1. A simple example 

in the elementary case of u(x) = sgnx for x € IR* shows that in this 

case Theorem I, a) wouldn't be true if we accepted the same uniformity 

condition for n = 1 as for n > 1. 

Remark 2. It may happen that the uniformity condition is not valid 

in the whole domain D(or G) and in the whole of E, but is valid in 

smaller domains D' (or G') and E f . Then we can use the symbolic 

intégral and Theorem I for u restricted to the smaller domain with 

parameters restricted to the smaller domain. 

Example 1. u(x) is harmonie in a domain D c I R n , n ! 2 . Here 

\ u(x)dx exists (and = 0) if and only if u(x^) = 0; the uniformity condition 
J o 
x 
is not satisfied. 

Example 2. Consider again u(x) harmonie in D and put 

v(x) = u(x)e~^~Z^ / 4 t * ' . Here t and z are parameters , t € (C^ = [t Re t> 0] , 

z € <Cn , The uniformity condition now can be assured in gênerai for 
0 1 ~ ~ n x € D, t € C + and z € D, where DC(C is the harmonicity cell of D 

(see Chapter II, §1.). 

We pas s now to multiple symbolic intégrais. Let the function 

u dépend on several Systems of variables, say x . , y, , etc. (possibly 
J K 

with some additional variable parameters) . We could consider as a 

multiple symbolic intégral the resuit of symbolic intégration successively 

*' This example is connected with the theory of analytic solutions of the 

heat équation (see Chapter III). 
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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

with respect to each System of variables (at each step ail the remaining 

non-integrated variables being considered as parameters). However, 

to assure that the so-defined multiple S-integrals have certain elementary 

properties we impose the following conditions: 

Uniformity conditions for multiple S-integrals. ** Let u dépend on 

two Systems of variables x and y . Joining y (or x) to the parameters 

we define M^(x^, R^ ) (or M^(y^, R^)), and assume the corresponding 

uniformity conditions. In addition we define 

(3) M ( x ^ y ^ R ^ R ^ = — f f u(x°+R1 ^ , y°+R2 Q)da(\)^ 2) 
m-1 n-1 

b l b l 
oo oo 

(4) u(x,y)dxdy = u ) m i i ) n y J R ™ " 1 R ^ M ^ x ^ y°, Rx , R 2 )dR 1 dR 2 

0 0 0 0 x y 

We add then the assumption that for every compact in the domain of 

x, every compact in the domain of y, and every compact Kf in the 

domain of parameters , the intégral 
oooo 

V n U RT'' * 2 _ 1 I M u ( x ° ' R l • R2> I d R l d R 2 

is uniformly bounded for x € y 6 and the parameters in K 1, 

We state them here only for two sets of intégration variables. For 

more such sets, it is clear how the condition should be formulated. 
Z. 

The conditions are stated here for both dimensions m and n = Z . 

If one of them or both are = 1, the uniformity conditions should be 

changed in a manner similar to that which was done for single S-integrals. 
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THEOREM II. Let u(x, y) satisfy the uniformity conditions for 

double S-intégrais 1, then 
0 0 

a) for every x in the domain of x and y in the domain of y we 
have 

^ ^ u(x, y)dxdy = Jj ̂  ̂  udxjjdy ( ^ udy^ d x • 
0 0 x y 

This expression will be called the double S-integral of u and denoted by 

^ ^ u d x d y . 

b) if u is holomorphic in its parameters then so also is Jî^5 udxdy . 

For a function u(x, y) we can join the two Systems of variables 

into one (x;y) and consider the corresponding single S-integral by 

defining 

M ((x°;y°),R) = - J — f u((x°;y°)+R0)da(e). 
m+n J , . 

c m+n*l 
b l 

THEOREM III. Let the uniformity conditions for double S-integrals  

be satisfied for u(x,y). Then ^ ud(x;y) exists and 

Jj ud(x;y) = ̂ 5̂ 5 udxdy . 

We corne finally to the notion of convolution for two analytic functions 

u^ and u^ regular in domains and G^ respectively of <Cn, 

We consider the function u^xju^z-x) with parameters z € <Cn in the 

domain G where the function is defined. Clearly G z = G1 n (z -G ? ) . The 

set Q of ail z's such that G z / f is open. For each z? € Cl if we consider 

the bail in <Cn, B 2 n (z°), for sufficiently small R the set G^fz 0) = H 0 n G„ 
R ^Z ) 

is open, non-empty and the function u^(x) u^(z-x) is defined for ail 
x € G (z^) and z € B 2 n ( z ^ ) . We assume that for each component of G D (z°) 

R K K 
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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

the uniformity condition is satisfied with parameter z in B^ n(z ) , We 

say then that û  and u^ are convolutable and put 

(5) ( u ^ u 2)(z) = jî u 1(x)u 2(z-x)dx . 

The convolution u^* u^ is in gênerai multivalued due to the fact that 

G^(z^) may not be connected. However, if and G^ are convex 

u^* u^ forms a single-valued locally holomorphic function defined on 

the whole of Q. 

THEOREM IV. If u^* u^ exists, then u^* u^ = u^# û  . By a similar  

proceedure, we can take a finite system of functions u^, • • • , u m holomorphic  

on some domains of <Cn and put 

(5') (ux* u 2 * • • • * u m ) (z) = 

C , L # 2X , m- l x . 1 m - 1 . , 1 , 2 , m-1 = E u1('x+)u0(x ) • • • u ,(x ) u (z-x -• • • -x )dx dx • • • dx j 1 2 ' m - r ' m x 

if the symbolic intégral exists. 

THEOREM V. If u, * U o * • • •* u exists then — 1 2 m 

u, • • - #u = u, * (u 0 * • • •* u ) = (u, * u 0 )* (u0* • • •* u ) . 1 Z m 1 ù m i Z 3 m 

CHAPTER H. 
POLYHARMONIC FUNCTIONS. 

§1. General définitions and properties; Laplacian order and type. 

Consider a C°° function u(x) in a domain DCIR n . 

Définition 1. u is of Laplacian order p in D (0 "ê. p < co) if for 

every compact K c D and e> 0 there exists a constant C^ such that 

| APu(x) | * C K e (2p)! " p + s for x € K and p = 1, 2, 3, • • • . 
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Définition 2. u is in D of Laplacian order p with type (0 < p Ë oo) 

if for every compact K c D there exists < oo such that 

|A Pu(x)| ^ M ^ . p ( 2 p ) ! 1 * ( 1 / p ) for x € K, p = 1, 2, • • • . 

Définition 3. u is in D of Laplacian order p and type M, 0 < p ^ oo, 

0 ^ M < oo , if for every compact KCD and every e > 0 there exists a 

constant C K Q such that |A Pu(x)| * C K g (M + e) 2 P ( Z p ) ! 1 ' ^ } , for x € K , 

p = 1. 2, • • • . 

THEOREM I. u is in D of order oo with type if and only if u is  

analytic in D.̂ " 

Functions of infinité Laplacian order and type 0 are called polyharmonic  

functions ; such functions form a subclass of analytic functions. 

Functions satisfying Au = 0 are called polyharmonic of degree k; 

they are ail polyharmonic of Laplacian order 0. 

Définition 4. Let D be a domain in TRn. We dénote by P P (D) ,P P ' °°(D), 

P P ' ^ ( D ) , P ^ ( D ) the class of functions which are in D of Laplacian order p , of 

Laplacian order p with type, of Laplacian order p and type M, and 

polyharmonic of degree (k) respectively. 

THEOREM H. Let k» < k", 0 ^ M1 < M" < œ and 0 < p ' < p » î oo. 

We have P {W)[D) c P ( k n ) ( D ) c P°(D) £ P p M ' ( D ) c p p ' ' M M ( D ) c P p ' ' °°(D) 

c pP '(D) c P p " ' °(D) c P°° • M , ( D ) c P 0 0 ' M , ' ( D ) c P 0 0 ' °°(D) . 

pOo, oo^jjj is the class of ail analytic functions in D whereas P 0 0 ' ^(D) 

is the class of ail polyharmonic functions in D. 

This theorem was alreadv proved in N. Aronszajn, Acta Math. , 1935, 
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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

Since ail the functions in which we are interested are analytic we 

can extend ail our previous définitions Verbatim, replacing D by a domain 

GC (Cn, A being the Laplacian in n-complex variables. 

Définition 5. The set of ail points x € (Cn satisfying (x-x^) 2 = 0 is 

called the isotropic cone with vertex x^, and is denoted by V(x^), 

THEOREM III. For every domain D c ]Rn there exists a unique 

domain D in_ (£n such that every polyharmonic function in D has an 

unrestricted analytic continuation in D (which may be multivalued), D 

being the largest domain with this property. D is the largest such 

domain even if we restr ict the functions to be harmonie in D (i. e. € P^(D)) . 

If p < oo and u belongs to Pp (D), PP 9 °°(D), or PP ' °(D), then the extension 

of u to D belongs to the same classes in D . D is obtained as the corn-

ponent containing D of the open set (Cn \ U V(x^). 
x ° € I R n \ D 

D is called the harmonicity cell of D. 

In §3, Chapter I we defined directly the harmonicity cell of the 

bail B* . 

THEOREM IV. If u € PP 9 °°(D) and for some subdomain DT C D, the  

restriction u [ p l belongs to PP 9 °(D' ), then u € PP 9 °(D) ; in particular, if 

u is analytic in D and polyharmonic in D1 then it is polyharmonic in D. 

Définition 6. A function u defined in a domain D e jR n (or GC (£n) 

is said to be locally of order p or order p and type M < oo at a point 

0 0 x € D (or € G) if for every e > 0 there exists a neighborhood of x , 

U (x°) C D (or c G) such that u | T T / Q. belongs t o P P + G ( U (x°)) or fc u (x ; e 
0 p ,M+e / T T . 0.. 

(Uf i(x )) respectively. 
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THEOREM V. u belongs to P p (D) or P p , M ( D ) if and only if at  

every point € D, u is locally of order p or order p and type M 

respectively. u € P P ' °°{D) if and only if at every x^ € D u is locally  

of order p and some finite type. 

§2. Almansi development of polyharmonic functions. 

In Chapter I, §3 we described the Almansi development for gênerai 

analytic functions. We will give here the spécial properties of this 

development in case of polyharmonic functions. 

THEOREM I. If u is a polyharmonic function in a domain G C (Dn  

then for every x^ € G, the Almansi development 

(D u(x) = E ( x - x 0 ) 2 k h k ( x ° ; x ) , 
k=0 K 

is absolutely and uniformly convergent in the largest star-domain with 

0 . , . ^ center at x contained m G. 

The next theorem allows one to characterize functions of différent 

classes P in G for a star-domain G centered at x^ by the behavior of 

the harmonie coefficients h^(x^;x) . 
n 0 THEOREM II. Let G c C be a star-domain with center x . 

a) u(x) € P P (G), 0 ^ p < oo, if and only if for every compact KC G 

and e > 0 3 constant C„ such that & T G -

|hR(x) | = C R e (2k)! p + € , for_ x e K and k = 0,1, • • • . 

b) u(x) € P P ' °°(G), 0 < p < oo , if and only if for every compact 

K c G there exist constants C^ and M^ such that 

| h k (x ) | * C K M 2 k ( 2 k ) ! " 1 / p for x € K, k = 0,1,2, • 

c) u(x) € P P ' ^(G), 0 < p ^ oo, if and only if for every compact KCG 

and every e > 0 there exists a constant C v such that rv, € 
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| h j x ) | S C„ e* K (2k) !" 1 / p for x € K, k = 0,1, 2- • • . 

d) u(x) e P p , M ( G ) , 0 < p < oo, 0 < M < o o , if and only if for every  

compact K c G and every e > 0 there exists a constant g such that 

| ( x - x V P - * AP(( X -xV k h k ( X ° : x)) | . C K > € ( M + £ ) ^ g i ^ î l 

for every x € K, k = 0,1, 2, • • • and 0 ^ p ^ k . 

§3. Relations between entire and polyharmonic functions. 

There is a distinction in the nature of thèse relations between the 

case of one variable (n = 1) and several variables (n S 2). 

THEOREM I. Let u(x) be a function defined in a domain GC ( c l 

a) u is extendable to an entire function in <Ĉ  if and only if it is  

polyharmonic in G. 

b) u is extendable to an entire function of exponential order p < oo 

if and only if u € P P (G). 

c) u is extendable to an entire function of exponential order p and  

type T < oo if and only if u € l P P , M ( G ) , with M = ( T p ) 1 ^ . 

In case of several variables, the relations stated in the preceding 

theorem go only one way. 

THEOREM T. Let u be an entire function in <Cn, n ^ 2. 

a) u is polyharmonic in CDn . 

b) if u is of exponential order p < oo, then it is of Laplacian  

order p in (£n , 

c) if u is of exponential order p < oo and type T < oo, then u is  

of Laplacian. order p and type M = *Jn{Tp . 
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We pas s now to the multiplication of polyharmonic functions by 

entire functions. 

In gênerai if 3 is a class of functions defined on a set A, a function 

u defined on A is called a multiplier for the class 3 if for every f € 3f 

also u f 6 d- . 

THEOREM II. For every comain G c <Cn u is a multiplier for the  

class ^(G) of ail polyharmonic functions in G if and only if u is the 

restriction to G of an entire function in Ç n . 

THEOREM III. Let G be a domain in £ n . If u 6 P P , M ( G ) , p < oo, 

M < oo and v is an entire function in (Ln of exponential order < oo 

— n1 M1 

and type T < oo then for every founded domain G' c: G' c G, uv € P^ ' (G1) 

with p' = max [p, 2p ] and M' * ^ ' [ n ^ T) ̂ l 4- 2 2 + ( ^ P T ) ( P L T ) P l R" 1 + M 2 ] X / 2 , 

where R = min[ ||x-y || : x G G 7 , y € ÔG] . 

Remark. In the last theorem, the value of p1 is the best possible 

in gênerai but the évaluation of M' is possibly not the sharpest. 

As immédiate corollary of Theorem III we obtain: 

Corollary IV. Let G be a domain in (£ n, u € P P (G) with p < oo 

and let v be an entire function of exponential order p^ < oo. Put 

p' = max[p , 2p^ ] . Then 

a) uv € P p , (G) ; 

b) if u G P P ' °°(G) and v is of exponential order p and finite type, 

then uv € P p , ; °°(G). 

c) if u € ^ P * ^(G) and v is of exponential order p^ and type 0 then 

uv € P P ' ' ° ( G ) . 
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CHAPTER III. 

ANALYTIC SOLUTIONS OF THE HEAT EQUATION. 

§1. General properties and relations with polyharmonic functions of  

Laplacian order 2. 

We will consider functions in a domain G c (C n ^ = <Cn X CD̂*. The 

first n variables x^ » ' ' ' » x

n

 D e called the space variables and the 

last variable will be called thetime variable t. 

We will dénote the class of analytic solutions of the heat équation 

/i\ du A 

(1) 5T = A u ' 
regular in a domain G c C X <C by GSVÔ (G). If the domain G is of 

the form C n X D where D is a domain in <Ĉ  we will abbreviate the 

notation to Gft'(D). 

If u(x, t) € GS^G(G) then for fixed t° the function of. x, u(x, t°), 

will be called a section (space section) of u at t^. It is defined in an 

open set of <Cn whichis not necessarily connected. By using Theorem III, 

§2, Chapter I, one obtains: 

THEOREM I. Let u € G SV£ (G). If for a set ACIR 1 of positive 
0 

Lebesgue measure, the sections of u for t € A are ail entire functions 

in <Cn, then u can be extended to a function in G2/(D) for some domain 

D e C"S however, the extended function will be in gênerai multivalued. 

We can consider the class E of ail analytic solutions of the heat 

équation in ail domains G <z <Cn x <C* i. e. S = U GSftX(G). On the class 
G 

E we define several transformation groups. We give below a list of such 

transformation groups and describe their action on an élément u(x, t) € E . 

The transformed élément will be denoted by v(x, t). 
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Group G. This group is formed by ail affine orthogonal transformations 

a + T of <Cn onto itself and 

v(x, t) = u(a + Tx, t). 

Group 3. is the additive group of ([} and for T € 

v(x,t) = u(x,t + T ). 

Group C is the multiplicative group C 1 \ (0). For c € \ (0) 

2 
v(x, t) = u(cx, c t) . 

Group & is the group of ail 2 x 2 complex matrices ^ ̂ " ^ j with 

a6 -PY = 1 and for such a matrix _ 

/ . i . M i s r 1 ^ 4(Yt + 6) f x ^t+p_\ v(x, t) = (Yt + ô) e ' Yt + 3 ) 

Group & is the additive group <Cn with the following action of an 

élément b € <Cn 

v(x,t) = e ( b x ) + b 2 t u ( x + 2 t b , t ) . 

The transformation of H corresponding to an élément of the above groups 

will be denoted by G(a + T), <B(T), C(C), ' , e(b) . 

The groups G and $ détermine ail the other transformations; in 

f a c t «B(T, B . ( J 5 ) . Ce) - c V 2 û ( c ; 0 j , £ ( b ) . V 2 ) - l G ( b + I ) , C 0 ^ 

The transformations of each of the above groups transform functions 

defined in a domain G into functions defined on a well determined domain G' 

and they présent a linear isomorphism between the vector spaces GS&X (G) 

1 n ' An orthogonal transformation T is a linear transformation of <C onto 

<Cn such that for every x € <Cn, (Tx)^ = x^ . 
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and GSVe(G'). 

This last statement, however, is not literally true in case of the 

group & The transformations of this group présent two difficulties. 

The first is due to the fact that the transformation ^ ( y ' ô ) t r a n s ^ o r m s 

the variable t by a fractional transformation which may send a finite 

value of t figuring in the domain G into infinity. To avoid this difficulty 

a transformation of group & will be applied to functions defined in a 

domain G only if no point of G is transformed into infinity. 

The second difficulty occurs only for odd dimension n when the 

transformed functions have the factor (yt + 6 )~ n / ^ which is a two-

valued function. To avoid this difficulty we will restr ic t ourselves to 

domains G which are simply-connected and wiU consider the transfor­

mation in question as representing two distinct transformations of 

GSVC(G) onto GSVe(G') differing by the factor - 1 . 

THEOREM II. Under the restrictions described above and if  

we provide the linear spaces GSftX (G) with the topology of uniform  

convergence on compacts!* then the transformations of ail groups described  

above are topological linear isomorphisms onto. 

Remark 1. The restrictions imposed above on the nature of the 

domain G and the transformation ^ (y ' 3) avoid the difficulties but do 

not solve them in the gênerai case. To solve them one would have to 

n —T 2 

consider domains G c (E x <C , introduce the notion of regularity of a 

solution of the heat équation for t = oo (which can be done) and for 

which makes GSftX(G) into a Montel space. 

2 T 1 
C is the Riemannian sphère (C U (oo) . 

- 25 -



ARONSZAJN 

odd dimension n consider multivalued solutions. 

We pas s now to the characterization of the sections of the analytic 

solution of the heat équation. 

THEOREM III. A function v(x) defined in a domain U c <Cn j s the  

section of a solution u € G S V£ (U X B 2 (t°)) **at the time t° if and only if 

v is polyharmonic in U of order 2 and type . If this condition is 

satisfied then 

(2) u( X , t ) = E A P V(X) ( T ; ; } . 
p=0 p* 

Consider u(x, t) € GSfcX{G). For any (x°;t°) € G we will call a 

B-circle of u in the direction 8 at (x^;t^) the largest circle B^(£+ Re*9) 

with the property that for any smaller circle B^ , (t^+R'e*9) there exists 

a neighborhood U of x^ in df1 such that u has a regular extension to 

U X B 2 , (t^ + R'e* 9) . We will call a B-domain of u aX (x^;t^) the union 

of t° and ail the B-circles at (x°;t°) in ail directions 9 . 

We introduce the fundamental solution E(x,t) of the heat équation 

(3) E(x,t) = * e 4 t . 
( 4n t ) n / ^ 

THEOREM III. Let B 2 (t° + R 1 0 ) be the B-circle of u in the direction 

6 at (x^;t^). Let 0 < R 1 <R and U be a circled domain in <Cn centered 

at x such that u is regular on U X B^,(x° + R ' e 1 0 ) . Then if v(x) is the  

restrict ion of the section of u at t^ to U we have 
i8_ -Te 

(4) u(z,t ') = ^ v ( e 2 x + x ° ) E ( e 2 (z-x°)-x; e " 1 9 ^ 1 - t°)) dx , 

the symbolic intégral existing for z € U and V € B^, (t° + R ' e i 0 ) . 

1 1 2 Here we identify (C with IR . 
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In the proof of (4) we consider x^, t^ and 0 as fixed, only z 

and t' as variable parameters and x€ U-x^. Then we prove that 

(putting x' = e ( * i 6 ) / V - x ° ) ) 

u(z, t') = JW(e 2 X + X ° ) E ( X - X \ e'iQ(V-t°))dx . 
x» 19 

This needs the Almansi development of v[e x + x J at x f , 

formula (4), §3, Chapter I, Hadamard's theorem on multiplication of 

singularities and Borel transformation (that is where the name 

B-circle cornes from). For j with x" € U-x we use the transformation 

f x-'-x1 \ X C 
£J ] to reduce it to the case S . Finally we use the analytic 

capacity (already mentioned in §1, Chapter I) to obtain the uniformity 

condition relative to x" and parameters z and t1 . 

Applying (4) to varying directions 0 we obtain an expression of 

the solution u at ail points (x ; t) with t in the B-domain of u at 

(x ;t ) in terms of the section v at t . 

§2. Developments in Hermite Polynomials. 

We recall that Hermite polynomials in one variable x are given by 

(D Hk(x) = ( - l ) k e x ! - £ e " x , k = 0 , 1 , 2 , . . . . 
dx 

H^(x) is a polynomial of order k with leading coefficient 2 and ail 

terms of the same parity. 

We will consider Hermite polynomials in n variables defined for 

Systems k = (k^, • • • k^ ) of nonnegative integers by 

(2) H (x) = H k ( X l )- - - H k (x ) = (-l)W e x 2 D k e ~ x 2 , 
1 n 
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k, k 
where D = :— • • 5— . 

1 n dx. ôx 

It is well-known that the functions 

(3) KM -
2 l k ! / 2 Î k ) ! 1 / 2 n n / 4 

ù 
-X 

B 2 H k ( x ) , 

form an orthonormal complète System in L (IR ) . This fact implies 

immediately the following proposition. 

Proposition I. Let c be a strictly positive number. Then the  

functions 

( 4 ) z N / z J ^ W 4 H k ( C x ) 

form an orthonormal and complète system in L 2 (IR n , c n e ^C X^ dx) . 

The next proposition is proved immediately by using the differential 

équations characterizing the H^'s . 

Proposition II. The function given by 

, 5 , 2 I M ( . T ) M / 2 „ K ( _ ^ ) 

is a polynomial in x as well as t which is a solution of the heat équation 
Ikl i k 

with section at t = 0 equal to 2 1 1 x | 

THEOREM III. Let u(x, t) be a solution of the heat équation regular 
0 0 

at a point (x ;t ), then 
a) if t 1 belongs to the B-domain of u at (x^;t^) , the section of u 

n 0 

at t' possesses, in a circled domain U c (C with center x , a development  

in Hermite polynomials 
(6) U (x . t ' ) = E L A k ( t 0 . t M M / 2 H k ( - ^ = r ) , A k = J r D k u ( x ° , t \ 

p=0 |k| =p 2\] t -t 1 

the séries in p being uniformly convergent on compacts in U . 
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b) if, in addition, belongs to the B-circle of u at. (x^;t') 

in the direction 8, then the coefficients can be expressed in terms 

of u(x, t') by the formula 

(7) A , - § u(e 2 x + x ^ t > ( x . , - i ^ t 0 - O ) ( W ? L , | k | H ^ . ^ ^ d x . 

c) if, furthermore, we assume that for some circled domain 

0 t f t° ' XJ n <z Cn with center x and for certain R > —-— , the solution u is 0 - 2 
2 /" t •+• t ' \ 

regular in the domain U Q X B R ^—^—J then the infinité séries in (6)  

is uniformly convergent on every compact in UQ and formula (7) can  

be further simplified by choosing 8 =Arg(t^- t ' ) : 
(7') A k = ̂  u (e « x + x°, f ) E(x ,11°-t< | ) ^ U j k | H R ( ^ O ^ l / z ) d X " 

. Q Remarkl . If the section u(z,t !) is regular on the whole hyperplane îd • 
e 2 IRn + x^ and if, restricted to this hyperplane, it is in 

L 2 ( lR n , ( J m T e"X A 4 ! 1 " dx V then formula (6) with its 
V V 2 | t - t ' | V 2 / 1 

A, 's déterminée! by (7') gives the standard development of the function 
Ri9_ 
f 2 0 

u'̂ e x + x , t') in the orthonormal and complète system 

2 | k | / 2 | k ! ) l / 2 n n / 4 H K C 2 | t 0 . t . , V 2 ) ' 

§3. The spaces GU and G%C and their duals. j-̂  _____________________ 

We will be interested in a very spécial kind of spaces of the type 

(W[D) (see §1) namely, the spaces GftL = G#(B2 (R)), 0 < R < oo and the 

space GV=GVœ =GV((C+). L 

The proper functional spaces G&^ with their natural topology 

L (C+ = [z e C 1: Re z > 0] . 
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(uniform convergence on compacts) are Montel spaces. For R1 < R = oo 

GUR is identified (by restriction) with a subspace of O.URt which is 

dense but not closed in GV R I . 

The transformations of the groups G and 6 are automorphisms 

for each GUR . Transformations C(c) for real c f 0 form an iso-

morphismof GUR onto GU . Among the transformations of the 
R / c 2 / 1 , (k 

group $ we will single out $ l _1_ 1 . j which is an isomorphism 
2R" ZBJ ' A / 

/ l , Ov 

of GV R onto G^ K , and $ -̂_l 1 J with purely imaginary p / 0 . This last 

transformation is an automorphism of GU onto itself which transforms 
t = 0 into t = oo and vice versa. The theorems of the preceding two 

sections take an especially simple form for functions in CLVr . For 

référence's sake we will state here thèse theorems and some of their 

corollaries. 

THEOREM I. A function v(x) is the section at t^ of a function in 

GU{BR(t®)) if and only if v is an entire function of x € <Cn polyharmonic 
1 

of Laplacian order 2 and type " ^ g " • 

If t^ is in the t-domain of Gu 0̂ we can choose a transformation of 

the group $ which will transform this domain onto a circle and t^ into 

its center. We obtain thus the corollary: 

Corollary II. A function v(x) is the section of a function u GûV , * —————— ———— . - —————————— j-̂  
0 2 

R < oo at appoint t € B (R) if and only if the function 
f ( R - t ° ) x 2 > 

e X P V 4 ( R 2 - | R - t U | V 

is an entire function of Laplacian order 2 and type ( R Y / 2 

V2 ( R 2 - | K - t ° | V ' 
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0 .1 
Corollary II 1 . v(x) is the section at t € "Cij. of a function in 

G^sG^' if and only if e^X ' A 8 R e 1 ^ v(x) is an entire function of 

Laplacian order 2 and type —.., . 
2 \ /Ret J 

For the class consider t^ in its t-domain and the largest 

circle B(R, t° , 0) contained in the t-domain of Gft^ with diameter in 
0 .1 

the direction 0, and starting at t . * Every B-circle of a function 
u € GU^ at t° , x° in the direction 0 contains B(R, t ° , 0). We will R 
call this circle the minimal B-circle for the class GVR at t^, 0 . 

The corresponding minimal B-domain = U B(R, t^, 0) U (t^) is always 
0 

equal to the t-domain of G ^ R . 
THEOREM III. For t° in the t-domain of QUR we have  

i0 î0_ 
(1) u(z, t) = § u(e 2 x, t°J E(e 2 z-x, e i 0 ( t - t° ) ) dx , 

n 0 the symbolic intégral existing for ail z € <C and t € B(R, t , 0) . 

Thus formula (1) allows one to express the function u in the whole 

domain of Gft^ in terms of the section at t^ by choosing 0 suitably (the 

choice of 0 is not unique). 

Theorem III of j 2 would be needed especially in the case when > 0 

THEOREM IV. Let u € G^ R and t ^ (R) , 0.<t°<2* . Then, the s ec t i on 

u(x, t') can be developed in a séries of Hermite polynomials. 

(2) u(x, t')= S E A, ( t°-f) MA H f x \ 
p=0 |k|=p k W ^ - f / 

For R « oo and 0 = 0 (i. e. the direction of the positive axis) this circle 

will actually be the half-plane Re (t-t°) > 0 . 
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the s é r i e s in p being uniformly convergent for ( x , t ' ) in any compact  

of ï n xBp(R) . The c o e f f i c i e n t s can be expressed by : 

(3) A k = i-, D k u(0,t°) for ail f € B*(R), 

(3') A. = £u(x, t ' )E(x. t°- t ' ) — 1 u. H ( , X ) d x for 0 < f < t° . 

Before we consider the topological dual of GV R we will first 

represent GftR itself as a dual of relatively simple function space. We 

consider the class of functions V which is obtained by taking ail functions 

of x, t of the form E(x-£>, t + T), their derivatives relative to the variable 

n 2 parameters C and T for C € CD and T € B D (R), and ail finite linear xv. 

combinations of thèse functions. We obtain thus a linear function space. 

As topology in this space we take the strongest locally convex topology 

for which the différence quotients of Dr E(x-£, t + T) relative to 4- or T 

converge to the corresponding derivative. It is easy to see that such 

topology exists and is Hausdorffian. 

THEOREM V. The topological dual is exactly the space G # R  

if we identify an élément f € V R with the function 

f(z.t') = < f, E(x-z, W ) > € G^ R . 

Trie scalar product between a function u € GVR and a function v € V R  

can be written in the form 

< u, v > = u(x, t')v(x, -t')dx 

where the symbolic intégral exists and is independent of t' for sufficiently  

small positive t ' . *̂ 

"̂ In fact, if in the expression of v figure the values T. of the parameter 
2 

T the intégral will exist for t' such that T j " t ' € B R (R) for ail j ' s . 
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The Mackey topology on GVR corresponding to the pairing < ^ ^ # ^ ^ 

is strictly weaker than the canonical topology of Gft̂  . Hence the dual 

Gfc ĵ? V

R • T o describe the dual GV^ we notice that GVR is a closed 

subspace of G((Dn X B R (R)) . Hence every continuous, linear functional 

of GU* can be obtained (in infinitely many ways) by taking an analytic 
n 2 

functional F € G'(C X B_ (R)) and restricting it to GU- t By formula 1, 
§4, Chapter I, F can be identified with a function F(z,t) regular on 

^ Y 
Pw (0) X Pj/ R (R) and the scalar product is given by 

< u(z,t), F > = j u(z,t + R ) F ( i i , - - - , - i - , 1 + R^dzp • • • d z n d t , 

n r , (0 )xn^ , (0) 

the function F being regular on P^RI(0) X P ^ I W A N D 0 < R' < R . 

Similar procédure can be applied to the case R = oo where B^(R) is 

replaced by <L+ . The représentation leads to the following theorem: 

THEOREM VI. Each functional v € GUI. , R < oo can be identified _________________________ ,.. R 
with the function v(x !, t') € 

v (x f , f ) = < E(x'-x, t« + t), v > . 

Each such function is regular for x1 € <Dn , t' € (C1 \ B R f ( -R) for certain 

R' < R. For 0 < t' < R-R 1 the function v(x, -t") is convolutable with every 

function u(x, t) and the scalar product is given by _________. _̂  1 • 

< u, v > = (u(x, t») * v(x, -t'))(0) 

the last value being independent of t' . 

THEOREM VI'. For R = oo the only différence from the statement  

in Theorem VI is that v(x', t' ) is regular for x € <Dn, t 1 6 (C1 \ B R , ( -R^ 
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for some R1 and R^ satisfying R' < R̂  and in the formula for scalar  

product < u, v >, t' should satisfy 0 < t 1 < R^-R1 . 

The last theorems do not characterize completely the function 

v(x',t) in the dual Gft^ • T n e complète characterization was obtained 

by M. S, Baouendi in case R = oo # 

THEOREM VIL (Baouendi). v(x, t) € G*" if and only if v € OV, is_ 

regular for t = 0 and there exist constants C > 0 , M - 0 , A > B = 0 

such that for x € <Cn 

2 2 . . n N | < ^ M Ixl + Blx I -A Re X | v(x, 0) | =i Ce 1 1 1 1 

One can obtain a corresponding characterization for v € CLV' by 

applying to GU the isomorphism $y 
1 T» 

1 
^2R 

1 ; which transforms GU onto 

aUR and <C+ onto B R (R) . 
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